Я.Ф.Зверев, В.М.Броханов, С.В.Талалаев

REACTION OF THE RAT KIDNEY VASCULAR TUFT UNDER CONDITIONS OF EXPERIMENTAL TREATMENT OF CYTOTOXIC NEPHRITIS

ABSTRACT

The purpose of the present investigation was to study the morphology of renal glomerulus and vascular tuft during cytotoxic nephritis and experimental therapy of the disease. Histological and morphometrical methods were used to show the reactions of these parts of subcapsular and juxtamедullary nephrons in the rat kidney. It was established that the glomerular capsule lumen was increased at the corresponding reduction of the vascular tuft sizes. The filtration barrier thickness was also shown to be increased. Redistribution of blood flow between different types of nephrons took place in the nephritic kidney. The administration of nifedipine and etacrylic acid improved the state of the renal glomerular structures.

Keywords: kidneys, vascular tuft, nephritis, experimental therapy.

ВВЕДЕНИЕ

В ходе онтогенеза почка выполняет большое количество различных функций. Участвуя практически во всех видах обмена, она обеспечивает поддержание постоянства внутренней среды организма. При патологии её структуры приспосабливаются к новым условиям существования, что сопровождается функциональными и морфологическими изменениями. Так, установлено, что в сосудистом клубочке при экспериментальном гломерулонефrite, возникают ультраструктурные изменения со стороны всех элементов клубочкового фильтра: эндотелиоцитов, мезангиальных клеток, базальной мембраны. Наблюдается увеличение мезангиального матрикса, нарушение строения подоцитов [5]. Принимая во внимание, что в настоящее эксперименте ультрамикроскопические изменения должны иметь сходный характер, проведено морфологическое изучение реактивности почечного тельца нефрона и сосудистого клубочка при нефрите Масути, а также в условиях его экспериментальной терапии.

МATERIAL I МЕТОДЫ

Работа выполнена на белых беспородных крысах массой 150—200 г. Для получения нефrotических изменений им вводили нефротоксическую сыворотку по известной методике [6]. Животные были разделены на три группы по 5 крыс в каждой. Первая группа являлась контрольной. Животным второй и третьей групп на протяжении 15—20 дней вводили нифедипин и этакриновую кислоту, соответственно, в дозе 10 мг/кг. Исследование почек производили периодически с 5-го по 30-й день болезни и сравнивали полученные изменения с морфологической картиной интактных крыс. Животных забивали в указанные сроки методом декапитации, извлекали почки и заливали в парафин по общепринятой методике. Для изучения общей морфологии готовили гистологические срезы
толщиной 5—10 мкм, которые окрашивали гематоксилином и эозином или полициролом методом Маллори. Для выявления базальных мембран сосудистого клубочка и их морфологических изменений использовали гистохимическое определение гликозаминогликанов с помощью ШИК-метода.

При увеличении микроскопа 450 с помощью вмонтированной в окуляр сетки, состоящей из 121 точки, производили определение удельного объёма (Vр, %) компонентов почечного тельца: капсулы, сосудистого клубочка [1].

Все результаты обработаны статистически с использованием критерия Стьюдента. При расчётах использовали компьютерную программу «Statgraphics».

РЕЗУЛЬТАТЫ

При гистологическом исследовании почек контрольных и опытных животных обнаружили морфологические признаки повреждения структур почки, характерные для нефрита Масуты. Со стороны почечного тельца нефронов наблюдали расширение просвета его капсулы, в котором нередко присутствовало зернистое содержимое, а иногда — отдельные слущенные клетки. В сосудистом клубочке имело место спадение или расширение петель кровеносных капилляров. Отмечались явления пролиферации эндоцитоцитов и мезангиальных клеток, а также набухание подоцитов. В конце периода наблюдения встречались локальные утолщения базальной мембраны, неравномерность её охранивания с помощью ШИК-реакции.

В канальцах нефрона, особенно в проксимальных отделах, наблюдались явления повреждения эпителлиальной выстилки в виде набухания и вакуолизации эпителиоцитов, повреждения зернистости их цитоплазмы, частичного или полного разрушения клеток и их сгущения в просвет мочевого канальца. В отдельных нефронах присутствовало гомогенное или зернистое содержимое.

