Э.К. Петросян

БОЛЕЗНЬ МИНИМАЛЬНЫХ ИЗМЕНЕНИЙ И СТЕРОИД-
ЧУВСТВИТЕЛЬНЫЙ НЕФРОТИЧЕСКИЙ СИНДРОМ У ДЕТЕЙ:
ОДНА ИЛИ ДВЕ БОЛЕЗНИ?

Кафедра госпитальной педиатрии им. В.А. Таболина Российского Национального исследовательского медицинского университета, Москва, Россия

E.K. Petrosyan

MINIMAL CHANGE DISEASE AND STEROIDS SENSITIVE NEPHROTIC
SYNDROME IN CHILDREN: ONE OR TWO DISEASES?

V.A. Tabolin’s Department of Hospital Pediatrics, Russian National Research Medical University Moscow, Russia

РЕФЕРАТ
Более трех десятилетий прошло после глобального исследования ISKDC (1981) нефrotического синдрома у детей, позволившего сделать определенные рекомендации, такие как не проводить нефробиопсию у детей в дебюте заболевания и в случае положительного ответа на стероидную терапию признавать у больного наличие болезни минимальных изменений. Однако в последние годы отмечается прирост FSGS у детей с первичным НС, в дебюте которого возможна стероидная чувствительность. В связи с чем следует пересмотреть восприятие первичного нефrotического синдрома в детском возрасте как доброчастенное с благоприятным исходом. Более того, болезнь минимальных изменений, в патогенезе которой традиционно рассматривали только клеточно-опосредованный механизм, может развиваться и при других нарушениях, таких как дисрегуляция экспрессии CD90 на поделках или деструкция подоцитов в связи с мутацией гена структурных белков последнего.

Ключевые слова: нефротический синдром, стероид-чувствительный, болезнь минимальных изменений, фокально-
сегментарный гломерулосклероз, IL-4, IL-13, CD80, подоцит, нейрин, диастрогликан.

ABSTRACT
More than three decades have passed since the global study ISKDC (1981) of nephrotic syndrome in children allowed to make certain recommendations such as not to biopsy children at the onset of the disease and in the case of a sensitive to steroid therapy in a patient to recognize the presence of minimal change disease. However, in recent years there has been an increase FSGS in children with primary NS, in the onset of which steroid sensitivity is possible. Therefore, perception of primary nephrotic syndrome in children as a benign, with a favorable outcome should be revised. Moreover, minimal change disease, the pathogenesis of which is traditionally considered the only cell-mediated mechanism can be developed for other violations such as the dysregulation of CD80 expression in podocytes or podocyte destruction due to its structural proteins genes mutation.

Key words: nephrotic syndrome, steroid-sensitive, minimal change disease, focal segmental glomerulosclerosis, IL-4, IL-13, CD80, podocin, nefrin, diastroglycan.

Нефротический синдром

Нефроксический синдром (НС) — состояние, характеризующееся протеинурией (выше 40 мг/кг/сут), гипопротеинемией, гиперхолестеринемией и отеками. Это наиболее частая клиническая форма гломерулонефрита у детей, встречающаяся более чем в 90% случаев у пациентов от 1 года до 10 лет и в 50% случаев у детей старше 10 лет. Три морфологические формы: болезнь минимальных изменений (БМИ), фокально-сегментарный гломерулосклероз (ФСГС) и диффузный мезангиопролиферативный глюмерулонефрит (ДМПГН) являются наиболее частой причиной развития НС. Общим для всех морфологических форм является изменение структуры подоцитов: диффузное снижение «малых пожек» подоцитов, что позволяет рассматривать эти формы как варианты поликни- патий. По данным международного исследования заболеваний почек у детей (ISKDC, 1981), в 76,6% случаев болезнь минимальных изменений являлась причиной развития первичного НС. Более того, у 95,5% пациентов с БМИ отмечалась чувстви-
тельность к стероидной терапии, на основании полученных данных были даны первые рекомендации по нефроцистокурии: не проводить нефроцистокурию у детей в дебюте заболевания и в случае положительного ответа на стероидную терапию признавать у больного наличие БМ [1]. В этом же исследовании продемонстрировано, что второй по частоте встречаемости морфологической формой первичного НС у детей являлся ФСТС (6,9%), причем у половины пациентов отмечалась стероид-чувствительность [1].

