© Е.Г.Кузнецова, Р.Р.Шиляев, О.А.Громова, О.Ю.Фадеева, 2007 УДК 616.61-053.2-02]:577.170.49:612.118.24

## Е.Г. Кузнецова, Р.Р. Шиляев, О.А. Громова, О.Ю. Фадеева ТОКСИЧНЫЕ МИКРОЭЛЕМЕНТЫ И ИХ РОЛЬ В РАЗВИТИИ НЕФРОПАТИЙ У ДЕТЕЙ

## E.G. Kuznetsova, R.R. Shilyaev, O.A. Gromova, O.Yu. Fadeeva TOXIC MICROELEMENTS AND THEIR ROLE IN THE DEVELOPMENT OF NEPHROPATHIES IN CHILDREN

Кафедра детских болезней педиатрического факультета, кафедра фармакологии Ивановской государственной медицинской академии, Россия

Ключевые слова: токсичные микроэлементы, почки, дети.

Key words: toxic microelements, kidneys, children.

Процессы ухудшения экологической обстановки и загрязнения окружающей среды привели к изменению природного спектра содержания микроэлементов (МЭ) в тканях и органах, причем если даже такие изменения не являются причиной заболеваний, они представляют тот фон, на котором развивается болезнь и который отягощает ее течение и снижает возможности терапии [1]. Загрязнение окружающей среды токсичными металлами в первую очередь сказывается на детях, так как их интенсивное накопление начинается уже в плаценте. Дети оказываются наиболее незащищенными к воздействию тяжелых металлов в связи с их приближенностью к среде обитания и недостаточной функциональной зрелостью органов защиты [2, 3].

Почки являются основным органом, экскретирующим токсины, поглощенные организмом. Известно, что токсичные металлы накапливаются преимущественно в клетках проксимальных канальцев, вызывая структурные и функциональные повреждения, в результате которых нарушаются процессы реабсорбции и секреции. Внутриклеточные механизмы токсичности элементов недостаточно изучены. Наиболее общими проявлениями их нефротоксичности являются оксидативный стресс, связанный с накоплением свободных радикалов, механизмы апоптоза и некроза [4].

Основными механизмами развития патологии почек при воздействии различных нефротоксинов являются прямое их воздействие на эндотелий клубочков, на мезангиальные клетки, тубулярный эпителий и на базальные мембраны, как гломерулярные, так и тубулярные. Возможно отложение тя-

желых металлов и других соединений в виде депозитов в мезангии клубочков. Уязвимость канальцев для нефротоксинов связана с их естественной нормальной функцией. Токсиканты и их метаболиты могут аккумулироваться в интерстициальной ткани, где в зависимости от их химических свойств они могут способствовать развитию воспалительного процесса через активацию медиаторов воспаления и аллергии. Химические агенты, абсорбированные при пиноцитозе, концентрируются в лизосомах, где подвергаются гидролитическому расщеплению, однако некоторые токсиканты ингибируют протеолитический процесс, что приводит к их аккумуляции и повреждению тубулярного эпителия. При этом возможно сочетание повреждения эпителия канальцев, особенно проксимальных, с гломерулярным повреждением, а при длительном воздействии – развитие тубулоинтерстициальной нефропатии. В результате воздействия нефротоксинов-гаптенов возможно развитие иммунологически индуцированной гломерулярной болезни. При этом токсические агенты входят в состав циркулирующих иммунных комплексов и откладываются на гломерулярной базальной мембране. Развивается мембранозный гломерулонефрит. Влияние ионов тяжелых металлов на клеточные регуляторные процессы многообразно, и не существует единого механизма взаимодействия их с клеткой. Спектр экологических воздействий на молекулярном, тканевом, клеточном и системном уровнях во многом зависит от концентрации и длительности экспозиции токсического вещества, комбинации его с другими факторами, предшествующего состояния здоровья ребенка и его иммунологической реактивности. Важное значение имеет генетически обусловленная чувствительность к влиянию тех или иных ксе-нобиотиков [5, 6].

