Preview

Нефрология

Расширенный поиск

АДАПТАЦИОННЫЕ ПРОЦЕССЫ В КОСТНОЙ ТКАНИ -ЭЛЕМЕНТ ПАТОГЕНЕЗА НАРУШЕНИЙ МИНЕРАЛЬНОГО И КОСТНОГО ОБМЕНА ПРИ ХРОНИЧЕСКОЙ БОЛЕЗНИ ПОЧЕК

Аннотация

ЦЕЛЬ: на основании собственных данных и анализа литературы выделить адаптационные механизмы реорганизации костных структур, которые участвуют в развитии изменений минерального и костного обмена при ХБП. Показано, что одной из причин высокой чувствительности костной ткани, в частности, и минерального обмена в целом, к регуляторно-метаболическим сдвигам, происходящим в организме при нарушении функции почек, является инкорпорация остеоцитов в лакунарно-канальцевой системе (ЛКС). Эта инкорпорация существенно ограничивает поступление к клеткам питательных веществ и удаление от них метаболитов. Поэтому в процессе филогенеза у остеоцитов сформировалась сложнейшая система адаптивной коррекции механических свойств костных структур и пропускной способности ЛКС, позволяющая проводить постоянную оптимизацию параметров окружающей среды. В результате этого остеоциты стали одним из основных регуляторов минерального метаболизма в организме. Поэтому адаптивные сдвиги функционирования клеток вызывают системные эффекты, связанные в том числе с отклонением параметров минерального гомеостаза за пределы физиологических границ. По мнению авторов, назрела клиническая необходимость разработки неинвазивного метода оценки функционального состояния остеоцитов. Предложены пути решения этой проблемы с использованием хронобиологического подхода.

Об авторах

А. С. Аврунин
Российский научно-исследовательский институт травматологии и ортопедии им. РР Вредена
Россия


Н. В. Леонтьева
Северо-Западный государственный медицинский университет им. И.И. Мечникова
Россия


А. А. Докторов
Государственное научное учреждение Всероссийский институт лекарственных и ароматических растений (ГНУ ВИЛАР) Россельхозакадемии
Россия


Список литературы

1. Еременко ВМ, Волгина ГВ, Добронравов ВА и др. Национальные рекомендации по минеральным и костным нарушениям при хронической болезни почек. Нефрология и диализ 2011; 13(1):33-51

2. Russell LA. Osteoporosis and Osteomalacia. Rheum Dis Clin N Am 2010; 36(4):665-680.

3. Mac Way F, Lessard M, Lafage-Proust M-H. Pathophysiology of chronic kidney disease-mineral and bone disorder. Joint Bone Spine 2012; 79(6):544-549.

4. Ott SM. Bone histomorphometry in renal osteodystrophy. Seminars in Nephrology 2009; 29(2):122-132.

5. Lehmann G, Ott U, Stein G, Steiner T, Wolf G. Renal osteodystrophy after successful renal transplantation: a histomorphometric analysis in 57 patients. Transplant Proc 2007; 39(10):3153-3158.

6. McCarthy JT, Rule AD, Achenbach SJ et al. Use of renal function measurements for assessing fracture risk in postmenopausal women. Mayo Clin Proc 2008; 83(11):1231-1239.

7. Jamal SA, Swan VJD, Brown JP et al. Kidney function and rate of bone loss at the hip and spine: the canadian multicentre osteoporosis study. Am J Kidney Dis 2010; 55(2):291-299.

8. Mittal SK, Dash SC, Tiwari SC et al. Bone histology in patients with nephrotic syndrome and normal renal function. Kidney Int 1999; 55(5):1912-1919.

9. Gal-Moscovici A, Sprague SM. Bone health in chronic kidney disease-mineral and bone disease. Adv Chronic Kidney Dis 2007; 14(1):27-36.

