Preview

Nephrology (Saint-Petersburg)

Advanced search

RENAL MECHANISMS OF NEPHROGENIC ARTERIAL HYPERTENSION

https://doi.org/10.24884/1561-6274-2008-12-2-39-46

Abstract

Arterial hypertension (AH) in patients with chronic renal pathology is a result of a damage and impaired function of the kidneys involved in the maintenance of the water-salt and circulatory homeostasis. The progressing damage of the renal tissue, in addition to activation of the circulating renin-angiotensin- aldosterone system (RAAS) characteristic of the hyper-renin form of nephrogenic AH, brings on reflectory stimulation of the central structures sympathetic system, which lead to growing sympathetic influence on the cardiovascular system and kidneys. A characteristic feature of the neuro-humoral status of patients with normo- , and especially with hyporenin forms of nephrogenic AH is an elevated activity of endothelin system of the vessels. Formed in the kidneys disbalance of neurohumoral systems is accompanied by excessive reabsorption of sodium, which not only suppresses the mechanism of pressor natriuresis contributing to stabilization of AH at a higher level, but causes its delay in organism, providing for the development of volume-dependent and salt-sensitive AH.

About the Authors

O. B. Kuzmin
Оренбургская государственная медицинская академия
Russian Federation


M. O. Pugaeva
Оренбургская государственная медицинская академия
Russian Federation


N. V. Buchneva
Оренбургская государственная медицинская академия
Russian Federation


References

1. Рябов СИ, Наточин ЮВ. Артериальная гипертония и почки. В: Функциональная нефрология. СПб: Лань, 1997: 122-130

2. Кутырина И, Швецов М, Мартынов С, Камышева Е. Патогенез почечной артериальной гипертонии. Врач 2004; 10: 10-13

3. Guyton AC. Renal functional curve: a key to understanding the pathogenesis of hypertension. Hypertension 1987; 10 (1): 1-16

4. Cowley AW. Long-term control of arterial blood pressure. Physiol Rev 1992; 72 (1): 231-300

5. Hall JE. The kidney, hypertension and obesity. Hypertension 2003; 41 (3): 625-633

6. Кузьмин ОБ, Пугаева МО, Чуб СВ, Ландарь ЛН. Почечные механизмы эссенциальной гипертонии. Нефрология 2005; 9 (2): 23-29

7. Weinberger MH, Smith JB, Finederg NS, Luft FC. Red-cell sodium-lithium countertransport and fractional excretion of lithium in normal and hypertensive humans. Hypertension 1989; 13 (3): 206-212

8. Chiolero A, Maillard M, Nussberger J et al. Proximal sodium reabsorption: an independent determinant of blood pressure response to salt. Hypertension 2000; 36 (4): 631-637

9. de Maqalhaes SR, Fantinato ML, de Almeida AR. Development of hypertension in pyelonephritis-induced model: the effect of salt intake and inability of sodium renal handling. Ren Fail 2006; 28 (6): 501-507

10. Рябов СИ, Каюков ИГ. Функция почек при пиелонефрите. В: Рябов СИ, Наточин ЮВ. Функциональная нефрология. СПб: Лань, 1997: 185-210

11. Buerkert J, Martin DR, Trigg D, Simon EE. Sodium handling by deep nephrons and the terminal collecting ducts in glomerulonephritis. Kidney Int 1991; 39 (5): 850-857

12. Chachati A, Godon JP. Distal blockade in experimental glomerulonephritis: the role of diluting segmet in sodium retention. Arch Int Physiol Biochim 1985; 93 (4): 299-306

13. Godon JP. Evidence of increased proximal sodium and water reabsorption in experimental glomerulonephritis. Role of a natriuretic factor of renal origin. Nephron 1978; 21 (3): 146-154

14. Рябов СИ, Каюков ИГ. Функциональное состояние почек у больных гломерулонефритом. В: Рябов СИ, Наточин ЮВ. Функциональная нефрология. СПб: Лань, 1997: 148-184

15. Rodriques-Iturbe B, Pons H, Herrera-Acosta J, Johnson RJ. The role of immune competent cells in nonimmune renal diseases. Kidney Int 2001; 59 (10): 1626-1640

16. Rodriques-Iturbe B, Basiri ND, Herrera-Acosta J, Johnson RJ. Oxidative stress, renal infiltration of immune cells and salt sensitive hypertension: all for one and one for all. Am J Physiol Renal 2004; 286 (4): F606-F616

17. Rodriques-Iturbe B, Johnson RJ. Role of inflammatory cells in the kidney in the induction and maintenance of hypertension. Nephrol Dial Transplant 2006; 21 (12): 260-263

18. Tian N, Gu JW, Jordan S et al. Immune suppression prevents renal damage and dysfunction and reduces arterial blood pressure in salt-sensitive hypertension. Am J Physiol Heart 2007; 292 (2): H1018-H1025