Тяжелые металлы (кадмий, ртуть, свинец, хром и платина) являются главными факторами загрязнения окружающей среды, проявляют свою токсичность в очень малых дозах и имеют длительный период полувыведения [7]. Свинец вызывает повышенный интерес как приоритетный загрязнитель окружающей среды. Для всех регионов России свинец является основным токсичным элементом из группы тяжелых металлов. Порог токсичности равен 1 мг/сут. [8]. Основные источники свинца в окружающей среде связаны с производством. Максимальное загрязнение атмосферного воздуха свинцом характерно для районов вокруг свинцово-плавильных заводов и в непосредственной близости от дорог с интенсивным движением автотранспорта. Свинец содержится в плитах, которые используются при строительстве домов. Отмечено присутствие свинца в детских игрушках. Накопление свинца в организме человека начинается в антенатальный период (он легко проникает через плаценту) и продолжается в течение всей жизни. При свинцовой интоксикации поражаются в первую очередь органы кроветворения, нервная система и почки [8, 9, 10]. В экспериментах на крысах показано, что соединения свинца накапливаются в ядрах эпителиальных клеток проксимальных канальцев [1]. У людей, подвергавшихся воздействию свинца, в клетках почек выявляются интрануклеарные включения, содержащие этот элемент. Накопление свинца в митохондриях клеток канальцев нефронов приводит к тому, что они претерпевают как функциональные, так и ультраструктурные изменения [10]. Свинец преимущественно вызывает тубулярные и тубулоинтерстициальные изменения в почках, как острые, так и хронические. При острой свинцовой нефропатии преимущественно поражаются проксимальные канальцы и морфологически определяются ядерные включения (комплекс свинец-белок) и поврежденные митохондрии. Эти повреждения сопровождаются снижением канальцевой реабсорбции, что проявляется генерализованной аминоацидурией, глюкозурией и гиперфосфатурией. При хронической свинцовой нефропатии наблюдается медленное сморщивание почки вследствие склеротических изменений, интерстициального фиброза, атрофии почечных клубочков и гиалиновой дегенерации сосудов. Прогрессирование свинцовой нефропатии приводит к почечной недостаточности [5, 10]. В экспериментальных исследованиях показано, что некоторые соли свинца вызывают злокачественные опухоли почек у лабораторных животных [11]. Токсическое воздействие свинца усугубляет дефицит таких элементов, как кальций, фосфор, железо, цинк, медь, селен. Цинк является физиологическим антагонистом свинца, ослабляет его токсическое действие и снижает его концентрацию в тканях. Уменьшение токсического действия свинца цинком объясняется его способностью индуцировать синтез металлотионеина, который связывает избыток свинца и тем самым способствует детоксикации. Железо и медь также являются физиологическими антагонистами свинца. Свинец стимулирует выделение этих элементов с мочой, конкурируя при их реабсорбции в почках. При обследовании рабочих, имеющих длительный производственный контакт со свинцом, было выявлено поражение почек, связанное с нарушением структуры и функций проксимальных канальцев. Обнаружено повышение экскреции с мочой низкомолекулярного белка альфа,-микроглобулина. Наличие структурных повреждений канальцев подтверждалось повышенной экскрецией с мочой лизосомального фермента N-ацетил-β-D-глюкозаминидазы и цитоплазматического фермента глютатион-S-трансферазы. Экскреция с мочой свинца, а также эссенциальных меди и цинка также была увеличена. Причем выраженность данных изменений зависела от продолжительности производственного контакта со свинцом [19].

Т.П. Макарова выявила повышение уровня свинца в сыворотке крови и в моче у детей с дизметаболической нефропатией (ДН), пиелонефритом (ПН) и тубулоинтерстициальным нефритом (ТИН), проживающих в экологически неблагополучных условиях, сопровождаемое увеличением почечного клиренса и экскретируемой фракции, и выделила так называемый перегрузочный тип нарушения гомеостаза свинца. Было выявлено депрессивное влияние свинца на показатели клеточного и гуморального иммунитета и показано, что для детей с ПН его токсическое воздействие является кофактором непродуктивного иммунного ответа [12–15]. А.И. Сафина также отметила накопление свинца в крови и его повышенное выведение с мочой у детей с хроническим ПН. Токсическое действие свинца на эпителий канальцев проявлялось увеличением уровня ферментов и продуктов пероксидации в моче, нарушением функций проксимальных, дистальных канальцев и петли Генле, а также усилением процессов деградации соединительной ткани [16, 17]. У детей повреждение проксимальных канальцев под действием свинца проявляется увеличением экскреции  $\beta_2$ -микроглобулина и ретинолсвязывающего белка. Кроме того, свинец при накоплении в организме снижает активность антиоксидантного фермента супероксиддисмутазы, которому принадлежит важная роль в регуляции свободнорадикальных процессов клеточного метаболизма [18].