10. Yoshida T, Stern PH. How vitamin D works on bone. Endocrinol Metab Clin N Am 2012; 41(3):557-569.

11. Talmage RV, Mobley HT. Calcium homeostasis: Reassessment of the actions of parathyroid hormone. Gen Comp Endocrinol 2008; 156(1): 1-8.

12. Frost HM. Seeking Genetic Causes of «Osteoporosis:» Insights of the Utah Paradigm of Skeletal Physiology. Bone 2001; 29(5):407-412.

13. Frost H.M. Muscle, bone, and the Utah paradigm: A 1999 overview. Med Sci Sports Exerc 2000; 32(5):911-917.

14. Skerry TM. One mechanostat or many? Modifications of the site-specific response of bone to mechanical loading by nature and nurture. J Musculoskelet Neuronal Interact 2006; 6(2):122-127.

15. Skerry TM. The response of bone to mechanical loading and disuse: Fundamental principles and influences on osteoblast/ osteocyte homeostasis. Arch Biochem Biophys 2008; 473(2):117-123.

16. Rhee X, Bivi N, Farrow E et al. Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone 2011; 49(4), 636-643.

17. Bellido T, Saini V, Pajevic PD. Effects of PTH on osteocyte function. Bone 2013; 54(2), 250-257.

18. Wesseling-Perry K, Juppner H. The osteocyte in CKD: New concepts regarding the role of FGF23 in mineral metabolism and systemic complications. Bone 2013; 54(2):222-229.

19. Fukumoto S, Martin TJ. Bone as an endocrine organ. Trends Endocrinol Metab 2009; 20(5):230-236.

20. Аврунин АС, Корнилов НВ, Иоффе ИД. Механизмы костной ткани и регуляторно-метаболический профиль организма. Морфология 2001: 120(6):7-12

21. Корнилов НВ, Аврунин АС, Аболин АБ. Некоторые патогенетические аспекты взаимосвязи обмена и структуры костной ткани с диагностикой и лечением остеопороза. Мед акад журн 2004; 4(2):67-79

22. Gordon PL, Frassetto LA. Management of osteoporosis in CKD stages 3 to 5. Am J Kidney Dis 2010; 55(5):941 -956.

23. Вишневский КА, Земченков АЮ, Комашня АВ и др. Физические нагрузки во время сеанса гемодиализа: комплаентность и эффекты. Нефрология и диализ 2009; 11(4):302-309

24. Аврунин АС, Паршин ЛК, Аболин АБ. Взаимосвязь морфофункциональных изменений на разных уровнях иерархической организации кортикальной кости при старении. Морфология 2006; 129(3):22-29

25. Давыдовский И. В. Общая патология человека. Ме дицина, М, 1969; 602

26. Marenzana M, Shipley AM, Squitiero P et al. Bone as an ion exchange organ: Evidence for instantaneous cell-dependent calcium efflux from bone not due to resorption. Bone 2005; 37(4):545-554

27. Parfitt AM. Progress in endocrinology and metabolism. The actions of parathyroid hormone on bone: relation to bone remodeling and turnover, calcium homeostasis, and metabolic bone disease. Part I of IV Parts: mechanisms of calcium transfer between blood and bone and their cellular basis: morphological and kinetic approaches to bone turnover. Metabolism 1976; 25(7):809-844

28. Feng JQ, Ye L, Schiavi S. Do osteocytes contribute to phosphate homeostasis? Curr Opin Nephrol Hypertens 2009; 18(4):285-291

29. Adachi T, Aonuma X, Taira K et al. Asymmetric intercellular communication between bone cells: propagation of the calcium signaling. Biochem Biophys Res Commun 2009; 389(3):495-500

30. Bonewald LF. Osteocytes: A proposed multifunctional bone cell. J Musculoskel Neuron Interact 2002; 2(3):239-241

31. Bonewald LF. Generation and function of osteocyte dendritic processes. J Musculoskelet Neuron Interact 2005; 5(4):321-324

