Preview

Нефрология

Расширенный поиск

МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ ФУНКЦИОНИРОВАНИЯ КАНАЛЬЦЕВ ПОЧКИ ПРИ САХАРНОМ ДИАБЕТЕ: ВЫБОР НОВОЙ СТРАТЕГИИ ПРОФИЛАКТИКИ И ЛЕЧЕНИЯ ДИАБЕТИЧЕСКОЙ НЕФРОПАТИИ

https://doi.org/10.24884/1561-6274-2008-12-2-29-35

Полный текст:

Аннотация

В работе проанализированы формирующиеся в процессе развития диабетической нефропатии механизмы нарушения функций канальцевого аппарата, которые посредством тубуло-гломерулярной обратной связи могут вызывать прогрессирование патологического процесса в почечных тельцах и по сути определяют сроки манифестации ренальных дисфункций при сахарном диабете. В то же время состояние тубуло-интерстициального аппарата почки усугубляется при дисфункции сосудистых клубочков вследствие повышения объемной загрузки канальцев при гиперперфузии нефронов, прогрессирования протеинурии и увеличения продукции и фильтрации цитокинов. Приведенные в данном обзоре факты открывают новую страницу в молекулярной биологии транспортных процессов в почке, в частности при сахарном диабете. Выяснение механизмов молекулярного ремоделирования канальцев почки, индуцируемого патогенетическими факторами сахарного диабета, позволяет разработать тактику диагностики диабетической нефропатии на предклинической стадии и определить новую стратегию профилактики и коррекции тубулярных дисфункций при этом состоянии.

Об авторах

Э. Ф. Баринов
До­нецкий национальный медицинский университет им. М. Горького
Украина

Кафедра гистологии, цитологии и эмбриологии 

83003, Донецк, пр. Ильича, 16



О. Н. Сулаева
До­нецкий национальный медицинский университет им. М. Горького
Украина

Кафедра гистологии, цитологии и эмбриологии 

83003, Донецк, пр. Ильича, 16



Список литературы

1. Нефрология. Под ред. И.Е. Тареевой. М, 2000: 448-453

2. Ossman SS. Diabetic Nephropathy: Where we have been and where we are going. Diabetes Spectrum 2006; 19: 153-156

3. Wei P, Lane PH, Lane JT, Padanilam BJ. Glomerular structural and functional changes in a high fat diet mousy model of early stages Type 2 diabetes. Diabetologia 2004; 47: 1541-1549

4. Rebsomen L, Raccah D, Tsimaratos M. Diabetes mellitus and renal tubule functions. Nephrol Ther 2006; 2 [Suppl 1]: S28-31

5. Evangelista C, Rizzo M, Cantone A. Glomerulo-tubular balance in diabetes mellitus: molecular evidence and clinical consequences. G Ital Nefro 2006; 23 [Suppl 34]: S16-20

6. Vallon V, Richter K, Blantz RC et al. Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J Am Soc Nephrol 1999; 10 (12): 2569-2576

7. Vervoort G, Veldman B, Berden JH. Glomerular hyperfiltration in type 1 diabetes mellitus results from primary changes in proximal tubular sodium handling without changes in volume expansion. Eur J Clin Invest 2005; 35 (5): 330-336

8. Rajic M, Ilic S, Vlajkovic M et al. Radionuclide staging of renal function in type 1 diabetes mellitus. Ren Fail 2007; 29 (6): 685-691

9. Levine DZ, Iacovitti M, Robertson SJ, Mokhtar GA. Modulation of single-nephron GFR in the db/db mouse model of type 2 diabetes mellitus. Am J Physiol Regul Integr Comp Physiol 2006; 290 (4): R975-R981

10. Futrakul N, Vongthavarawat V, Sirisalipotch S. Tubular dysfunction and hemodynamic alteration in normoalbuminuric type 2 diabetes. Clin Hemorheol Microcirc 2005; 32 (1): 59-65

11. Suanarunsawat T, Klongpanichapak S, Chaiyabutr N. Role of nitric oxide in renal function in rats with short and prolonged periods of streptozotocin-induced diabetes. Diabetes Obes Metab 1999; 1 (6): 339-346

