Preview

Нефрология

Расширенный поиск

ПОЧЕЧНЫЕ ГЕМОДИНАМИЧЕСКИЕ МЕХАНИЗМЫ ФОРМИРОВАНИЯ ГИПЕРТОНИЧЕСКОЙ НЕФРОПАТИИ

https://doi.org/10.24884/1561-6274-2009-13-4-28-36

Полный текст:

Аннотация

В обзоре рассматриваются современные представления о механизмах развития и прогрессирования гипертонической нефропатии, которая является одной из главных причин хронической болезни почек. Гипертоническая нефропатия является следствием нарушения работы почечных гемодинамических механизмов, защищающих клубочки от повреждающего действия повышенного артериального давления (АД). В результате в почках развиваются два принципиально разных патологических процесса – ишемическое и гипертрофическое повреждение клубочков, которые ведут к формированию фокально-сегментарного гломерулосклероза и нарастающей потере почечной функции. Причиной первого из них является избыточная ауторегуляторная реакция, осложняющаяся обструктивным гиалинозом афферентных артериол, ишемическим повреждением клубочков и потерей части функционирующих нефронов. Одновременно с ишемическим повреждением почек в сохранившихся нефронах развивается компенсаторный по своей природе феномен гиперфильтрации, ведущий к потере почечной ауторегуляции и стойкой гломерулярной гипертензии, которая становится главным фактором дальнейшего прогрессирования повреждения клубочков. В результате этих гемодинамических нарушений в почках развивается гипертрофический (пролиферативный) гломерулосклероз. Ключевую роль в его формировании играет гиперактивность клеточной РАС подоцитов, которая сопровождается избыточной продукцией TGF-β1 , VEGF и PDGF, вызывающих профибротическую структурно-функциональную перестройку подоцитов и мезангиальных клеток клубочков. Существенный вклад в этот патологический процесс вносит также прямое механическое повреждение подоцитов и мезангиальных клеток, способствующее их склеротическому перерождению и развитию воспалительной реакции в окружающей мезангиальной ткани.

Об авторах

О. Б. Кузьмин
Оренбургская государственная медицинская академия
Россия

кафедра фармакологии

460040, Оренбург, тел.: (3532) 77­ 49-66



Н. В. Бучнева
Оренбургская государственная медицинская академия
Россия

кафедра фармакологии



М. О. Пугаева
Оренбургская государственная медицинская академия
Россия

кафедра фармакологии



Список литературы

1. Бикбов БТ, Томилина НА. Состояние заместительной терапии больных с хронической почечной недостаточностью в Российской Федерации в 1998–2005 гг. (Отчет по данным регистра Российского диализного общества). Нефрология и диализ 2007; 9 (1): 6-85

2. Bidani AK, Griffin KA. Long-term renal consequences of hypertension for normal and diseased kidney. Curr Opin Nephrol Hypertens 2002; 11 (1): 73-80

3. Kriz W, Eberhard E, Nobiling R et al. A role podocytes to counteract capillary wall distension. Kidney Int 1994; 45 (2): 369-376

4. Loutzenhiser R, Griffin K, Williamson G, Bidani A. Renal autoregulation: new perspectives regarding the protective and regulatory roles of the underlying mechanisms. Am J Physiol Regul 2006; 290 (5): R1153-R1167

5. Just A. Mechanisms of renal blood flow autoregulation: dynamics and contributions. Am J Physiol Regul 2007; 292 (1): R1-R17

6. Brannstrom K, Morsing P, Arendshort WJ. Exaggerated tubuloglomerular feedback activity in genetic hypertension is mediated by Ang II and AT1 receptor. Am J Physiol Renal 1996; 270 (5): F749-F755

7. Karlsen FM, Leyssac PP, Holstein-Rathlon NH. Tubuloglomerular feedback in Dahl rats. Am J Physiol Regul 1998; 274 (6): R1561-R1569

8. Takabatake T, Ushioqi Y, Ohta K. Hattory N. Attenuation of enhanced tubuloglomerular feedback activity in SHR by renal denervation. Am J Physiol Renal 1990; 258 (4, Pt 2): F980-F985