32. Bonewald LF. The Amazing osteocyte. J Bone Miner Res 2011; 26(2): 229-238

33. Martin RB. Toward a unifying theory of bone emodeling. Bone 2000; 26(1):1-6

34. Аврунин АС, Тихилов РМ, Аболин АБ, Щербак ИГ. Уровни организации минерального матрикса костной ткани и механизмы, определяющие параметры их формирования (аналитический обзор). Морфология 2005; 127(2):78 - 82

35. Okada S, Yoshida S, Ashrafi SH, Schraufnagel DE. The canalicular structure of compact bone in the rat at different ages. Microsc Microanal 2002; 8(2):104 - 115

36. Wang L, Ciani C, Doty SB, Fritton SP. Delineating bone’s interstitial fluid pathway in vivo. Bone 2004; 34(3):499 - 509

37. Tami AE, Nasser P, Verborgt O et al. The role of interstitial fluid flow in the remodeling response to fatigue loading. J Bone Miner Res 2002; 17(11):2030-2037

38. Tami AE, Schaffler MB, Knothe Tate ML. Probing the tissue to subcellular level structure underlying bone’s molecular sieving function. Biorheology 2003; 40(6):577-590

39. Cadena EA, Schweitzer MH. Variation in osteocytes morphology vs bone type in turtle shell and their exceptional preservation from the Jurassic to the present. Bone 2012; 51(3):614-620

40. Frost HM. Defining osteopenias and osteoporoses: another view (with insights from a New Paradigm). Bone 1997; 20(5):385-391

41. Аврунин АС, Тихилов РМ, Паршин ЛК, Мельников БЕ. Остеоциты и пути оптимизации механического гомеостаза скелета с позиций функциональной остеологии. Морфология 2012; 142(4):7-13

42. Takei X Ogoshi M, Inoue K. A ‘reverse’ phylogenetic approach for identification of novel osmoregulatory and cardiovascular hormones in vertebrates. Front Neuroendocrinol 2007; 28(4):143-160

43. Danks JA, D’Souza DG, Gunn HJ et al. Evolution of the parathyroid hormone family and skeletal formation pathways. Gen Comp Endocrinol 2011; 170(1):79-91

44. Rubinacci A, Covini M, Bisogni C et al. Bone as an ion exchange system: evidence for a link between mechanotransduction and metabolic needs. Am J Physiol Endocrinol Metab 2002; 282(4):E851-E864

45. Reilly GC, Knapp Stemmer A, Niederer P et al. Investigation of the morphology of the lacunocanalicular system of corti cal bone using atomic force microscopy. Ann Biomed Eng 2001; 29(12):1074-1081

46. Докторов АА, Денисов-Никольский ЮИ. Особенности рельефа минерализованной поверхности лакун и канальцев в пластинчатой кости. Бюл. экспер мед 1993; (1):61-65

47. Lloyd SAJ, Donahue HJ. Gap junctions and biophysical regulation of bone cells. Clinic Rev Bone Miner Metab 2010; 8(4):189-200

48. Zhang D, Cowin SC, Weinbaum S. Electrical signal transmission and gap junction regulation in a bone cell network: a cable model for an osteon. Ann Biomed Eng, 1997; 25(2):357-374

49. Knapp F, Reilly GC, Stemmer A et al. Development of preparation methods for and insights obtained from atomic force microscopy of fluid spaces in cortical bone. Scanning 2002; 24(1):25-33

50. Ciovacco WA, Goldberg CG, Taylor AF et al. The role of gap junctions in megakaryocyte-mediated osteoblast proliferation and differentiation. Bone 2009; 44(1): 80-88

51. Baud CA. Morphologie et structure inframicroscopique des osteocytes. Acta Anat (Basel) 1962; (51):209-225

52. Remagen W, Caesar R, Heuck F. Elektronenmikroskopische und mikroradiographische Befunde am Knochen der mit Dihydrotachysterin behandelten Rattel. Virchows Arch Abt A Path Anat 1968; 345(3):245-254