12. Satriano J, Vallon V. Primary kidney growth and its consequences at the onset of diabetes mellitus. Amino Acids 2006; 31 (1): 1-9

13. Siragy HM. Angiotensin II compartmentalization within the kidney: effects of salt diet and blood pressure alterations. Curr Opin Nephrol Hypertens 2006; 15 (1): 50-53

14. Zhang Y, Wada J. Collectrin, a homologue of ACE2, its transcriptional conrol and functional perspectives. Biochem Biophys Res Commun 2007; 363 (1): 1-5

15. Ina K, Kitamura H, Nagai K et al. Ultrastructural and functional changes of the proximal tubular epithelial cells in the renal cortex from spontaneously diabetic KKAy mice. J Electron Microsc 1999; 48 (4): 443-448

16. Klisic J, Nief V, Reyes L, Ambuhl PM. Acute and chronic regulation of the renal Na/H(+) exchanger NHE3 in rats with STZ-induced diabetes mellitus. Nephron Physiol 2005; 102 (2): p27-p35

17. Capasso G, Evangelista C, Zacchia M. Acid-base transport in Henle’s loop: the effects of reduced renal mass and diabetes. J Nephrol 2006;19 [Suppl 9]: S11-S17

18. Kim YH, Kwon TH, Christensen BM et al. Altered expression of renal acid-base transporters in rats with lithium-induced NDI. Am J Physiol Renal Physiol 2003; 285 (6): F1244-F1257

19. Hakam AC, Siddiqui AH, Hussain T. Renal angiotensin II AT2 receptors promote natriuresis in streptozotocin-induced diabetic rats. Аm J Physiol Renal Physiol 2006; 290 (2): F503-F508

20. O’Neill H, Lebeck J, Collins PB. Aldosterone-mediated apical targeting of ENaC subunits is blunted in rats with streptozotocin-induced diabetes mellitus. Nephrol Dial Transplant 2007; 19 (5): 1208-1217

21. Bickel CA, Knepper MA, Verbalis JG, Ecelbarger CA. Dysregulation of renal salt and water transport proteins in diabetic Zucker rats. Kidney Int 2002; 61 (6): 2099-2110

22. Vidotti DB, Arnoni CP, Boim MA. Effect of long-term type 1 diabetes on renal sodium and water transporters in rats. Am J Nephrol 2008; 28 (1): 107-114

23. Nielsen J, Kwon TH, Praetorius J. Aldosterone increases urine production and decreases apical AQP2 expression in rats with diabetes insipidus. Am J Physiol Renal Physiol 2006; 290 (2): F438-449

24. Hryciw DH, Lee EM, Pollock CA, Poronnik P. Molecular changes in proximal tubule function in diabetes mellitus. Clin Exp Pharmacol Physiol 2004; 31 (5-6): 372-379

25. Nielsen S, Marples D, Kwon TH et al. Aquaporins in the kidney: from molecules to medicine. Physiol Rev 2002; 82 (1): 205-244

26. Bedford JJ, Leader JP, Walker RJ. Aquaporin expression in normal human kidney and in renal disease. J Am Soc Nephrol 2003; 14(10): 2581-2587

27. Noda Y, Sasaki S. Regulation of aquaporin-2 trafficking and its binding protein complex. Biochim Biophys Acta 2006; 1758 (8): 1117-1125

28. RodrГ-guez-Mulero S, Errasti-Murugarren E Expression of concentrative nucleoside transporters SLC28 (CNT1, CNT2, and CNT3) along the rat nephron: effect of diabetes. Kidney Int 2005; 68 (2): 665-672

29. Marks J, Carvou NJ, Debnam ES. Diabetes increases facilitative glucose uptake and GLUT2 expression at the rat proximal tubule brush border membrane. J Physiol 2003; 553 (Pt 1): 137-145

30. Linden KC, DeHaan CL, Zhang Y et al. Renal expression and localization of the facilitative glucose transporters GLUT1 and GLUT12 in animal models of hypertension and diabetic nephropathy. Am J Physiol Renal Physiol 2006; 290 (1): F205-213