19. Vanegas V, Ferrebuz A, Rodriques-Iturbe B. Hypertension in Page (cellophane wrapped) kidneys is due to interstitial nephritis. Kidney Int 2005; 68 (3): 1161-1170

20. Budisavljevic MN, Hodge L, Barber K et al. Oxidative stress in the pathogenesis of experimental mesangial proliferative glomerulonephritis. Am J Physiol Renal 2002; 285 (6): F1138-F1148

21. Pavlova EL, Lilova MI, Savov VM. Oxidative stress in children with kidney diseases. Pediatr Nephrol 2005; 20 (11): 1599-1604

22. Tigtepe H, Sener J, Cetinel S et al. Oxidative renal damage in pyelonephritic rats is ameliorated by montelukast, a selective leukotriene Cysl T1 receptor antagonist. Eur J Pharmacol 2007; 557 (1): 69-75

23. Bowce NW, Tipping PG, Holdsworth SR. Glomerular macrophages produce reactive oxygen species in experimental glomerulonephritis. Kidney Int 1989; 35 (2): 778-782

24. Fortuno A, Belogni O, Jose G et al. Increased phagocytic nicotinamide adenine dinucleotide phosphate oxidase-dependent superoxide production in patients with early chronic kidney disease. Kidney Int 2005; 68 [Suppl 99]: S71-S75

25. Rodriques-Iturbe B, Quiroz Y, Kim CH, Vaziri ND. Hypertension induced by aortic coarctation above the renal arteries is associated with immune cell infiltration of the kidney. Am J Hypertens 2005; 18 (11): 1449-1456

26. Navar LG, Harrison-Bernard LM, Nishiyama A, Kobori H. Regulation of intrarenal angiotensin II in hypertension. Hypertension 2002; 39 (2): 316-322

27. Agarwal R, Campbell RC, Warnock DG. Oxidative stress in hypertension and chronic kidney disease: role of angiotensin II. Semin Nephrol 2004; 24 (2): 101-114

28. Franco M, Martinez F, Quiroz Y et al. Renal angiotensin II and interstitial infiltration of immune cells are correlated with blood pressure levels in salt sensitive hypertension. Am J Physiol Regul 007; 293 (1): R251-R256

29. Bravo Y, Quiroz Y, Ferrebuz A et al. Mycophenolate mofetil administration reduces renal inflammation, oxidative stress and arterial pressure in rats with lead-induced hypertension. Am J Physiol Renal 2007; 293 (2): F616-F623

30. Vaziri ND, Bai YL, Quiroz Y et al. Intrarenal angiotensin II/AT1-receptor, oxidative stress, inflammation and progressive renal injury in renal mass reduction. J Pharmacol Exp Ther 2007; 323 (1): 85-93

31. Garvin JL. Angiotensin stimulates bicarbonate transport and Na+ / K+ -ATP-ase in rat proximal straight tubules. J Am Soc Nephrol 1991; 1 (10): 1146-1152

32. Quan A, Baum M. Endogenous production of angiotensin II modulates rat proximal tubule transport. J Clin Invest 1996; 97 (12): 2878-2882

33. Juncos R, Garvin JL. Superoxide enhances Na-K-2Cl cotransporter activity in the thick ascending limb. Am J Physiol Renal 2005; 288 (5): F982-F987

34. Silva GB, Ortiz PA, Hong NJ, Garvin JL. Superoxide stimulates NaCl absorption in the thick ascending limb via activation of protein kinase C. Hypertension 2006; 48 (3): 467-472

35. Лифшиц НЛ, Кутырина ИМ. Роль ренин-ангиотензин-альдостероновой системы в патогенезе артериальной гипертензии при хронической почечной недостаточности. Тер архив 1999; 71 (6): 64-67

36. Шулутко БИ, Балясникова ТН. Изменения ренин-ангиотензин-альдостероновой системы, иммунологических показателей при эссенциальной и симптоматической артериальной гипертонии. Клин мед 1993; 71 (6): 24-27

37. Карабаева АЖ, Каюков ИГ, Есаян АМ, Смирнов АВ. Ренин-ангиотензин-альдостероновая система при хронической болезни почек. Нефрология 2006; 10 (4): 43-47

38. Nitta K, Uchida K, Nihei H. Spironolactone and angiotensin receptor blocker in nondiabetic renal disease. Am J Med 2004; 117 (6): 444-445

39. Gross E, Rothstein M, Dombek S, Juknis HI. Effect of spironolactone on blood pressure and renin-angiotensin-aldosterone system in oligoanuric hemodialysis patients. Am J Kidney Dis 2005; 46 (1): 94-101

40. Converse RL, Jacobsen TN, Toto RD et al. Sympathetic overactivity in patients with chronic renal disease. N Engl J Med 1992; 327 (27): 1912-1918

41. Hausberg M, Kosch M, Harmelink P et al. Sympathetic nerve activity in end-stage renal disease. Circulation 2002; 106 (15): 1974-1979