53. Remagen W, Hohling HJ, Hall TA. Electron microscopical and microprobe observations on the cell sheath of stimulated osteocytes. Calc Tiss Res 1969; 4(1):60-68

54. Sharma D, Ciani C, Marin PAR et al. Alterations in the osteocyte lacunar-canalicular microenvironment due to estrogen deficiency. Bone 2012; 51(3):488-497

55. Li W., You L., Schaffler M.B., Wang L. The dependency of solute diffusion on molecular weight and shape in intact bone. Bone 2009; 45(5):1017-1023

56. Hillsley V, Frangos JA. Review: bone tissue engineering: the role of interstitial fluid flow. Biotechnology and Bioengineering 1994; 43(7):573-581

57. Fernandez-Seara MA, Wehrli SL, Wehrli FW. Diffusion of exchangeable water in cortical bone studied by nuclear magnetic resonance. Biophys J 2002; 82(1)Pt 1:522-529

58. Knothe Tate ML, Niederer P, Knothe U. In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading. Bone 1998; 22(2):107-117

59. Yang W, Kalajzic I, Lu Y et al. In vitro and in vivo study on osteocyte-specific mechanical signaling pathways. J Musculoskel Neuron Interact 2004; 4(4):386 - 387

60. Ajubi NE, Klein-Nulend J, Nijweide PJ et al. Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes-A cytoskeleton-dependent process. Biochemical and biophysical research communications 1996; 225(1131): 62-68

61. Bretscher A, Edwards K, Fehon RG. ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 2002; 3(8):586 - 599

62. Brighton CT, Fisher JRS, Levine SE. et al. The biochemical pathway mediating the proliferative response of bone cells to a mechanical stimulus. J Bone Joint Surg 1996; 78-A(9):1337-1347

63. Ishihara X Naruse YSK, Yamashiro T et al. In situ imaging of the autonomous intracellular Ca2+ oscillations of osteoblasts and osteocytes in bone. Bone 2012; 50(4):842-852

64. Lu XL, Huo B, Park M, Guo XE. Calcium response in osteocytic networks under steady and oscillatory fluid flow. Bone 2012; 51(3):466-473

65. Слуцкий ЛИ. Биохимия нормальной и патологически измененной костной ткани. Медицина, Л., 1969;375

66. Gouleta GC, Cooper DML, Coombe D, Zernicke RF. Influence of cortical canal architecture on lacunocanalicular pore pressure and fluid flow. Computer Methods Biomechanics Biomedical Engineering 2008; 11(4):379 - 387

67. Bershadsky AD, Balaban NQ, Geiger B. Adhesion-dependent cell mechanosensittvity. Annu Rev Cell Dev Biol 2003; 19:677-995

68. Mullender M., EI Haj A.J., Yang Y et al. Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med Biol Eng Comput 2004; 42(1):14-21

69. Tfelt-Hansen J, Brown EM. The calcium-sensing receptor in normal physiology and pathophysiology: a review. Critical Reviews in Clinical Laboratory Sciences 2005; 42(1):35-70

70. Аврунин АС, Паршин ЛК, Мельников БЕ. Критический анализ теории механостата. Часть II. Стабильность механо-метаболической среды скелета и гомеостатических параметров кальция организма. Травматология и ортопедия России 2013; 87(1):127-137

71. Orellana-Lezcano MF, Major PW, McNeil PL et al. Temporary loss of plasma membrane integrity in orthodontic tooth movement. Orthod Craniofac Res 2005; 8(2):106-113

72. Аврунин АС, Тихилов РМ. Остеоцитарное ремоделирование костной ткани: история вопроса, морфологические маркеры. Морфология 2011; 139(1):86-94 [Avrunin AS, Tihilov RM. Osteocitarnoe remodelirovanie kostnoj tkani: istorija voprosa, morfologicheskie markery. Morfologija 2011; 139(1):86-94]