31. Vestri S, Okamoto MM, Nunes MT. Changes in sodium or glucose filtration rate modulate expression of glucose transporters in renal proximal tubular cells of rat. J Membr Biol 2001; 182 (2): 105-112

32. Katsuno K, Fujimori Y, Takemura Y. Sergliflozin, a novel selective inhibitor of low-affinity sodium glucose cotransporter (SGLT2), validates the critical role of SGLT2 in renal glucose reabsorption and modulates plasma glucose level. J Pharmacol Exp Ther 2007; 320 (1): 323-330

33. Ueta K, Yoneda H, Oku A, Nishiyama S. Reduction of renal transport maximum for glucose by inhibition of NA(+)- glucose cotransporter suppresses blood glucose elevation in dogs. Biol Pharm Bull 2006; 29 (1): 114-118

34. Pontoglio M, PriГ© D, Cheret C et al. HNF1alpha controls renal glucose reabsorption in mouse and man. EMBO Rep 2000; 1 (4): 359-365

35. Isaji M. Sodium-glucose cotransporter inhibitors for diabetes. Curr Opin Investig Drugs2007; 8 (4): 285-292

36. Saito A, Takeda T, Hama H et al. Role of megalin, a proximal tubular endocytic receptor, in the pathogenesis of diabetic and metabolic syndrome-related nephropathies: protein metabolic overload hypothesis. Nephrology 2005; 10 Suppl: S26-S31

37. Tojo A, Onozato ML, Ha H. Reduced albumin reabsorption in the proximal tubule of early-stage diabetic rats. Histochem Cell Biol 2001; 116 (3): 269-276

38. Tojo A, Onozato ML, Kurihara H, Sakai T. Angiotensin II blockade restores albumin reabsorption in the proximal tubules of diabetic rats. Hypertens Res 2003; 26 (5): 413-419

39. Sarafidis PA, Lasaridis AN. Actions of peroxisome proliferator-activated receptors-gamma agonists explaining a possible blood pressure-lowering effect. Am J Hypertens 2006; 19 (6): 646-653

40. Castaneda F, Burse A, Boland W, Kinne RK. Thioglycosides as inhibitors of hSGLT1 and hSGLT2: potential therapeutic agents for the control of hyperglycemia in diabetes. Int J Med Sci 2007; 4 (3): 131-139

41. Kikuchi Y, Kobayashi S, Hemmi N. Galectin-3-positive cell infiltration in human diabetic nephropathy. Nephrol Dial Transplant 2004; 19 (3): 602-607

42. Karalliedde J, Buckingham RE. Thiazolidinediones and their fluid-related adverse effets: facts, fiction and putative management strategies. Drug Saf 2007; 30 (9): 741-753

43. Sarafidis PA, Nilsson PM. The effects of thiazolidinediones on blood pressure levels – a systematic review. Blood Press 2006; 15 (3): 135-150

44. Song J, Knepper MA, Hu X, Verbalis JG, Ecelbarger CA. Rosiglitazone activates renal sodium- and water-reabsorptive pathways and lowers blood pressure in normal rats. J Pharmacol Exp Ther 2004; 308 (2): 426-433


Для цитирования:


Баринов Э.Ф., Сулаева О.Н. МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ ФУНКЦИОНИРОВАНИЯ КАНАЛЬЦЕВ ПОЧКИ ПРИ САХАРНОМ ДИАБЕТЕ: ВЫБОР НОВОЙ СТРАТЕГИИ ПРОФИЛАКТИКИ И ЛЕЧЕНИЯ ДИАБЕТИЧЕСКОЙ НЕФРОПАТИИ. Нефрология. 2008;12(2):29-35. https://doi.org/10.24884/1561-6274-2008-12-2-29-35

For citation:


Barinov E.F., Sulaeva O.N. MOLECULAR MECHANISMS OF FUNCTIONING RENAL TUBULES IN DIABETES MELLITUS: DECISION ON A NEW STRATEGY OF PROPHYLACTICS AND TREATMENT OF DIABETIC NEPHROPATHY. Nephrology (Saint-Petersburg). 2008;12(2):29-35. (In Russ.) https://doi.org/10.24884/1561-6274-2008-12-2-29-35

Просмотров: 140


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)