В интерстициальной ткани привлекали внимание кровеносные сосуды, и в первую очередь капиллярная сеть, в которой, по сравнению с почками интактных животных, наблюдалось перераспределение крови между субкапсулярной и оксамедулярной зонами коркового вещества. Кроме того, было установлено переполнение сосудов мозгового вещества.

С течением заболевания в интерстициальной ткани коркового вещества нарастала лейкоцитарная инфильтрация, большие выраженные к 30-му дню и локализованная преимущественно вокруг дуговых и междольковых артерий и вен. В некоторых почках обнаруживались массивные разрастания соединительной ткани, которые обычно формировались в местах полностью разрушенных нефронов.

Известно, что состояние клубочкового фильтра во многом определяет изменение, которые можно наблюдать со стороны канальцевых частей нефрона. Неравномерность структурных единиц почки с делением на субкапсулярные и оксамедулярные нефронные приводит к формированию некоторых особенностей морфологической картины их поражения при различных состояниях органа выделения.

В табл. 1 показан относительный объём почечного тельца при нефритическом нефрине и в процессе его лечения.

Таблица 1

<table>
<thead>
<tr>
<th>Дни</th>
<th>p</th>
<th>Тип нефрона</th>
<th>Интактные</th>
<th>Контроль</th>
<th>Нифедипин</th>
<th>Этакриновая кислота</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-й</td>
<td>5</td>
<td>Юкстамедулярные</td>
<td>56,4±2,90</td>
<td>73,0±1,83</td>
<td>67,8±3,13</td>
<td>68,9±2,42</td>
</tr>
<tr>
<td>15-й</td>
<td>10</td>
<td>Юкстамедулярные</td>
<td>38,5±1,64</td>
<td>54,1±1,57</td>
<td>45,0±1,22</td>
<td>44,1±0,87</td>
</tr>
<tr>
<td>20-й</td>
<td></td>
<td>Юкстамедулярные</td>
<td>56,4±2,90</td>
<td>77,2±1,03</td>
<td>73,1±3,81</td>
<td>67,5±2,54</td>
</tr>
<tr>
<td>30-й</td>
<td>5</td>
<td>Юкстамедулярные</td>
<td>56,4±2,90</td>
<td>65,4±1,68</td>
<td>95,2±1,76</td>
<td>43,7±1,26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Субкапсулярные</td>
<td>38,5±1,64</td>
<td>47,2±1,10</td>
<td>59,1±2,20</td>
<td>—</td>
</tr>
</tbody>
</table>

Примечание. Здесь и в табл. 2—3: все результаты достоверно отличаются от показателей интактных крыс, n — количество использованных животных.

У животных контрольной серии опытов, по сравнению с интактными крышами, установлено достоверное повышение относительного объёма почечного тельца. В субкапсулярных нефронах максимальное увеличение удельного объёма наблюдалось через 5 дней (на 15,7%), в оксамедулярных его наибольший рост приходился на 20-й день (на 20,8%). К концу периода наблюдения этот показатель несколько уменьшился.

При применении нифедипина в течение первой половины болезни объём почечного тельца обоих видов нефронов существенно не отличался от контрольных цифр. Затем выявилась устойчивая тенденция увеличения этого показателя, приобретающая наибольшую значимость к 30-му дню. В это время данный показатель повышался у юкстамедулярных нефронов в 1,7 раза, а у субкапсулярных — в 1,5 раза. В тоже время, введение этакриновой кислоты, наоборот, оказывало стабилизирующее влия-
яние на этот участок нефрона. Это привело к уменьшению объёмов почечного тельца, как юкстамедулярных, так и субкапсулярных нефронов по сравнению с таковыми в контрольной серии. Кроме того, отсутствовала тенденция увеличения этого показателя, выявленная у животных, получавших нифедипин.

Увеличение размера почечного тельца нефрона может происходить по трём причинам: либо за счет увеличения объёма просвета капсулы, либо за счет увеличения размеров структур сосудистого клубочка, либо за счет сочетанного увеличения обоих этих компонентов. Для выявления этого были проведены последующие морфометрические измерения.

В табл. 2 представлены результаты измерения объёма просвета капсулы. Как видно из таблицы, у контрольных животных просвет капсулы почечного тельца всегда был значимо больше, чем у интактных крыс. Особенно сильное увеличение просвета юкстамедулярных нефронов через 5 дней после начала эксперимента, когда он превышал показатели нормы в 4,7 раза. В дальнейшем увеличение объёма просвета капсулы обоих типов нефронов сохранялось примерно на одном уровне.