73. Borle AB, Nichols N, Nichols G. Metabolic studies of bone in vitro I. Normal bone. J Biological Chemistry 1960; 235(4):1226-1210

74. Borle AB, Nichols N, Nichols G. Metabolic studies of bone in vitro. II. The metabolic patterns of accretion and resorption. J Biological Chemistry 1960; 235(4):1211-1214

75. Nichols G, Rogers P. Mechanisms for the transfer of calcium into and out of the skeleton. Pediatrics 1971; 47(1)Part II:211-228

76. Belanger LF. Osteocytic Osteolysis. Calcif Tissue Res 1969; Vol. 4(1):1-12

77. Alcobendas M, Baud CA, Castanet J. Structural changes of the periosteocytic area in vipera aspis (l.) (ophidia, viperidae) bone tissue in various physiological conditions. Calcif Tissue Int 1991; 49(1):53-57

78. Baud CA. Submicroscopic structure and functional aspects of the osteocyte. Clin Orthop Relat Res 1968; 56:227-236

79. Baud CA, Auil E. Osteocyte differential count in normal human alveolar bone. Acta anat (Basel) 1971; 78(3):321-327

80. Duriez J, Ghosez J-P, de Flautre B. La resorption ou lyse periosteocytaire єг son role possible dans la destruction du tissu osseux. La presse medicale 1965; 73(45):2581-2586

81. Jowsey J, Riggs BL. Mineral metabolism in osteocytes. Mayo Clinic Proceedings 1964; 39(7):480 - 484

82. Taylor TG, Belanger LF, The mechanism of bone resorption in laying hens. Calcif Tissue Res 1969; 4(2):162-173

83. Tazawa K, Hoshi K, Kawamoto S at al. Osteocytic osteolysis observed in rats to which parathyroid hormone was continuously administered. J Bone Miner Metab 2004; 22(6):524-529

84. Cowin SC. The significance of bone microstructure in mechanotransduction. J Biomech 2007; 40 Suppl 1:105 - 109.

85. Аврунин АС, Тихилов РМ, Шубняков ИИ и др. Критический анализ теории механостата. Часть I. Механизмы реорганизации архитектуры скелета. Травматология и ортопедия России 2012; 64(2):105-115

86. Schaffler MB, Burr DB. Stiffness of compact bone: Effects of porosity and density. J Biomech 1988; 21(1):13-16. Цит. по Martin RB

87. Martin RB. On the significance of remodeling space and activation rate changes in bone remodeling. Bone 1991; 12(6):391-400

88. O’Brien CA, Nakashima T, Takayanagi H. Osteocyte control of osteoclastogenesis. Bone 2013; 54(2):258-263

89. Emkey RD, Emkey GR. Calcium metabolism and correcting calcium deficiencies. Endocrinol Metab Clin North Am 2012; 41(3):527-556

90. Teti A, Zallone A. Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone 2009; 44(1):11-16

91. Aubert J-P, Bronner F, Richelle LJ. Quantitation of calcium metabolism. Theory J Clinical Investigation 1963; 42(6):885 - 897

92. Tomlinson RWS, Wall M, Osbobn SB, Anderson J. Radiocalcium studies in normal subjects cab. Calcif Tissue Res 1967; 1(3):197 - 203

93. Bronner F, Lemaike R. Comparison of calcium kinetics in man and the rat. Calcif Tissue Res 1969; 3(3):238-248

94. Bronner F, Harris RS, Maletskos CJ, Benda CE. Studies in calcium metabolism. The fate of intravenously injected radiocalcium in human beings. J Clin Jnvest 1956; 35(1):78-88

95. Bronner F, Richellef LJ, Saville PD et al. Quantitation of calcium metabolism in postmenopausal osteoporosis and in scoliosis. J Clinical Investigation 1963; 42(6):898-905

