Preview

Nephrology (Saint-Petersburg)

Advanced search

PODOCYTE PATHOLOGY AND NEPHROPATHY - SPHINGOLIPIDS IN GLOMERULAR DISEASES

Abstract

Sphingolipids are components of the lipid rafts in plasma membranes, which are important for proper function of podocytes, a key element of the glomerular filtration barrier. Research revealed an essential role of sphingolipids and sphingolipid metabolites in glomerular disorders of genetic and non-genetic origin. The discovery that glucocerebrosides accumulate in Gaucher disease in glomerular cells and are associated with clinical proteinuria initiated intensive research into the function of other sphingolipids in glomerular disorders. The accumulation of sphingolipids in other genetic diseases including Tay-Sachs, Sandhoff, Fabry, hereditary inclusion body myopathy 2, Niemann-Pick, and nephrotic syndrome of the Finnish type and its implications with respect to glomerular pathology will be discussed. Similarly, sphingolipid accumulation occurs in glomerular diseases of non-genetic origin including diabetic kidney disease (DKD), HIV-associated nephropathy, focal segmental glomerulosclerosis (FSGS), and lupus nephritis. Sphingomyelin metabolites, such as ceramide, sphingosine, and sphingosine-1-phosphate have also gained tremendous interest. We recently described that sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b) is expressed in podocytes where it modulates acid sphingomyelinase activity and acts as a master modulator of danger signaling. Decreased SMPDL3b expression in post-reperfusion kidney biopsies from transplant recipients with idiopathic FSGS correlates with the recurrence of proteinuria in patients and in experimental models of xenotransplantation. Increased SMPDL3b expression is associated with DKD. The consequences of differential SMPDL3b expression in podocytes in these diseases with respect to their pathogenesis will be discussed. Finally, the role of sphingolipids in the formation of lipid rafts in podocytes and their contribution to the maintenance of a functional slit diaphragm in the glomerulus will be discussed.

About the Authors

Sandra Merscher
Университет Майами
United States


Alessia Fornoni
Университет Майами
United States


References

1. McIlwain H. The second thudichum lecture. Cerebral isolates and neurochemical discovery. Biochem Soc Trans 1975; (3): 579-590

2. Pavenstadt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev 2003; (83): 253-307

3. Somlo S, Mundel P. Getting a foothold in nephrotic syndrome. Nat Genet 2000; (24): 333-335

4. Faul C, Asanuma K, Yanagida-Asanuma E, Kim K, Mundel P. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol 2007; (17): 428-437

5. Kestilä M, Lenkkeri U, Männikkö M, Lamerdin J, McCready P, Putaala H, et al. Positionally cloned gene for a novel glomerular protein - nephrin - is mutated in congenital nephrotic syndrome. Mol Cell 1998; (1): 575-582

6. Boute N, Gribouval O, Roselli S et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 2000; (24):349-354

7. Li C, Ruotsalainen V, Tryggvason K et al. CD2AP is expressed with nephrin in developing podocytes and is found widely in mature kidney and elsewhere. Am J Physiol Renal Physiol 2000; (279): 785-792

8. Winn MP, Conlon PJ, Lynn KL et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 2005; (308): 1801-1804

9. Kaplan JM, Kim SH, North KN et al. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet 2000; (24): 251-256

10. Goni FM, Alonso A. Effects of ceramide and other simple sphingolipids on membrane lateral structure. Biochim Biophys Acta 2009; (1788): 169-177

11. van Blitterswijk WJ, van der Luit AH, Veldman RJ et al. Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem J 2003; (369): 199-211

12. Zhang X Li X, Becker KA, Gulbins E. Ceramide-enriched membrane domains - structure and function. Biochim Biophys Acta 2009; (1788): 178-183

13. Olivera A, Spiegel S. Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 1993; (365): 557-560

14. Kaipia A, Chun SY Eisenhauer K, Hsueh AJ. Tumor necrosis factor-alpha and its second messenger, ceramide, stimulate apoptosis in cultured ovarian follicles. Endocrinology 1996; (137): 4864-4870

15. Merrill AH. Ceramide: a new lipid «second messenger»? Nutr Rev 1992; (50): 78-80

16. Nagiec MM, Wei ls GB, Lester RL, Dickson RC. A suppressor gene that enables Saccharomyces cerevisiae to grow without making sphingolipids encodes a protein that resembles an Escherichia coli fatty acyltransferase. J Biol Chem 1993; (268): 22156-22163

17. Merrill AH Jr. De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J Biol Chem 2002; (277): 25843-25846

18. Mondai S, Mukhopadhyay C. Molecular level investigation of organization in ternary lipid bilayer: a computational approach. Langmuir 2008; (24): 10298-10305

19. Hall A, Rog T, Karttunen M, Vattulainen I. Role of glycolipids in lipid rafts: a view through atomistic molecular dynamics simulations with galactosylceramide. J Phys Chem B 2010; (114):7797-7807