В последние десятилетия значительно возросла концентрация кадмия в окружающей среде. Порог токсичности для кадмия равен 30 мкг/сут. Кадмий поступает в организм человека с водой, пищей, вдыхаемым воздухом. Кадмий, содержащийся в пищевых продуктах, обладает достаточно низкой биодоступностью. При хроническом воздействии кадмия даже в небольших дозах отмечается его кумуляция в почках (преимущественно в корковом слое), печени, слизистой кишечника, эритроцитах. С возрастом количество накопленного в организме кадмия увеличивается. Концентрация кадмия в крови и в моче у женщин при прочих равных условиях обычно выше, чем у мужчин. Ряд авторов объясняют это более высокой абсорбцией кадмия в желудочно-кишечном тракте, возможно связанной с наличием дефицита железа в организме. Таким образом, риск развития нефропатии, индуцированной кадмием, у женщин выше, чем у мужчин. У экс-курильщиков, которые прекратили курение более 5 лет назад, сохраняются более высокие концентрации кадмия в моче и в крови по сравнению с людьми, которые никогда не курили [20, 21]. Кадмий оказывает влияние на гомеостаз меди и цинка [22]. Из организма кадмий удаляется главным образом через почки. В норме с мочой ежедневно экскретируется менее 1-2 мг кадмия. После повышенного поступления кадмия в организм человека даже спустя несколько лет отмечается тубулярная дисфункция, глюкозурия, протеинурия. Кадмий преимущественно накапливается в корковом слое почки, что сопровождается повреждением проксимальных почечных канальцев и появлением протеинурии, аминоацидурии, глюкозурии, повышенной экскрецией калия и кальция, мочевой кислоты, энзимурии (кислая и щелочная фосфатазы, лактатдегидрогеназа, аминотрансфераза), канальцевого ацидоза. К ранним проявлениям кадмиевой нефропатии относят увеличение содержания кадмия в корковом слое почек, повышение экскреции кадмия с мочой, снижение реабсорбции аминокислот, глюкозы, фосфатов, появление протеинурии, повышенной экскреции β<sub>2</sub>-микроглобулина и ретинолсвязывающего протеина. Выявлена корреляционная взаимосвязь между повышением в моче уровня альфа-1-микроглобулина и экскрецией кадмия с мочой [23]. Экскреция с мочой β<sub>2</sub>микроглобулина и N-ацетил-β-D-глюкозаминидазы является чувствительным индикатором кадмиевой нефропатии. Однако увеличение выделения с мочой кальция является более ранним проявлением поражения почек кадмием [24]. Поздними проявлениями считают почечный тубулярный ацидоз, протеинурию гломерулярного генеза, нефрокальциноз, интерстициальный фиброз. Морфологические изменения при кадмиевой нефропатии неспецифичны и заключаются на начальных стадиях процесса в дегенерации канальцевого эпителия. В дальнейшем отмечается прогрессирование процесса вплоть до развития тубулярной атрофии и необратимого интерстициального фиброза. Даже очень небольшие дозы кадмия могут вызывать изменения функции почек в общей популяции. Пороговой величиной, превышение которой сопровождается нарушением функции канальцев почек, следует считать уровень выделения кадмия с мочой 2 мкг/ сут. Методом сканирующей электронной микроскопии выявлено повреждение клеток почек под действием кадмия в виде уменьшения цитоплазматического матрикса, в клетках появляются везикулы, повышается число электронно-плотных лизосом, при этом снижается их протеазная активность. Вероятно, ионы кадмия во фракции, не связанной с металлотионеином, препятствуют нормальному процессу лизосомального расщепления белков, в результате чего снижается реабсорбция и деградация низкомолекулярных белков ультрафильтрата мочи, появляется протеинурия по тубулярному типу. Кроме повреждения структур тубулярного эпителия, кадмий вытесняет цинк и медь из активных центров ферментов, участвующих в реабсорбции. Существует мнение, что кадмий влияет и на проницаемость клубочков, при этом протеинурия, развивающаяся при интоксикации кадмием, имеет не только тубулярный, но и гломерулярный генез, в моче появляются протеины с более высокой молекулярной массой [1, 5, 8, 10, 25–28]. Имеются сообщения, что цинк может защищать клетки почек от токсического воздействия кадмия [29, 30].

Содержание кадмия в крови достоверно выше у больных с ХПН, чем у здоровых. Так как кадмиевая нефропатия ассоциируется с высокой экскрецией кальция и фосфатов, это способствует деминерализации костей и появлению почечных камней [1,31]. Остеопатии при избыточном поступлении кадмия считают вторичными, возникающими после поражения почек [10]. Хроническая экспозиция вызывает специфическое повреждение генов. Кадмий вызывает апоптоз различных клеток, особенно клеток мочеполовой системы. Доказана роль кадмия в развитии рака почек у курящих [32]. В «неизмененных» тканях почек, которые непосред-

ственно прилегают к опухолевой ткани, выявляется значительное увеличенное содержания свинца и кадмия. В самой опухолевой ткани содержание кадмия низкое, в то время как содержание свинца значительно повышено [33, 34].