96. Arnold JS, Jee WSS, Johnson K. Observations and quantitative radioautographic studies of calcium48 deposited in vivo in forming haveesian systems and old bone of rabbit. American J Anatomy 1956; 99(2):291 - 313

97. Аврунин АС, Паршин ЛК. Иерархическая организация механизмов обмена кальция между костью и кровью. Морфология 2013; 143(1):76-84

98. Burr DB, Martin RB. Errors in bone remodeling: toward a unified theory of metabolic bone disease. Am J Anat 1989; 186(2):186 - 216

99. Аврунин АС, Тихилов РМ, Шубняков ИИ. Медицинские и околомедицинские причины высокого внимания общества к проблеме потери костной массы. Анализ динамики и структуры публикаций по остеопорозу. Гений ортопедии 2009; (3):59-66

100. Staub JF, Tracqui P, Brezillon P et al. Calcium metabolism in the rat: a temporal self-organized model. Am J Physiol 1988; 254(1 Pt 2):134-149

101. Dempster D. W. Ремоделирование кости. В: Остеопороз. Этиология, диагностика, лечение. БИНОМ, НЕВСКИЙ ДИАЛЕКТ, СПб., 2000;85-108

102. Tanaka X, Nakayamada S, Okada Y. Osteoblasts and osteoclasts in bone remodeling and inflammation current drug targets. Curr Drug Targets Inflamm Allergy 2005; 4(3):325-328

103. Baron R. Molecular mechanisms of bone resorption. Acta Orthop Scand Suppl 1995; 66(266):66-70

104. Hollberg K, Marsell R, Norgard M et al. Osteoclast polarization is not required for degradation of bone matrix. in rachitic FGF23 transgenic mice. Bone 2008; 42(6): 1111-1121

105. Berger CEM, Rathod H, Gillespie JI et al. Scanning electrochemical microscopy at the surface of bone-resorbing osteoclasts: evidence for steady-state disposal and intracellular functional compartmentalization of calcium. J bone miner res 2001; 16(11):2092 - 2102

106. Anumula S, Magland J, Wehrlib SL et al. Multi-modality study of the compositional and mechanical implications of hypomineralization in a rabbit model of osteomalacia. Bone 2008; 42(2):405-413

107. Brown EM. The extracellula Ca2+-sensing receptor central mediator of systemic calcium homeostasis. Annu Rev Nutr 2000; 20:507-533

108. Belanger LF, Robichon J. Parathormone-induced osteolysis in dogs: a microradiographic and alpharadiographic survey. J Bone Joint Surg 1964; 46-A(5):1008-1012

109. Whitfield JF, Morley P, Willick GE. Parathyroid hormone, its fragments and their analogs for the treatment of osteoporosis. Treat Endocrinol. 2002; 1(3):175-190

110. Sun X, McLamore E, Kishore V et al. Mechanical stretch induced calcium efflux from bone matrix stimulates osteoblasts. Bone 2012; 50(3):581-591

111. Frost H.M. In vivo osteocyte death. J Bone Joint Surg Am 1960; 42-A(1):138-143

112. Carpentier VT, Wong J, Yeap Y et al. Increased proportion of hypermineralized osteocyte lacunae in osteoporotic and osteoarthritic human trabecular bone: Implications for bone remodeling. Bone 2012; 50(3), 688-694

113. Frost HM. Micropetrosis. J Bone Joint Surg Am 1960; 42-A(1):144-150

114. Skerry TM, Suva LJ. Investigation of the regulation of bone mass by mechanical loading: from quantitative cytochemistry to gene array. Cell Biochem Funct 2003; 21(3):223-229

115. Levey AS, Coresh J. Chronic kidney disease. Lancet 2012; 379(9811):165-180

116. Wu M, Fannin J, Rice KM et al. Effect of aging on cellular mechanotransduction. Ageing Res Rev 2011; 10(1):1-15

117. Turner CH., Takano Y, Owan I. Aging changes mechanical loading thresholds for bone formation in rats. J Bone Miner Res 1995; 10(10):1544-1549