20. Hakomori S. Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem 1990; (265): 18713-18716

21. Shayman JA, Radin NS. Structure and function of renal glycosphingolipids. Am J Physiol 1991; (260): 291-302

22. Iwamori M, Shimomura J, Tsuyuhara S, Nagai Y Gangliosides of various rat tissues: distribution of ganglio-N-tetraose-containing gangliosides and tissue-characteristic composition of gangliosides. J Biochem 1984; (95): 761-770

23. Saito M, Sugiyama K. Gangliosides in rat kidney: composition, distribution, and developmental changes. Arch Biochem Biophys 2001; (386): 11-16

24. Hoon DS, Okun E, Neuwirth H et al. Aberrant expression of gangliosides in human renal cell carcinomas. J Urol 1993; (150): 2013-2018

25. Reivinen J, Holthofer H, Miettinen A. A cell-type specific ganglioside of glomerular podocytes in rat kidney: an O-acetylated GD3. Kidney Int 1992; (42): 624-631

26. Holthofer H, Reivinen J, Miettinen A. Nephron segment and cell-type specific expression of gangliosides in the developing and adult kidney. Kidney Int 1994; (45): 123-130

27. Barton NW, Brady RO, Dambrosia JM et al. Replacement therapy for inherited enzyme deficiency - macrophage-targeted glucocerebrosidase for Gaucher’s disease. N Engl J Med 1991; (324): 1464-1470

28. Barton NW, Furbish FS, Murray GJ et al. Therapeutic response to intravenous infusions of glucocerebrosidase in a patient with Gaucher disease. Proc Natl Acad Sci U S A 1990; (87): 1913-1916

29. Weinreb NJ, Charrow J, Andersson HC et al. Effectiveness of enzyme replacement therapy in 1028 patients with type 1 Gaucher disease after 2 to 5 years of treatment: a report from the Gaucher registry. Am J Med 2002; (113): 112-119

30. Lukina E, Watman N, Arreguin EA et al. A phase 2 study of eliglustat tartrate (Genz-112638), an oral substrate reduction therapy for Gaucher disease type 1. Blood 2010; (116): 893-899

31. Chander PN, Nurse HM, Pirani CL. Renal involvement in adult Gaucher’s disease after splenectomy. Arch Pathol Lab Med 1979; (103): 440-445

32. Vaccaro AM, Motta M, Tatti M et al. Saposin C mutations in Gaucher disease patients resulting in lysosomal lipid accumulation, saposin C deficiency, but normal prosaposin processing and sorting. Hum Mol Genet 2010; (19): 2987-2997

33. Sun X Witte DP, Zamzow M et al. Combined saposin C and D deficiencies in mice lead to a neuronopathic phenotype, glucosylceramide and alpha-hydroxy ceramide accumulation, and altered prosaposin trafficking. Hum Mol Genet 2007; (16): 957-971

34. Sandhoff K, Andreae U, Jatzkewitz H. Deficient hexoza-minidase activity in an exceptional case of Tay-Sachs disease with additional storage of kidney globoside in visceral organs. Life Sci 1968; (7): 283-288

35. Tatematsu M, Imaida K, Ito N et al. Sandhoff disease. Acta Pathol Jpn 1981; (31): 503-512

36. Sango K, Yamanaka S, Hoffmann A et al. Mouse models of Tay-Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nat Genet 1995; (11): 170-176

37. Nance CS, Klein CJ, Banikazemi M et al. Later-onset Fabry disease: an adult variant presenting with the cramp-fasciculation syndrome. Arch Neurol 2006; (63):453-457

38. Krüger R, Bruns K, Grünhage S et al. Determination of globotriaosylceramide in plasma and urine by mass spectrometry. Clin Chem Lab Med 2010; (48): 189-198

39. Young E, Mills K, Morris P et al. Is globotriaosylceramide a useful biomarker in Fabry disease? Acta Paediatr Suppl 2005; (94): 51-54; discussion 37-58

40. Gold H, Mirzaian M, Dekker N, et al. Quantification of globotriaosylsphingosine in plasma and urine of fabry patients by stable isotope ultraperformance liquid chromatography-tandem mass spectrometry. Clin Chem 2012; (59): 547-556

41. Auray-Blais C, Ntwari A, Clarke JT, et al. How well does urinary lyso-Gb3 function as a biomarker in Fabry disease? Clin Chim Acta 2010; (411): 1906-1914

42. Askari H, Kaneski CR, Semino-Mora C, et al. Cellular and tissue localization of globotriaosylceramide in Fabry disease. Virchows Arch 2007; (451): 823-834

43. Alroy J, Sabnis S, Kopp JB. Renal pathology in Fabry disease. J Am Soc Nephrol 2002; 13[Suppl 2]: 134-138

44. Thurberg BL, Rennke H, Colvin RB et al. Globotriaosylceramide accumulation in the Fabry kidney is cleared from multiple cell types after enzyme replacement therapy. Kidney Int 2002; (62): 1933-1946

45. Najafian B, Svarstad E, Bostad L et al. Progressive podocyte injury and globotriaosylceramide (GL-3) accumulation in young patients with Fabry disease. Kidney Int 2011; (79): 663-670

46. Quinta R, Rodrigues D, Assunçâo M, et al. Reduced glucosylceramide in the mouse model of Fabry disease: correction by successful enzyme replacement therapy. Gene 2014; (536): 97-104

47. Prabakaran T, Nielsen R, Larsen JV, et al. Receptor-mediated endocytosis of alpha-galactosidase A in human podocytes in Fabry disease. PLoS One (2011) (6): 25-65.