В последние годы отмечается прирост ФСТС у детей с первичным НС [2]. Так, по данным Т. Стивенсона и др., частота БМ среди детей с НС составляла всего лишь 52,7%, а ФСТС – 23%. По данным этого исследования БМ преобладал у детей до 6 лет, тогда как ФСТС – у детей старше 6 лет и среди афроамериканцев [3]. В связи с этим исследователи сделали вывод, что восприятие первичного нефроцистокуриного синдрома в детском возрасте, как доброкачественное состояние, должно быть переоценено, так как это заболевание не всегда имеет благоприятный исход. Более того, по данным Л. Р. Мунга и др., у детей с ФСТС отмечалась чувствительность к преднизолону [4]. Кроме того, среди стероид-зависимых форм НС БМI отмечается только в 47% случаев [5]. Увеличение частоты встречаемости ФСТС и АСЛПП в группе детей с частотоцистокуриной и стероид-зависимой НС, при которых клиническое течение НС пихит не отличалось от такого при БМI, позволило Н. Д. Вебб и др. сделать вывод, что определяющим прогноз заболевания является чувствительность к стероидам, а не морфологическая форма нефроцистокуриного синдрома [6]. Следует отметить, что частота стероид-резистентной формы НС при БМI также имеет тенденцию к возрастанию и, по данным разных авторов, колеблется от 6,9 до 40,8% [4, 7, 8].

По мнению минимальных болезней

БМI является причиной НС в 90% случаев у детей в возрасте от 1 до 10 лет, от 50 до 70% случаев – у детей более старшего возраста и от 10 до 15% случаев – у взрослых [9, 10]. БМI характеризуется отсутствием гистологических изменений при световой микроскопии в клубочках, в сочетании с изменениями при ультрамикроскопическом исследовании в виде диффузного сглаживания «ножек» подоцитов. Согласно рекомендациям ISKDC, под БМI при отсутствии нефробиопсии следует понимать чувствительный к кортикостероидам НС у детей, лаборатория при БМI в этом случае является важной, поскольку подобные гистологические изменения могут наблюдать у больных с протеинурией, не достигающей нефрологического уролога. Прогноз заболевания у таких пациентов неопределенный и требует особого подхода в определении терапевтической тактики.

Классическая БМI характеризуется отсутствием изменений в клубочках и стероид-чувствительностью, однако это не исключает, что данные гистологические изменения могут быть в дебюте развития ФСТС и IgM-нефропатии как начальный этап морфологических изменений в ткани почек. Вполне возможно, что и БМI, и ФСТС имеют сходные первичные гистологические проявления, но ФСТС в меньшей степени обладает стероид-чувствительностью, и с течением времени развиваются вторичные повреждения в виде склерозирования. Вопрос о том, можно ли объединить эти заболевания в одно, с разной чувствительностью к кортикостероидам, а стало быть с различным прогнозом или это два разных заболевания с различными патогенетическими механизмами, дискутируется до настоящего времени [9–12].

Патофизиология БМI

отдельных, связанных с мембраной, субпациентин, α-субпациентин представляет собой полипептидный 55 кД и определяется как рецептор CD25+. Когда рецептор IL-2 экскрессируется на стимулированном T-лимфоцитах, часть α-субпациентин могут отколоться или полностью высвободиться в кровоток. Обнаружение данной частицы в периферической крови рассматривается как растворимый компонент рецептора к IL-2. Повышение концентрации уровня сывороточного растворимого рецептора IL-2 и выраженность экскрессии с мочой рецептора к IL-2 отмечены при резистивном BMH, что, по мнению S.A. Hutton, является главной причиной активации и дифференцировки T-лимфоцитов [23].

Активированные T-лимфоциты, а именно хлорферная фракция (CD4+), дифференцируются в две взаимосключающие субпопуляции Th1 и Th2 под влиянием экспрессирующих цитокинов. Так, IL-12 и IFN-γ обусловливают созревание Th1, в то время как экспрессия IL-4 влияет на дифференцировку Th2 [20, 24]. В свою очередь, каждая из этих субпопуляций экспрессирует определенные цитокины, обладающие ауторегуляторными и паракринными механизмами. Для Th1 характерна экскрессия IL-12, IFN-γ, IL-6, IL-8, IL-4, IL-5, IL-13 продуцируются Th2. Определение рецептора IL-12 на T-клетках у больных с BMH вызывает снижение B2-субпациентин рецептора и нормальную концентрацию B1-субпациентин [25]. Stefanovic et al. установили, что для больных с BMH отмечается высокий уровень Th2 [26]. Более того, продуцируемый Th2, т.к. называемый c-maf-фактор, в свою очередь также регулирует дифференцировку T-клеточных субпопуляций в сторону Th2 с одновременным подавлением дифференцировки Th1 [27]. Высокая концентрация Th2 определяет гиперпродукцию IL-4 и IL-13, обнаруженную у больных с BMH [26–28]. Известно, что IL-13 регулирует концентрацию IgE, высокий уровень которого часто определяют при BMH [28, 29]. Кроме того, обнаруженные рецепторы к этим цитокинам на почках и их выраженная экспрессия при BMH подтверждают роль последних в развитии данного заболевания [30, 31].