Для заболеваний мочевой системы характерна высокая распространенность повышенных концентраций хрома (до 53%) [35]. Хрому принадлежит важная биологическая роль в живом организме, основными проявлениями которой являются его взаимодействие с инсулином в процессах углеводного обмена, участие в структуре и функции нуклеиновых кислот. В организм соединения хрома поступают с пищей, водой и воздухом. Хотя хром является жизненно важным элементом, при избыточном поступлении в организм он может стать опасным токсикантом. Токсическое действие хрома зависит от его валентности. Физиологические свойства имеет только трехвалентный хром. Шестивалентный хром оказывает общетоксическое, нефротоксическое и гепатотоксическое действие, является канцерогеном I класса опасности. Порог токсичности хрома составляет 5 мг/день. Шестивалентный хром преодолевает все гистогематические барьеры, проникает через плазматические мембраны и накапливается в клетках. При хронической интоксикации хромом происходит ингибирование тиоловых ферментов мембран, а также ферментов аэробного гликолиза, цикла Кребса, угнетение синтеза аминокислот и белков, возникновение гипоксии в результате склерозирования биологических мембран и микроциркуляторного русла. При избытке хрома снижается иммунологическая реактивность [3, 8, 9, 25, 36]. Почечный тубулярный некроз развивается после употребления солей, содержащих хром, что было продемонстрировано на животных и у человека при острой интоксикации. Наблюдается повышение экскреции β<sub>2</sub>-микроглобулина и ретинолсвязывающего протеина [5]. В экспериментах на животных было показано, что увеличение выделения с мочой таких эссенциальных элементов, как цинк и медь являются чувствительными индикаторами нефротоксичности, вызванной шестивалентным хромом [37]. У больных с ХПН повышено содержание хрома в сыворотке крови вне зависимости от стадии ХПН [38]. Хром выступает в качестве фактора риска камнеобразования в геохимических провинциях [39].

Т.П. Макарова и соавт. выявили повышение уровня хрома в сыворотке крови у детей с ДН, ТИН и ПН. Повышенное содержание хрома в сыворотке крови сопровождалось повышенной мочевой экскрецией при неизмененном клиренсе, что характерно для метаболического типа нарушений. Так-

же было показано отрицательное влияние хрома на показатели клеточного и гуморального иммунитета [12–15]. Для больных ПН характерно избыточное содержание хрома и в волосах [3, 35].

Мышьяк также вызывает повреждение клеток почек. Отравление возможно при вдыхании мышьяковистых соединений, а также при попадании их в организм через кожу и пищеварительный тракт. В пищевых продуктах мышьяк, как правило, содержится в органической форме и поэтому имеет малую токсичность. В отличие от пищевых продуктов в питьевой воде мышьяк присутствует в неорганической форме и является более токсичным. Мышьяк применяется в стекольной, электрорадиотехнической, химической, текстильной, лакокрасочной, угольной промышленности, при производстве цветных металлов. Среди причин бытовой интоксикации мышьяком следует отметить курение и злоупотребление виноградным вином. Поражение почек является одним из проявлений избытка мышьяка в организме. Неорганический пятивалентный мышьяк и трехвалентный мышьяк существенно различаются токсичностью и механизмами биологической активности. Метилирование этих неорганических форм в метилмышьяковистую кислоту и диметилмышьяковистую кислоту в печени повышает почечную токсичность мышьяка. Неорганический мышьяк преимущественно повреждает клеточные органеллы и в первую очередь - митохондрии. Исследования, проведенные на почках крыс, получавших длительное время неорганический пятивалентный мышьяк, показали связь повреждения почечных клеток со снижением их дыхательной функции. Генетический аппарат ядер также повреждается мышьяком. В настоящее время неясны механизмы повреждения мышьяком проксимальных канальцевых структур и снижения их функции [5, 8]. Предполагается взаимосвязь повышенной концентрации мышьяка в питьевой воде и возникновения рака почек [40].

Описаны поражения почек, вызываемые кремнием. Кремний относится к числу эссенциальных для человека и животных элементов, максимальное содержание его отмечается в коже, зубной эмали, волосах, ногтях, костях, связочном аппарате суставов, хрящах, соединительной ткани сосудов. Высокое содержание кремния в соединительной ткани связано с его присутствием в качестве структурного компонента в составе гликозаминогликанов и их белковых комплексов. Полагают, что оптимальная интенсивность поступления кремния составляет 50–100 мг/день, а порог токсичности составляет 500 мг/день. При повышенном поступлении в организм с водой или воздухом кремний

может оказывать токсическое воздействие. Концентрация кремния в питьевой воде и воздухе повышена в некоторых геохимических провинциях. При профессиональном контакте с кремнием наблюдаются протеинурия, микрогематурия, снижение фильтрационной способности и повышение содержания кремния в почках. Морфологическая картина при этом характеризуется возникновением тубулоинтерстициальных повреждений и наличием фокального гломерулонефрита. Склероз отдельных клубочков сочетается с повреждением подоцитов, развитием субэндотелиальных и субэпителиальных включений. Кремниевая нефропатия характеризуется чаще нефротическим, реже мочевым синдромом, с последующим развитием почечной недостаточности. При избытке кремния возможно развитие мочекаменной болезни [1, 8, 25, 32].