118. Frost H. M. A unique histological feature of vitamin D resistant rickets observed in four cases. Acta Orthop Scand 1963; 33:220-226

119. Lane NE, Wei Yao, Balooch M et al. Glucocorticoid-treated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo-treated or estrogen-deficient mice. J Bone Miner Res 2006; 21(3):466-476

120. Bushinsky DA. Acid-base imbalance and the skeleton. Eur J Nutr 2001; 40(5):238-244

121. Simon EE, Hamm LL. A basic approach to CKD. Kidney Int 2010; 77(7):567-569

122. Kraut JA, Madias NE. Consequences and therapy of the metabolic acidosis of chronic kidney disease. Pediatr Nephrol 2011, 26(1):19-28

123. Lemann J, Adams ND, Wilz DR, Brenes LG. Acid and mineral balances and bone in familial proximal renal tubular acidosis. Kidney Int 2000; 58(3):1267-1277

124. Данильченко С.Н. Структура и свойства апатитов кальция с точки зрения биоминералогии и биоматериаловедения (обзор). Вісник СумДУ. Серія фізика, математика, механіка 2007; (2):33-59

125. Krieger NS, Bushinsky DA, Frick KK. Cellular mechanisms of bone resorption induced by metabolic acidosis. Semin Dial 2003; 16(6):463-466

126. Bushinsky DA, Sessler NE, Glena RE, Featherstone JD. Proton-induced physicochemical calcium release from ceramic apatite disks. J Bone Miner Res. 1994; 9(2):213-220

127. Pereira RC, Jmppner H, Azucena-Serrano CE, et al. Patterns of FGF-23, DMP1, and MEPE expression in patients with chronic kidney disease. Bone 2009; 45(6):1161-1168

128. Isakova T, Wahl P, Vargas GS et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 2011; 79(12):1370-1378

129. Аврунин А.С., Леонтьева Н.В. Расчетное моделирование и возможность неинвазивной оценки параметров минерального обмена между костными структурами и циркулирующими жидкостями. Нефрология 2013; 17(6):80-89

130. Корнилов НВ, Аврунин АС, Синюкова ИВ, Каземирский ВЕ. Биоритмы обменных процессов в костной ткани и диагностическая ценность двойной фотонной рентгеновской абсорбциометрии. Вестн травматол и ортопед им. Н.Н. Приорова. 1999; (4):52-56

131. Аврунин АС, Корнилов НВ, Суханов АВ, Паршин ВА. Ремоделирование кортикального слоя большеберцовой кости после остеотомии бедренной на той же конечности. Морфология 1999; 116(6):48-54

132. Аврунин АС, Тихилов PM, Шубников ИИ, Емельянов ВГ. Неинвазивный клинический метод оценки остеоцитарного ремоделирования. Новые возможности двух энергетической рентгеновской абсорбциометрии. Ортопед, травматол и протезирование. 2008; (2):67-74


Рецензия

Для цитирования:


Аврунин А.С., Леонтьева Н.В., Докторов А.А. АДАПТАЦИОННЫЕ ПРОЦЕССЫ В КОСТНОЙ ТКАНИ -ЭЛЕМЕНТ ПАТОГЕНЕЗА НАРУШЕНИЙ МИНЕРАЛЬНОГО И КОСТНОГО ОБМЕНА ПРИ ХРОНИЧЕСКОЙ БОЛЕЗНИ ПОЧЕК. Нефрология. 2015;19(4):17-28.

For citation:


Avrunin A.S., Leontyeva N.V., Doctorov A.A. BONE TISSUE ADAPTATION PROCESSES AS AN ELEMENT OF DISORDERS MINERAL AND BONE METABOLISM PATHOGENESIS IN CHRONIC KIDNEY DISEASE. Nephrology (Saint-Petersburg). 2015;19(4):17-28. (In Russ.)

Просмотров: 574


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)