В результате введения обоих препаратов относительный объём просвета капсулы почечного тельца был меньше, чем в контроле, однако его величина всегда превосходила таковую у интактных животных. При использовании нифедипина объём просвета капсулы почечного тельца и субкапсулярных, и юкстамедулярных нефронов превышал норму уже на 5-й день, но по сравнению с контролем, увеличивался в меньшей степени и сохранялся на этом уровне на протяжении всего эксперимента.

Поясняя закономерность установлена в условиях применения этакриновой кислоты. При совместном введении с контролем повторялась общая тенденция улучшения состояния этой части нефрона, наблюдаемая к концу эксперимента. Несколько большую чувствительность к действию препарата проявляли юкстамедулярные нефроны.

В табл. 3 представлены относительные показатели, характеризующие изменение объёма сосудистого клубочка.

В контрольной серии обращает внимание факт значительного уменьшения объёма сосудистого клубочка. Максимальные изменения наблюдались на 5-й день после начала опыта, когда объём сосудистого клубочка обоих видов нефронов уменьшался в 1,4 раза. К концу эксперимента отмечалось некоторое увеличение удельного объёма.

Введение исследуемых препаратов приводило к некоторой нормализации объёма сосудистого клубочка. При этом максимальное приближение к показателям интактных животных наблюдалось в результате применения этакриновой кислоты на 20-й день эксперимента. Однако и здесь полное восстановление объёма сосудистого клубочка не происходило.

Таким образом, из приведённых морфометрических данных следует, что нарастание размера почечного тельца в целом происходит за счет увеличения объёма капсулы при одновременном уменьшении сосудистого клубочка. Уменьшение объёма сосудистого клубочка может быть, с одной стороны, следствием количественных изменений в строении компонентов клубочкового фильтра: пodoцитов, мезангиальных клеток, эндотелия и базальной мембраны, а с другой, — результатом перераспределения крови в клубочковых капилярах между субкапсулярными и юкстамедулярными нефронами или в пределах одного из названных типов. В табл. 4 представлен удельный относительный объём капиляров клубочка при экспериментальном нефритоксическом нефrite и после введения на его фоне исследуемых препаратов.

Таблица 2

<table>
<thead>
<tr>
<th>День</th>
<th>n</th>
<th>Тип нефрона</th>
<th>Интактные</th>
<th>Контроль</th>
<th>Нифедипин</th>
<th>Этакриновая кислота</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-й</td>
<td>5</td>
<td>Юкстамедулярные</td>
<td>7,5±0,91</td>
<td>34,74±2,73</td>
<td>24,45±1,93</td>
<td>25,19±3,13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Субкапсулярные</td>
<td>8,6±2,00</td>
<td>31,94±1,01</td>
<td>19,40±1,11</td>
<td>29,61±1,28</td>
</tr>
<tr>
<td>15-й</td>
<td>10</td>
<td>Юкстамедулярные</td>
<td>7,5±0,91</td>
<td>30,03±2,71</td>
<td>25,36±2,14</td>
<td>17,56±0,39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Субкапсулярные</td>
<td>8,6±2,00</td>
<td>30,43±1,09</td>
<td>20,95±1,80</td>
<td>23,68±2,04</td>
</tr>
<tr>
<td>20-й</td>
<td>5</td>
<td>Юкстамедулярные</td>
<td>7,5±0,91</td>
<td>29,10±2,59</td>
<td>26,37±2,12</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Субкапсулярные</td>
<td>8,6±2,00</td>
<td>27,85±1,02</td>
<td>26,14±1,87</td>
<td>—</td>
</tr>
</tbody>
</table>