Почки являются органом-мишенью при избыточном поступлении ртути в организм. Соединения ртути высокотоксичны. Техногенные локусы избыточного присутствия в почве и в воде ртути встречаются при несоблюдении технологии утилизации ламп дневного света, при производстве красителей. Источником поступления алкилированной ртути являются фунгициды, применяющиеся при протравливании семян. В организм человека ртуть обычно поступает через легкие или желудочнокишечный тракт. Основным источником метилированной ртути в рационе являются рыба и морепродукты. Имеются экспериментальные данные, которые показывают, что даже низкие дозы ртути могут привести к усилению иммунных реакций и значительному повреждению почек. При хроническом отравлении ртутью возникает некротический нефроз с гибелью эпителия проксимальных отделов почечных канальцев и появлением протеинурии, болевого синдрома, нарушения выделительной функции почек вплоть до анурии [3, 5, 8]. При обследовании рабочих, подвергавшихся длительному воздействию ртути на производстве, выявлено поражение почек, которое характеризовалось наличием микроальбуминурии и увеличением экскреции ретинолсвязывающего белка и повышением активности в моче глютатион-трансферазы, а также увеличением экскреции с мочой ртути и эссенциальных элементов - кальция, цинка и меди. Уровень ртути в сыворотке крови у них был повышен. А уровень экскреции с мочой ртути был взаимосвязан с уровнем микроальбуминурии и концентрацией в моче ретинолсвязывающего белка и глютатион-трансферазы [41]. В экспериментах на животных показано, что токсическое действие ртути связано также и с повреждением клубочкового аппарата. Цинк может защищать клетки почек от токсического действия ртути [42]. По мнению М.В. Неждановой загрязнение окружающей среды свинцом и ртутью является фактором риска формирования ПН у детей. Установлено, что наличие в моче ребенка даже нормального содержания ртути приводит к повреждению почечной паренхимы, о чем свидетельствует повышенный уровень  $\beta_2$ -микроглобулина в моче. Наблюдение в течение 5—6 лет за здоровыми детьми, выделяющими с мочой ртуть, показало, что у 8% из них сформировались ПН, ДН, нейрогенные дисфункции мочевого пузыря [43].

В последние годы в литературе появилось ряд публикаций, свидетельствующих о нефротоксическом действии стронция. Стронций используется в металлургии, производстве аккумуляторов и пиротехнических средств. В медицине изотопы стронция применяют в лучевой терапии костных опухолей. Сведения о характере обмена стронция в организме животных и человека противоречивы. Стронций, поступающий с пищей, относительно плохо усваивается организмом. В основном богаты стронцием растительные продукты, поэтому потребление стронция у вегетарианцев выше. Абсорбированный стронций выводится в основном с мочой и в меньшей степени с желчью. При избыточном поступлении стронция возникает так называемая «уровская болезнь». Это эндемическое заболевание, впервые обнаруженное у населения, проживающего вблизи реки Уров в Восточной Сибири, и описанное российскими врачами Н.М. Кашиным и Е.В. Беком. Заболевание возникает вследствие вытеснения ионов кальция ионами стронция из костной ткани или повышенного поступления в организм стронция на фоне дефицита кальция [8, 25]. А.И. Сафина выявила, что накопление стронция при ДН у детей способствует прогрессированию обменных нарушений и отрицательно влияет на парциальные почечные функции. У детей с ПН также повышается уровень стронция в сыворотке крови и его экскреция с мочой. Цитотоксическое действие стронция у больных ПН на эпителий канальцев проявляется увеличением уровня ферментов и продуктов пероксидации в моче, нарушением функции проксимальных, дистальных канальцев и петли Генле, усилением процессов деградации соединительной ткани. Под действием стронция усиливается экскреция мочевой кислоты, что связано с гиперпродукцией пуринов в результате цитотоксического действия металлов на нефрон [16, 17]. Т.П. Макарова также выявила повышенную концентрацию стронция в сыворотке крови детей с ДН и ТИН, сопровождаемое его повышенной экскрецией с мочой, повышением почечного клиренса и экскретируемой фракции, что соответствует перегрузочному типу нарушения гомеостаза данного элемента. У больных с ПН и МКБ было отмечено нарастание перегрузочного типа экскреции стронция [15]. Показано, что на уровне проксимальных почечных канальцев воздействие стронция определяет снижение реабсорбции фосфатов, на уровне петли Генле стронций влияет на показатели максимальной относительной плотности мочи веса, а на уровне дистальных канальцев - на процессы аммониогенеза. При максимальных концентрациях стронция в сыворотке крови установлено его влияние на состояние клубочковой части нефрона у детей с МКБ, которое реализуется развитием гиперфильтрации. Т.П. Макарова делает вывод о том, что повышенные концентрации стронция в сыворотке крови оказывают этапное повреждающее действие с последовательным вовлечением в патологический процесс всех отделов тубулярной части и гломерулярного аппарата нефрона [15]. Стронций накапливается в сыворотке крови больных с почечной недостаточностью. При длительной экспозиции стронций оказывает влияние на показатели иммунологической реактивности.