42. Campese VM, Koqosov E. Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension 1995; 25 (4, Pt 2): 878-882

43. Ye S, Ozquz B, Campese VM. Renal afferent impulses, the posterior hypothalamus and hypertension in rats with chronic renal disease. Kidney Int 1997; 51 (3): 722-727

44. Кузьмин ОБ, Пугаева МО, Жежа ВВ. Нефропротективная терапия гипертензивных больных с хронической болезнью почек: есть ли в ней место для β-адреноблокаторов третьего поколения и агонистов I 1-имидазолиновых рецепторов? Нефрология 2006; 10 (2): 18-27

45. Gopalakrishnan SM, Chen C, Lohhandwala MF. Alpha1-adrenoceptor subtypes mediating stimulation of Na+, K+-ATP-ase activity in rat renal proximal tubules. Eur J Pharmacol 1995; 288 (2): 139-147

46. Liu F, Gesek FA. α1-Adrenergic receptors activate NHE1 and NHE3 through distinct signaling pathways in epithelial cells. Am J Physiol Renal 2001; 280 (3): F415-F425

47. Leonq PK, Yanq LE, Landon CS et al. Phenol injury-induced hypertension stimulates proximal tubule Na+ / H+ exchanger activity. Am J Physiol Renal Physiology 2006; 290 (6): F1543-F1550

48. Sonalker PA, Jackson EK. Norepinephrine, via β-adrenoceptors, regulates bumetanide-sensitive cotransporter type 1 in thick ascending limb cells. Hypertension 2007; 49 (6): 1351-1357

49. Schiffrin EL, Tonyz RM. Vascular biology of endothelin. J Cardiol Pharmacol 1998; 32 (Suppl 1): S2-S13

50. Wendel M, Knels L, Kummer W, Koch T. Distribution of endothelin receptor subtypes ETA and ETB in rat kidney. J Histhochem Cytochem 2006; 54 (11): 1193-1203

51. Plato CF, Pollock DM, Garvin JL. Endothelin inhibits thick ascending limb chloride flux via ET B receptor-mediated NO release. Am J Physiol Renal Physiology 2000; 279 (2): F326-F333

52. Gallego MS, Ling BN. Regulation of amiloride-sensitive Na+ channels by endothelin-1 in distal nephron cells. Am J Physiol Renal 1996; 271 (2): F451-F460

53. Goddard J, Johnston NR, Hand MF et al. Endothelin-A receptor antagonism reduces blood pressure and increases renal blood flow in hypertensive patients with chronic renal failure: a comparison of selective and combined endothelin receptor blockade. Circulation 2004; 109 (9): 1186-1193

54. Zoccali C, Leonardis D, Parlongo S et al. Urinary and plasma endothelin-1 in essential hypertension and in hypertension secondary to renoparenchymal disease. Nephrol Dial Transplant 1995; 10 (8): 1320-1323

55. Saito Y, Kazuwa N, Shirakami G et al. Endothelin in the patients with chronic renal failure. J Cardiovascular Pharmacol 1991; 17 (Suppl 7): S437-S439

56. Vlachojannis J, Tsakas S, Pertopoulou C, Kurr P. Increased renal excretion of endothelin-1 in nephrоtic patients. Nephrol Dial Transplant 1997; 12 (3): 470-471

57. Faraj AH, Morley AR. Remnant kidney pathology after five-sixth nephrectomy in rat. A biochemical and morphological study. APMIS 1992; 100 (12): 1097-10105

58. Shimizu T, Hata S, Kuroda T et al. Different role of two types of endothelin receptors in partial ablation-induced chronic renal failure in rats. Eur J Pharmacol 1999; 381 (1): 39-49

59. Brochu E, Lacasse S, Moreau C et al. Endothelin ET(A)- receptor blockade prevents the progression of renal failure in uremic rats. Nephrol Dial Transplant 1999; 14 (8): 1881-1888

60. Gariepy CE, Ohuchi T, Williams SE et al. Salt-sensitive hypertension in endothelin B receptor-deficient rats. J Clin Invest 2000; 105 (7): 925-933

61. Ahn D, Ge Y, Stricklett PK et al. Collecting duct-specific knockout endothelin-1 causes hypertension and sodium retention. J Clin Invest 2004;

62. Ge Y, Bagnall A, Stricklett KS et al. Collecting duct-specific knockout of endothelin B receptor causes hypertension and sodium retention. Am J Physiol Renal Physiology 2006; 291 (6): F1274-F1280

63. Dhaun N, Ferro CJ, Davenport AP et al. Hemodynamic and renal effects of endothelin receptor antagonism in patients with chronic kidney disease. Nephrol Dial Transplant 2007; 22 (11): 3228-3234


Review

For citations:


Kuzmin O.B., Pugaeva M.O., Buchneva N.V. RENAL MECHANISMS OF NEPHROGENIC ARTERIAL HYPERTENSION. Nephrology (Saint-Petersburg). 2008;12(2):39-46. (In Russ.) https://doi.org/10.24884/1561-6274-2008-12-2-39-46

Views: 8306


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)