Е.Н. Garn et al. указывают на повышенную концентрацию IL-8 при BMH, также играющего важную роль в патогенезе нарушения селективности глюмерулопатического фильтра. Долгое время считалось, что фактор проницаемости, обнаруженный у больных с BMH, есть ли иное как IL-8 [32].

В настоящее время в развитии BMH широко обсуждается роль транскрипционного фактора NF-kB активированных CD4+ клеток [22]. Активация NF-kB происходит под влиянием широкого спектра патогенетических сигналов, таких как бактериальные агенты, T- и B-клеточные митогены, цитокины и оксидативный стресс [33]. J. Das et al. [34] выявили активацию транскрипционного фактора под влиянием IL-13. В свою очередь активированный NF-kB увеличивает концентрацию протеасом. Следует отметить, что антагонистом NF-kB является I-kB [35]. Известно, что под действием глюкокортикостероидов происходит увеличение концентрации последнего. Однако, несмотря на то, что BMH характеризуется высокой чувствительностью к стероидной терапии, у некоторых пациентов активностьNF-kB сохраняется на фоне приема глюкокортикостероидов. Предполагают, что дополнительные факторы влияют на изменение транскрипционных факторов, обусловливая в дальнейшем стероидную резистентность [36].

Болезнь минимальных изменений и CD80

Одной из гипотез развития протеинурии при BMH является повреждающее скелетной диффрагмы, регулируемое экспрессией CD80 (B7-1) на полоцках − гранулоцитарного протеина, экспрессирующегося на антител-предъявляющих клетках (АПК), натуральных килерах и B-лимфоцитах. CD80 определяет ко-стимулирующий сигнал для T-лимфоцитов, связываясь с последними посредством соединения с их рецепторами CD28 [37]. Данная механизм отмечается при протеинурии у больных с BMH приводит к снижению активации Treg-клеток, тем самым способствуя развитию протеинурии [38].

Reiser et al. продемонстрировали экспрессию CD80 на полоцках под действием липополисахаридов (ЛПС). In vivo экспрессия CD80 на полоцках происходит не только под влиянием ЛПС, но и других токсинов, например ампиллохолида. Важным является то, что экспрессия CD80 на полоцках приводит к нарушению структуры последнего и развитию протеинурии [39]. C.C. Yu et al. обнаружили, что CD80-положительные полоцки теряют возможность присоединяться к базальной мембране посредством β1-интегринов [40]. Повышение концентрации CD80 в моче и в нефробластах у больных с BMH в отличие от больных с ФСС было обнаружено Garn et al. [41]. Однако, если предположить, что CD80 потенцирует протеинурию у больных с BMH, какова
тогда роль IL-13 в патогенезе БМГ? Но одной из гипотез именно IL-13 стимулирует экспрессию CD80 на подоцитах [42, 43]. По другой версии активация CD80 на подоцитах регулируется Toll-like рецепторами (TLR): TLR-3 и TLR-4, поскольку LPS активируют иммунные клетки посредством TLR лиганда. В своей экспериментальной работе T. Ishimoto et al. обнаружили развитие протеинурии у крыс, получивших инъекцию TLR-3. Это исследование подтвердило, что экспрессия CD80 может быть определена как T-клеточными цитокинами, так и TLR лигандами [44].