Следует отметить, что эффект воздействия нескольких токсикантов одновременно существенно отличается от влияния каждого из них в отдельности. Тяжелые металлы оказывают потенцирующее и аддитивное воздействие на тубулярный отдел нефрона. Повышение уровня токсичных микроэлементов влияет на важнейшие показатели иммунологической реактивности. Например, свинец и хром оказывают сопряженное влияние на формирование дисиммуноглобулинемии с дефицитом IgA и повышением IgG, при этом антибактериальные антитела класса IgG оказываются неэффективными, формируют ЦИК и играют патологическую роль. Также они оказывают сопряженное влияние на фагоцитарный потенциал нейтрофилов и функцию поглощения патогенов [12, 14]. При проведении комплексного обследования практически здоровых детей из промышленных городов Среднего Урала было показано, что даже относительно малое совместное содержание кадмия и свинца в организме может спровоцировать доклинические повреждения проксимальных канальцев почек [44].

На территории с высоким уровнем экологической нагрузки А.А. Вялкова обнаружила достоверное различие уровня накопления тяжелых металлов в волосах детей, больных хроническим ПН, по сравнению с практически здоровыми детьми. Для больных ПН, проживающих в техногенной геохимической провинции, характерно торпидное или латентное течение, случайное выявление заболевания при проведении профосмотров, раннее формирование парциальных нарушений функций почек по тубулярному типу, у большинства больных отмечаются признаки нарушений обмена и мембранопатологического процесса. Лабораторный симптомокомплекс хронического ПН имеет нетипичные черты для данного заболевания в виде микрогематурии, повышения относительной плотности мочи, стойкой эозинофилии, моноцитоза на фоне диспротеинемии с гипогаммаглобулинемией. Для больных хроническим ПН в районе с высоким уровнем экологической нагрузки характерно сочетание патологии органов мочевой системы с заболеваниями других органов и систем (90%), дисгармоничное физическое развитие (56%) [45].

М.С. Игнатова и соавт. предлагают выделять эконефропатии в отдельную форму нефрологической патологии и разработали критерии их диагностики. При обследовании больных с эконефропатиями (дети с антенатального периода проживали в регионе, неблагополучном по содержанию солей тяжелых металлов), они выявили повышенную экскрецию с мочой кадмия, хрома, мышьяка, сурьмы, бериллия. У этих детей отмечалась повышенная чувствительность к одному или нескольким из перечисленных химических элементов, определяемая in vitro в реакции лейкоцитолиза, выраженная тубулярная дисфункция (отмечалось повышение экскреции β<sub>2</sub>-микроглобулина, ферментурия, аминоацидурия). У 1/3 больных были обнаружены комбинированные нарушения функции почек в виде дисфункции канальцев и тенденции к снижению клубочковой фильтрации. В волосах обследованных детей отмечалось низкое содержание цинка и меди – элементов, определяющих резистентность организма к тяжелым металлам. При гистологическом исследовании почечной ткани выявлялись признаки тубулоинтерстициального нефрита и почечного дизэмбриогенеза. При электронно-микроскопическом исследовании был выявлен значительно выраженный склеротический процесс в тубулоинтерстиции с характерным диффузным поражением митохондрий нефротелия в виде вакуолизации крипт и распада матрикса. Учитывая совокупность перечисленных признаков при наличии соответствующих эпидемиологических и экогеохимических условий авторы предлагают выделять своеобразную форму эконефропатии с гематурией, развивающейся в связи с воздействием на протяжении всей жизни ребенка малых доз солей тяжелых металлов. Клинически заболевание близко к ДН с оксалатно-кальциевой кристаллурией. Морфологически – это тубулоинтерстициальный процесс, вплоть до тубулоинтерстициального нефрита с явлениями дизэмбриогенеза почечной ткани [2, 46].

Таким образом, тяжелые металлы и другие токсичные элементы приводят к формированию различных вариантов почечной патологии. Развитие нефропатий зависит от дозы и скорости поступления тяжелого металла в организм, а также от индивидуальной его гиперчувствительности [47]. Несмотря на определенные успехи, достигнутые в изучении эконефропатий у детей, несомненно важным является дальнейшее исследование влияния токсичных элементов металлов на формирование почечных дисфункций при различных уровнях поражения нефрона.

С целью усиления выведения из организма солей тяжелых металлов, в частности кадмия, и улучшения клинико-лабораторных показателей, характеризующих мембранопатологический процесс в почках, предложено использование сукцимера, димефосфона, ксидифона и препаратов из морских водорослей (альгината натрия и кламина). Использование данных препаратов приводит к снижению выраженности гематурии, кристаллурии, оксалурии, а также повышению активности Ca-Mg-ATФазы, снижению активности ксантиноксидазы и сдвигу антипероксидантного индекса в сторону относительного увеличения активности антиоксидантных ферментов в крови. Наибольшая эффективность отмечается при использовании альгината натрия и, в меньшей степени, ксидифона. В отличие от ксидифона альгинат натрия выводит токсические продукты в основном через кишечник. Это приводит к уменьшению концентрации тяжелых металлов в депо и в сыворотке крови. В первую очередь выводятся тяжелые металлы, не связанные с металлотионеином, именно они и являются наиболее токсичными [2, 5, 46, 48].

## БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Дельва ЮВ, Нейко ЕМ. Микроэлементозы как этиология заболеваний почек. *Урол нефрол* 1990; (1): 72-75
- 2. Игнатова МС, Харина ЕА, Длин ВВ и др. Диагностика и лечение эконефропатий у детей. *Российский педиатрический журнал* 1999; (1): 33-38
- 3. Скальный АВ. *Микроэлементозы человека (диагностика и лечение)*. М., 1997
- 4. Saboli Д. Common mechanisms in nephropathy induced by toxic metals. *Nephron Physiol* 2006; 104 (3): 107-114
- 5. Османов ИМ. Роль тяжелых металлов в формировании заболеваний органов мочевой системы. *Российский вестник перинатологии и педиатрии* 1996; (1): 36-39
- 6. Римарчук ГВ. Оздоровление детей в районах экологического неблагополучия. *Русс мед журнал* 1999; (11): 500-504
- 7. Barbier O, Jacquillet G, Tauc M et al. Effect of heavy metals on, and handling by, the kidney. *Nephron Physiol* 2005; 99(4): 105-110
- 8. Скальный АВ, Рудаков ИА. *Биоэлементы в медицине*. Мир, М., 2004

- 9. Авцын АП, Жаворонков АА, Риш МА, Строчкова ЛС. *Микроэлементозы человека: этиология, классификация, органопатология*. Медицина, М.,1991
- 10. Смоляр ВИ. *Гипо- и гипермикроэлементозы.* Здоровья, Киев, 1989
- 11. Ильичева СА, Бульбулян МА, Заридзе ДГ. Оценка канцерогенности свинца у работников типографий. *Медицина труда и промышленная экология* 2002; (8): 15-19
- 12. Макарова ТП, Мальцев СВ, Агафонова ЕВ, Валиев ВС. Роль микроэлементов а развитии пиелонефрита у детей. *Российский педиатрический журнал* 2002; (2): 24-28
- 13. Макарова ТП. Изменение гомеостаза цинка при заболеваниях почек у детей. *Казанский медицинский журнал* 2001; (4): 278-281
- 14. Макарова ТП, Мальцев СВ, Валиев ВС и др. Роль нарушений микроэлементного гомеостаза в развитии тубулоинтерстициального нефрита у детей. *Педиатрия* 2001; (6): 23-26
- 15. Макарова ТП. *Роль нарушений обмена микроэле-*ментов на этапах развития нефропатий у детей. Автореф. дисс...д-ра мед наук. Н.Новгород, 2001
- 16. Сафина АИ. Влияние микроэлементов на парциальные функции почек и метаболические процессы при дизметаболической нефропатии у детей. Автореф. дисс ...канд. мед наук. Казань, 1996
- 17. Сафина АИ. *Клинико-патогенетическая роль бактериальных и вирусных инфекций в развитии и прогрессировании пиелонефрита у детей.* Автореф. дисс ...д-ра мед наук. Н.Новгород, 2005
- 18. Збровская ИА, Банникова МВ. Антиоксидантная система организма, ее значение в метаболизме: клинические аспекты. *Вестник РАМН* 1995; (6): 53-60
- 19. EL-Safty IA, Afifi AM, Shouman AE, EL-Sady AK. Effects of smoking and lead exposure on proximal tubular integrity among Egyptian industrial workers. *Arch Med Res* 2004; 35(1): 59-65
- 20. Olsson IM, Bensryd I, Lundh T et al. Cadmium in blood and urine-impact of sex, age, dietary intake, iron status, and former smoking—association of renal effects. *Environ Health Perspect* 2002; 110(12):1185-1190
- 21. Vahter M, Berglund M, Akesson A, Lid C. Metals and women's health. *Environ Res* 2002; 88(3):145-155
- 22. Alonso ML, Benedito JL, Miranda M et al. Interactions between toxic and essential trace metals in cattle from a region with low levels of pollution. *Arch Environ Contam Toxicol* 2002; 42(2):165-172
- 23. Ezaki T, Tsukahara T, Moriguchi J et al. No clear-cut evidence for cadmium-induced renal tubular dysfunction among over 10,000 women in the Japanese general population: a nationwide large-scale survey. *Int Arch Occup Environ Health* 2003; 76(3):186-196
- 24. Wu X, Jin T, Wang Z et al. Urinary calcium as a biomarker of renal dysfunction in a general population exposed to cadmium. *J Occup Environ Med* 2001; 43(10):898-904
- 25. Тутельян ВА, ред. *Витамины и микроэлементы в клинической фармакологии.* Палея-М, М., 2001
- 26. Jurup L. Cadmium overload and toxicity. *Nephrol Dial Transplant* 2002; 17 [suppl 2]: 35-39.
- 27. Kaur J, Sharma N, Attri S et al. Kinetic characterization of Zinc transport process and its inhibition by Cadmium in isolated rat renal basolateral membrane vesicles: in vitro and in vivo studies. *Mol Cell Biochem* 2006; 283(1-2): 169-179
- 28. Ezaki T, Tsukahara T, Moriguchi J et al. Analysis for threshold levels of cadmium in urine that induce tubular dysfunction among women in non-polluted areas in Japan. *Int Arch Occup Environ Health* 2003; 76(3):197-204
- 29. Jacquillet G, Barbier O, Cougnon M et al. Zinc protects renal function during cadmium intoxication in the rat. *Am J Physiol Renal Physiol* 2006; 290(1): 127-137
- 30. Barbier O, Dauby A, Jacquillet G et al. Zinc and cadmium interactions in a renal cell line derived from rabbit proximal tubule. *Nephron Physiol* 2005; 99(3): 74-84
- 31. Marumo F, Li JP. Renal disease and trace elements. *Nippon Rinsho* 1996; 54(1): 93-98