Таблица 3

<table>
<thead>
<tr>
<th>День</th>
<th>n</th>
<th>Тип нефрона</th>
<th>Интактные</th>
<th>Контроль</th>
<th>Нифедипин</th>
<th>Этакриновая кислота</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-й</td>
<td>5</td>
<td>Юкстамедулярные</td>
<td>79,8±3,30</td>
<td>55,5±2,86</td>
<td>62,9±2,40</td>
<td>66,7±3,08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Субкапсулярные</td>
<td>78,0±2,18</td>
<td>55,4±1,10</td>
<td>65,1±1,66</td>
<td>60,7±1,19</td>
</tr>
<tr>
<td>15-й</td>
<td>10</td>
<td>Юкстамедулярные</td>
<td>79,8±3,30</td>
<td>66,4±2,17</td>
<td>64,9±2,10</td>
<td>71,5±0,51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Субкапсулярные</td>
<td>78,0±2,18</td>
<td>62,4±1,17</td>
<td>66,2±1,27</td>
<td>63,8±2,23</td>
</tr>
<tr>
<td>20-й</td>
<td>5</td>
<td>Юкстамедулярные</td>
<td>79,8±3,30</td>
<td>61,6±1,98</td>
<td>67,5±2,20</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Субкапсулярные</td>
<td>78,0±2,18</td>
<td>60,8±1,02</td>
<td>62,3±2,21</td>
<td>—</td>
</tr>
</tbody>
</table>

75
Из таблицы видно, что при экспериментальном нефрите происходит перераспределение кровотока между разными типами нефронов. Только к 30-му дню эксперимента появилась тенденция восстановления соотношения объёмов капилляров клубочков между околосемозыговыми и подкапсулярными нефронами.

Применение обоих препаратов на фоне нефrottоксического нефрита, по сравнению с контролем, вызывало еще большее расширение капилляров клубочков юкстамедуллярных нефронов. Одновременно незначительно усиливался кровоток и через подкапсулярные нефроны. Правда, введение нифедипина к концу периода наблюдения приводило к некоторой стабилизации капиллярного русла клубочков нефронов и нормализации отношения показателей капилляров субкапсулярных и юкстамедуллярных нефронов. В норме этот показатель равнялся 1,65. На 30-й день исследования после введения нифедипина он составлял 1,19, в то время как во всех остальных группах животных он был от 1,05 и ниже.

Итак, в процессе развития нефrottоксического нефрита в сосудистых клубочках субкапсулярных и юкстамедуллярных нефронов установлена тенденция к перераспределению кровотока, что было обусловлено увеличением относительного объёма капилляров в клубочках околосемозыговых нефронов и уменьшением — в подкапсулярных. Некоторая стабилизация этих показателей и приближение к норме было обнаружено в сериях экспериментов с введением нифедипина.

В табл. 5 представлен относительный объём структурных элементов клубочкового фильтра. В обоих типах нефронов в контрольной серии опытных животных наблюдалось увеличение толщины клубочкового фильтра, в наибольшей степени выражено на 5-й день эксперимента. Аналогичные изменения исследуемых показателей отмечены в серии с нифедипином. В опытах с этикриновой кислотой несколько меньше изменения толщины компонентов клубочкового фильтра выявлены со стороны юкстамедуллярных нефронов. При этом данный показатель достоверно не отличался от значений в почках интактных животных.

Подчеркнём, что увеличение толщины клубочкового фильтра субкапсулярных нефронов после введения как нифедипина, так и этикриновой кислоты происходило примерно в равной степени (на 10%), и только на 30-й день в опытах с нифедипином эта разница достигала 13,7%.

Таблица 4

Удельный относительный объем капилляров клубочков (X±m)
при нефrottоксическом нефrite и после введения препаратов
(в % относительно объема сосудистого клубочка)

<table>
<thead>
<tr>
<th>Дин</th>
<th>n</th>
<th>Тип нефронов</th>
<th>Интактные</th>
<th>Контроль</th>
<th>Нифедипин</th>
<th>Этикриновая кислота</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-й</td>
<td>5</td>
<td>Юкстамедуллярные</td>
<td>22,8±2,12</td>
<td>23,2±1,55</td>
<td>24,7±2,44</td>
<td>32,4±5,71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Субкапсулярные</td>
<td>37,6±3,96</td>
<td>21,8±1,52</td>
<td>25,9±2,16</td>
<td>28,0±1,69</td>
</tr>
<tr>
<td>15-й</td>
<td>10</td>
<td>Юкстамедуллярные</td>
<td>22,8±2,12</td>
<td>32,3±1,06</td>
<td>37,1±2,60</td>
<td>29,8±3,11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Субкапсулярные</td>
<td>37,6±3,96</td>
<td>28,8±1,35</td>
<td>28,1±2,32</td>
<td>27,0±2,83</td>
</tr>
<tr>
<td>20-й</td>
<td>5</td>
<td>Юкстамедуллярные</td>
<td>22,8±2,12</td>
<td>25,3±2,43</td>
<td>20,5±2,17</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Субкапсулярные</td>
<td>37,6±3,96</td>
<td>25,4±1,59</td>
<td>24,4±1,36</td>
<td>—</td>
</tr>
</tbody>
</table>

* Здесь и в табл. 5: достоверные изменения по сравнению с показателями интактных животных.