Генетические формы ИС и БМГ
Подоциты являются хорошо дифференцированными клетками внешнего слоя клубочка. Они составляют окончательный барьер в потере белка с мочой, состоящий в основном из основных элементов подоцита (ПН) и интерстициальной диффрагмы. Базолатеральная часть ИН осуществляет центральную функцию подоцитов и содержит мембранных домена: антигенами мембраны, комплекс белков интеграмы и мембранной диффрагмы и домен опорной пластинки. НП содержат динамический, сократительный аппарат, состоящий из актина, миозина II, actin-4, талина, винилина и сигнализации [45-47]. ИН крепятся к клеточной базальной мембране посредством αβ1-интегрин [48] и дистрофогликана [49]. Было выявлено, что αβ1-интегрин связан высокоаффинной связью с αβ-цепью ламинина-11 и низкоаффинной — с компонентами ИН [50]. Экспрессия αβ1-интегринов оставляет сохраненной при ИС [51].

Дистрофогликановые комплексы состоят из утрофина и α- и β-дистрофогликанов, и входят в состав мышечных и некоторых нервных клеток [52, 53]. По данным ряда исследователей, отмечается либо снижение, либо отсутствие экспрессии дистрофогликанов, коррелирующее с активностью процесса при минимальных изменениях [53, 54], тогда как при ФС С дистрофогликаны и ткани почек сохранены [41]. Высокое содержание дистрофогликановых комплексов в ламинине и агрегате ИМ обеспечивает целостность трехслойной структуры гистероглифического аппарата [52, 54, 55]. Интересно, что мутация гена, кодирующего синтез дистрофогликана, приводит к летальному исходу уже внутриутробно [56].

Соединение ИН с аналогичными соседними ретикулозными клетками происходит с помощью резецированной диффрагмы, так как это обеспечивает селективное проникновение барьер в почках [57]. Следует отметить, что наличие этой структуры и функции резецированной диффрагмы появилось после изучения генетических форм семейного ИС, которые выявили несколько белков (лимит, нефрин, α-актинин-4 и TRP6), мутации которых определяют развитие последних [58-61]. Интересным оказалось, что среди пациентов с генетически детерминированными формами стероид-резистентного ИС, по данным гистологического исследования, не более четверти (от 10 до 25%) имели морфологическую форму БМГ [58-61, 62]. Несмотря на это, что в целом ИС не связана с мутациями известных генов, в ряде работ продемонстрирована ассоциация стероид-чувствительного ИС с генетическими мутациями генов подоцита, нефрина и TRP6 [63-66]. Более того, наличие семейных форм ИС предполагает
наличия генов, ответственных за развитие последних, среди которых может быть и ген эпителиального мембранного протеина-2, ответственного за развитие ИС в детской популяции [67].

Заключение

Накопленные знания о клинических и морфологических формах ИС у детей за последние десятилетия демонстрируют, что в настоящее время его стероид-чувствительный вариант не всегда ассоциирован только с такой морфологической формой, как БМИ, но может наблюдаться у детей с ФСИ и при диффузном мезангиопролиферативном гломерулонефrite. Более того, в зависимости от этической принадлежности БМИ имеет разную чувствительность к стероидам. Так, стероид-резистентность у пациентов с БМИ отмечается в 6,9% случаев. Среди детей Азии, Африки и Латинской Америки частота стероид-резистентности может достигать 40,8%. Такой высокий размер, как мы полагаем, обусловлен различными патогенетическими механизмами БМИ: от иммунопатологических механизмов до генетических причин (рисунок).

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

26. Ho IC, Lo D, Glimcher LH. â€’maf promotes T helper cell type 2(Th2) and attenuates Th1 differentiation by both interleukin4-dependent and -independent mechanisms. J Exp Med 1998; 188: 1859–1866
64. Lahdenkari NA, Kestila M, Holmberg CR et al. Nephroplastin (NPHS1), a regulator of RNA with minimal changes in congenital nephropathy (MCNS). Kidney Int 2004; 65(S): 1856–1863

Сведения об авторах:
Проф. Петросян Эдит Костантинова
115404, Россия, Москва, ул. Ленинская, д. 141-1-203. Российский Национальный исследовательский медицинский университет, кафедра гематологии и нейрохирургии, г. Москва, ул. Ленинградская, д. 41. Тел.: (903) 2207-05-84, E-mail: Ed3565@yandex.ru
Prof. Edita K. Petrosyan, Affiliations: 115404, Russia, Moscow, Lipetskaja str. 14 / 1-203. Russia National Research Medical University, VA Tabolins Department of Hospital Pediatrics. Phone: (903) 2270584, E-mail Ed3565@yandex.ru

Автор заявляет об отсутствии конфликта интересов.

Поступила в редакцию 05.08.2015 г.
Принята к печати 25.04.2016 г.