9. Churg J, Sobin CH. Benign nephrosclerosis. In: Churg J ed. Renal disease – classification and atlas of glomerular diseases. Igaku-Shoin, Tokio, 1982; 211-224

10. Raij L. The pathophysiologic basis for blocking the renin-angiotensin system in hypertensive patients with renal disease. Am J Hypertens 2005; 18 [suppl 4s]: 95s-99s

11. Hills GS, Heudes D, Jacquot C et al. Morphometric evidence for impairment of renal autoregulation in advanced essential hypertension. Kidney Int 2006; 69 (5): 823-831

12. Cortes P, Zhao X, Riser BL, Narins RG. Regulation of glomerular volume in normal and partially nephrectomized rats. Am J Physiol Renal 1996; 270 (2, Pt 2): F356-F370

13. Friedrich C, Endlich N, Kriz W, Endlich K. Podocytes are sensitive to fluid shear stress in vitro. Am J Physiol Renal 2006; 291 (4): F856-F865

14. Seikaky MG, Arant BS, Seney FD. Endogenous angiotensin concentrations in special intrarenal fluid compartments in the rat. J Clin Invest 1990; 86 (9): 1352-1357

15. Velez JCQ, Bland AM, Arthur J et al. Characterization of renin-angiotensin system enzyme activities in cultured podocytes. Am J Physiol Renal 2007; 293 (1): F398-F407

16. Wang L, Flannery PJ, Spurney RF. Characterization of angiotensin II-receptor subtypes in podocytes. J Lab Clin Med 2003; 142 (5): 313-321

17. Liebau MC, Lang D, Bohm J et al. Functional expression of the renin-angiotensin system in human podocytes. Am J Physiol Renal 2006; 290 (3): F710-F719

18. Singh R, Singh AK, Alavi N, Leechy D. Mechanism of increased angiotensin II levels in glomerular mesangial cells cultured in high glucose. J Am Soc Nephrol 2003; 14 (4): 873-880

19. Ardaillou R, Chansel D, Chatziantoniou C, Dussaule JC. Mesangial AT1 receptors: expression, signaling and regulation. J Am Soc Nephrol 1999; 10 [suppl 11]: S40-S46

20. Goto M, Mukoyama M, Sugawara A et al. Expression and role of angiotensin II type 2 receptor in the kidney and mesangial cells of spontaneously hypertensive rats. Hypertens Res 2002; 25 (1): 125-133

21. Durvasula RV, Petermann AT, Hiromura K et al. Activation of local tissue angiotensin system in podocytes by mechanical strain. Kidney Int 2004; 65 (1): 30-39

22. Becker BN, Yasuda T, Kondo S et al. Mechanical stretch/relaxation stimulates a cellular renin-angiotensin system in cultured rat mesangial cells. Nephron Exp Nephrol 1998; 6 (1): 57-66

23. Gruden J, Thomas S, Burt D et al. Interaction of angiotensin II and mechanical stretch on vascular endothelial growth factor production by human mesangial cells. J Am Soc Nephrol 1999; 10 (3): 730-737

24. Hoffman S, Podlich D, Hahnel B et al. Angiotensin II type I receptor overexpression in podocytes induces glomerulosclerosis in transgenic rats. J Am Soc Nephrol 2004; 15 (6): 1475-1487

25. Obata J, Nakamura T, Takano H et al. Increased gene expression of components of the renin-angiotensin system in glomeruli of genetically hypertensive rats. J Hypertens 2000; 18 (9): 1247-1255

26. Kang YS, Park YJ, Kim BK. Angiotensin II stimulates the synthesis of vascular endothelial growth factor through the p38 mitogen activated protein kinase pathway in cultured mouse podocytes. J Mol Endocrinol 2006; 36 (2): 377-378

27. Liy Y, Kang YS, Dai C et al. Epithelial-to-mesenchymal transition is a potential pathway to podocytes dysfunction and proteinuria. Am J Pathol 2008; 172 (2): 299-308