- 32. Громова ОА, Кудрин АВ. *Нейрохимия макро- и мик- роэлементов. Новые подходы к фармакотерапии*. Алев-В, М. 2001
- 33. Cerulli N, Campanella L, Grossi R et al. Determination of Cd, Cu, Pb and Zn in neoplastic kidneys and in renal tissue of fetuses, newborns and corpses. *J Trace Elem Med Biol* 2006; 20(3):171-179
- 34. Kwiatek WM, Drewniak T, Gajda M et al. Preliminary study on the distribution of selected elements in cancerous and non-cancerous kidney tissues. *J Trace Elem Med Biol* 2002; 16(3):155-160
- 35. Одинаева НД, Яцык ГВ, Скальный АВ. Нарушения минерального обмена у детей. *Российский педиатрический журнал* 2001; (4): 6-10
- 36. Ребров ВГ, Громова ОА. *Витамины и микроэлементы.* АЛЕВ-В, М., 2003
- 37. Chmielnicka J, Swietlicka E, Nasiadek M. Essential elements as early indicators of hexavalent chromium nephrotoxicity. *Ecotoxicol Environ Saf* 2002; 53(1):20-26
- 38. Malecka J, Grzeszczak W, Zukowska-Szczechowska EA et al. Concentration of chromium in blood serum of patients with chronic renal failure. *Pol Arch Med Wewn* 1995; 25-31
- 39. Мамбеталлин ЕС. Действие соединений хрома и других нефротоксичных веществ на мочеполовую систему человека. Автореф. ...дисс д-ра мед наук. Москва, 1992
- 40. Abernathy CO, Thomas DJ, Calderon RL. Health effects and risk assessment of arsenic. *J Nutr* 2003; 133[suppl 1]:1536-1538
- 41. El-Safty IA, Gadallah M, Shafik A, Shouman AE. Effect of mercury vapour exposure on urinary excretion of calcium, zinc and copper: relationship to alterations in functional and

- structural integrity of the kidney. *Toxicol Ind Health* 2002; 18(8):377-388
- 42. Afonne OJ, Orisakwe OE, Obi E et al. Nephrotoxic actions of low-dose mercury in mice: protection by zinc. *Arch Environ Health* 2002; 57(2):98-102
- 43. Нежданова МВ. Течение и исход пиелонефрита у детей в условиях загрязнения окружающей среды свинцом и ртутью. Автореф. дисс...д-ра мед наук. Москва, 2005.
- 44. Кацнельсон БА, Хрущева НА, Журавлева НС и др. Связь между донозологическим поражением почек и уровнем кадмия и свинца в моче у детей дошкольного возраста жителей Среднего Урала. Сборник тезисов VI съезда Научного общества нефрологов России: 2006, 26-27
- 45. Вялкова АА, Попова ЛЮ, Гордиенко ЛМ и др. Региональные особенности нефропатий у детей промышленного города. *Омский научный вестник* 2002; июнь: 129-130
- 46. Османов ИМ, Длин ВВ. Экологически детерминированные заболевания почек у детей. *Российский вестник перинатологии и педиатрии* 2004; (2): 52-54
- 47. Длин ВВ, Османов ИМ, Юрьева ЭА, Новиков ПВ. Дизметаболическая нефропатия, мочекаменная болезнь и нефрокальциноз у детей. Оверлей, М., 2005
- 48. Длин ВВ, Османов ИМ, Юрьева ЭА и др. Эффективность энтеросорбентов при лечении нефропатий у детей из региона, загрязненного солями тяжелых металлов. *Педиатрия* 1998; (2): 63-66
- 49. Лучанинова ВН, Транковская ЛВ. Комплексная оценка состояния здоровья детей на фоне техногенной нагрузки. Российский педиатрический журнал 2004; (1): 29-33

Поступила в редакцию 14.03.2007 г. Принята в печать 07.06.2007 г.