Таблица 5

Удельный относительный объем компонентов клубочкового фильтра (X±m)
при нефrottоксическом нефrite и после введения препаратов
(в % относительно объема сосудистого клубочка)

<table>
<thead>
<tr>
<th>Дин</th>
<th>n</th>
<th>Тип нефронов</th>
<th>Интактные</th>
<th>Контроль</th>
<th>Нифедипин</th>
<th>Этикриновая кислота</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-й</td>
<td>5</td>
<td>Юкстамедуллярные</td>
<td>65,4±3,00</td>
<td>76,8±1,55</td>
<td>75,3±2,44</td>
<td>67,5±5,71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Субкапсулярные</td>
<td>61,7±1,81</td>
<td>78,1±1,52</td>
<td>72,7±1,94</td>
<td>71,9±1,69</td>
</tr>
<tr>
<td>15-й</td>
<td>10</td>
<td>Юкстамедуллярные</td>
<td>65,4±3,00</td>
<td>74,3±2,11</td>
<td>64,1±2,91</td>
<td>68,7±3,83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Субкапсулярные</td>
<td>61,7±1,81</td>
<td>75,0±1,66</td>
<td>72,0±2,34</td>
<td>72,6±3,11</td>
</tr>
<tr>
<td>20-й</td>
<td>5</td>
<td>Юкстамедуллярные</td>
<td>65,4±3,00</td>
<td>74,7±2,43</td>
<td>79,5±2,17</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Субкапсулярные</td>
<td>61,7±1,81</td>
<td>74,6±1,59</td>
<td>75,4±1,35</td>
<td>—</td>
</tr>
</tbody>
</table>
метрически показано закономерное увеличение объёма капиллярного русла у первых и уменьшение — у вторых. Подобное перераспределение кровотока в почках животных было показано после применения некоторых диуретиков [2]. Введение нифедипина и этакриновой кислоты морфологически выявляло тенденцию большего усилению кровотока через околососудистые нефронов и некоторую его нормализацию у подкапсулярных структурных единиц. В проведённой работе применение фармакологических препаратов уменьшало относительный объём компонентов клубочкового фильтра, а введение этакриновой кислоты приводило к его нормализации в юкстамедуллярных нефронов. Не исключено, что такая реакция связана с противотённым и противовоспалительным действием диуретиков на ткани почек, как это отмечалось в исследованиях, проведенных ранее [3, 4].

ЗАКЛЮЧЕНИЕ

В процессе развития цитотоксического нефрита в почках животных появляются изменения со стороны почечного тельца в виде расширения капсулы и нарушения сосудистого клубочка, характеризующиеся перераспределением кровотока между субкапсулярными и юкстамедуллярными нефронами. Эти нарушения могут быть связаны с изменениями толщины базальной мембраны, а также с повреждениями эндотелиоцитов и подоцитов клубочкового фильтра. Введение фармакологических препаратов несколько нормализовало морфометрические показатели компонентов почечного тельца.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

2. Брюханов В.М., Тапалев С.В. Морфология межтканевых реакций и микроциркуляторного русла в почках беременных крыс после введения диуретиков // Нефрология.—1998.—T. 2, № 3.—С. 95—98.
5. Козл А. Краткий обзор методов оценки основных патологических процессов в биоптатах почек // Нефрология.—1997.—T. 1, № 4.—С. 72—76.
6. Самойлов З.Т., Шульцев Г.П., Халютина Л.В., Булатова З.Р. Моделирование экспериментального нефрита и его течение в зависимости от путей и частоты введения нефтороксиковой сыворотки // Моделирование, методы изучения и экспериментальная терапия патологических процессов. Материалы Всер. конф.—М., 1973.—С. 53—55.
7. Серов В.В. Морфологические основы иммунопатологии почек (нефрит, нефроз).——М.: Медицина, 1968.—328 с.

Поступила в редакцию 05.05.99 г.