28. Ding G, Reddy K, Kapasi AA et al. Angiotensin II induces apoptosis in rat glomerular epithelial cells. Am J Physiol Renal 2002; 283 (1): F173-F180

29. Lai XX, Ding GH, Haang CX et al. Angiotensin II-induced podocytes apoptosis: a role of MAPK subtypes. Beijing Da Xue Bao 2004; 36 (2): 131-134

30. Shu S, Liu Y, Wang L, Meng QH. Transforming growth factor-beta 1 is associated with kidney damage in patients with essential hypertension: renoproctive effect of ACE inhibitor and/or angiotensin II receptor blocker. Nephrol Dial Transplant 2008; 23 (9): 2841-2846

31. Hirschberg R, Wang S, Mitu GM. Functional symbiosis between endothelium and epithelial cells in glomeruli. Cell Tissue Res 2008; 331 (2): 485-493

32. Eremina V, Baedle HJ, Quaggin SE. Role of the VEGF-signaling pathway in the glomerulus: evidence for crosstalk between components of glomerular filtration barrier. Nephron Physiol 2007; 106 (2): 32-37

33. Guan F, Villegas G, Teichman J et al. Autocrine VEGF-A system in podocytes regulates podocin and its interaction with CD2AP. Am J Physiol Renal 2006; 291 (2): F422-F428

34. Eremina V, Cui S, Gerber H et al. Vascular endothelial growth factor signaling in the podocytes-endothelial compartment is required for mesangial cell migration and survival. J Am Nephrol 2006; 17 (3): 724-735

35. Chen S, Lee JS, Iglesias-de la Cruz MC et al. Angiotensin II stimulates alpha3 (IV) collagen production in mouse podocytes via TGF-beta and VEGF signaling: implication for diabetic nephropathy. Nephrol Dial Transplant 2005; 20 (7): 1320-1328

36. Thomas S, Vanuystel J, Gruden G et al. Vascular endothelial growth factor receptors in human mesangium in vitro and in glomerular disease. J Am Soc Nephrol 2000; 11 (7): 1236-1243

37. Amamiya T, Sasamura H, Mifune M et al. Vascular endothelial growth factor activates MAP kinase and enhances collagen synthesis in human mesangial cells. Kidney Int 1999; 56 (6): 2055-2063

38. Liu E, Marimoto M, Kitajima S et al. Increased expression of vascular endothelial growth factor in kidney leads to progressive impairment of glomerular function. J Am Soc Nephrol 2007; 18 (7): 2094-2104

39. Yamauchi T, Ogura T, Oishi T et al. The angiotensin 1-converting enzyme inhibitor cilazapril inhibits the platelet-derived growth factor B chain expression in glomeruli of spontaneously hypertensive rats. Ren Physiol Biochem 1995; 18 (5): 237-245

40. Higueruelo S, Romero R. Angiotensin II requires PDGF-BB to induce DNA synthesis in rat mesangial cells cultured in exogenous insulin free medium. Nephrol Dial Transplant 1997; 12 (4): 694-700

41. Floege J, Eitner F, Alpers CE. A new look at platelet-derived growth factor in renal disease. J Am Soc Nephrol 2008; 19 (1): 12-23

42. Kretzler M. Regulation of adhesive interaction between podocytes and glomerular basement membrane. Microsc Res Tech 2002; 57 (4): 247-253

43. Dai C, Stolz DB, Bastacky Si et al. Essential role of integrin-linked kinase in podocytes biology: bridging the integrin and slit diaphragm signaling. J Am Soc Nephrol 2006; 17 (8): 2164-2175

44. Dessapt CBM, Hayward A, Viberti G, Gnudi L. TGF-β 1 and mechanical stretch reduce murine podocytes adhesion to extracellular matrix substrate and modulate β1 integrin expression/ maturation in vitro. Diabetologia 2005; [suppl 1]: A28 (abstract)

45. Kanasaki K, Kanda Y, Palmsten K et al. Integrin beta1-mediated matrix assembly and signaling are critical for the normal development and function of kidney glomerulus. Dev Biol 2008; 313 (2): 584-593

46. Riser BL, Ladson-Wofford S, Sharba A et al. TGF-beta receptor expression and binding in rat mesangial cells: modulation by glucose and cyclic mechanical strain. Kidney Int 1999; 56 (2): 428-439

47. Gruden G, Zonca S, Hayward A et al. Mechanical stretch-induced fibronectin and transforming growth factor-beta 1 production in human mesangial cells is p38 mitogen-activated protein kinase dependent. Diabetes 2000; 49 (4): 655-661

48. Harris RC, Haralson MA, Badr KF. Continuous stretch-relaxation in culture alters rat mesangial cell morphology, growth characteristics and metabolic activity. Lab Invest 1992; 66 (3): 548-554

49. Riser BL, Cortes P, Zhao X et al. Intraglomerular pressure and mesangial stretching stimulate extracellular matrix formation in the rat. J Clin Invest 1992; 90 (5): 1932-1943

50. Yasuda T, Kondo S, Homma T, Harris RC. Regulation of extracellular matrix by mechanical stress in rat glomerular mesangial cells. J Clin Invest 1996; 98 (9): 1991-2000

51. Heilig CW, Concepcion LA, Riser BL et al. Overexpression of glucose transporters in rat mesangial cells cultured in normal glucose milieu mimics diabetic phenotype. J Clin Invest 1995; 96 (8): 1802-1814

52. Chen S, Heilig KO, Brosius FC, Heilig CW. Diabetes increases glomerular GLUT1 and antisense-GLUT1 protects against diabetic glomerulosclerosis (Abstract). J Am Soc Nephrol 2003; 14: 46A

53. Gnudi L, Viberti G, Raij L et al. GLUT-1 overexpression: link between hemodynamic and metabolic factors in glomerular injury? Hypertension 2003; 42 (1): 19-24

54. Gnudi L, Viberti G. The link between mechanical stretch and glucose metabolism – a conceptual advance in understanding diabetic (and nondiabetic?) renal disease. Nephrol Dial Transplant 2007; 22 (2): 318-321

55. Gruden G, Setti G, Hayward A et al. Mechanical stretch induces monocyte chemoattractant activity via an NF-kappa B-dependent monocyte chemoattractant protein-1-mediated pathway in human mesangial cells: inhibition by rosiglitazone. J Am Soc Nephrol 2005; 16 (3): 688-696

56. Riser BL, Varani J, Cortes P et al. Cyclic stretching of mesangial cells up-regulated intercellular adhesion molecule-1 and leukocyte adherence: a possible new mechanism for glomerulosclerosis. Am J Pathol 2001; 158 (1): 11-17

57. Giunti S, Pinach S, Arnoldi L et al. The MCP/CCR2 system has direct proinflammatory effects in human mesangial cells. Kidney Int 2006; 69 (5): 856-863

58. Giunti S, Tesch GH, Pinach S et al. Monocyte chemoattractant protein-1 has prosclerotic effects both in a mouse model of experimental diabetes and in vitro in human mesangial cells. Diabetologia 2008; 51 (1): 198-207

59. Park J, Ryu S, Li JJ et al. MCP/CCR2 system is involved in high glucose-induced fibronectin and type IV collagen expression in cultured mesangial cells. Am J Physiol Renal 2008; 295 (3): F749-F757


Для цитирования:


Кузьмин О.Б., Бучнева Н.В., Пугаева М.О. ПОЧЕЧНЫЕ ГЕМОДИНАМИЧЕСКИЕ МЕХАНИЗМЫ ФОРМИРОВАНИЯ ГИПЕРТОНИЧЕСКОЙ НЕФРОПАТИИ. Нефрология. 2009;13(4):28-36. https://doi.org/10.24884/1561-6274-2009-13-4-28-36

For citation:


Kuzmin O.B., Buchneva N.V., Pugaeva M.O. RENAL HEMODYNAMIC MECHANISMS DEVELOPMENT OF THE HYPERTENSIVE NEPHROPATHY. Nephrology (Saint-Petersburg). 2009;13(4):28-36. (In Russ.) https://doi.org/10.24884/1561-6274-2009-13-4-28-36

Просмотров: 138


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)