48. Liebau MC, Braun F, Höpker K, et al. Dysregulated autophagy contributes to podocyte damage in Fabry’s disease. PLoS One 2013 (8): 635-636

49. Keppler OT, Hinderlich S, Langner J, et al. UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation. Science 1999; (284): 1372-1376

50. Galeano B, Klootwijk R, Manoli I et al. Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine. J Clin Invest 2007; (117): 1585-1594

51. Ito M, Sugihara K, Asaka T et al. Glycoprotein hyposialylation gives rise to a nephrotic-like syndrome that is prevented by sialic acid administration in GNE V572L point-mutant mice. PLoS One 2012; (7): 29873

52. Samuelsson K, Zetterstrom R. Ceramides in a patient with lipogranulomatosis (Farber’s disease) with chronic course. Scand J Clin Lab Invest 1971; (27): 393-405

53. Brière J, Calman F, Lageron A et al. Adult Niemann-Pick disease: a 26 years follow-up. Report of a case with isolated visceral involvement, excess of tissue sphingomyelin, and deficient sphingomyelinase activity (author’s transl). Nouv Rev Fr Hematol Blood Cells 1976; (16): 185-202

54. Kuemmel TA, Thiele J, Schroeder R, Stoffel W. Pathology of visceral organs and bone marrow in an acid sphingomyelinase deficient knock-out mouse line, mimicking human Niemann-Pick disease type A. A light and electron microscopic study. Pathol Res Pract 1997; (193): 663-671

55. Miranda SR, He X, Simonaro CM, et al. Infusion of recombinant human acid sphingomyelinase into Niemann-pick disease mice leads to visceral, but not neurological, correction of the pathophysiology. FASEB J 2000; (14): 1988-1995

56. Haltia A, Solin ML, Jalanko H et al. Sphingolipid activator proteins in a human hereditary renal disease with deposition of disialogangliosides. Histochem J 1996; (28): 681-687

57. Tamaoki A, Kikkawa Y. The role of sulfatides in autoimmunity in children with various glomerular disease. Nihon Jinzo Gakkai Shi 1991; (33): 1045-1054

58. Twfeek DM, Zaki SM. Role of tumour necrosis factor alpha and CD95 as markers of apoptosis in pathogenesis of pediatrics renal diseases. Egypt J Immunol 2005; (12): 155-165

59. De Maria R, Lenti L, Malisan F et al. Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. Science 1997; (277): 1652-1655

60. De Maria R, Rippo MR, Schuchman EH, Testi R. Acidic sphingomyelinase (ASM) is necessary for fas-induced GD3 ganglioside accumulation and efficient apoptosis of lymphoid cells. J Exp Med 1998; (187): 897-902

61. Cifone MG, De Maria R, Roncaioli P et al. Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J Exp Med 1994; (180): 1547-1552

62. Omran OM, Saqr HE, Yates AJ. Molecular mechanisms of GD3-induced apoptosis in U-1242 MG glioma cells. Neurochem Res 2006; (31): 1171-1180

63. Wiegmann K, Schwandner R, Krut O et al. Requirement of FADD for tumor necrosis factor-induced activation of acid sphingomyelinase. J Biol Chem 1999; (274): 5267-5270.

64. Aguilar RP, Genta S, Sanchez S. Renal gangliosides are involved in lead intoxication. J Appl Toxicol 2008; (28): 122-131

65. Meyer TW, Bennett PH, Nelson RG. Podocyte number predicts long-term urinary albumin excretion in Pima Indians with type II diabetes and microalbuminuria. Diabetologia 1999; (42): 1341-1344

66. Steffes MW, Schmidt D, McCrery R, Basgen JM. Glomerular cell number in normal subjects and in type 1 diabetic patients. Kidney Int 2001; (59): 2104-2113

67. Verzola D, Gandolfo MT, Ferrario F et al. Apoptosis in the kidneys of patients with type II diabetic nephropathy. Kidney Int 2007; (10): 1262-1272

68. White KE, Bilous RW, Marshall SM et al. Podocyte number in normotensive type 1 diabetic patients with albuminuria. Diabetes 2002; (51): 3083-3089

69. Pagtalunan ME, Miller PL, Jumping-Eagle S et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest 1997; (99): 342-348

70. Kremer GJ, Atzpodien W, Schnellbacher E. Plasma glycosphingolipids in diabetics and normals. Klin Wochenschr 1975; (53): 637-638

71. Haus JM, Kashyap SR, Kasumov T et al. Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 2009; (58): 337-343

72. Blachnio-Zabielska AU, Pulka M, Baranowski M et al. Ceramide metabolism is affected by obesity and diabetes in human adipose tissue. J Cell Physiol 2011; (227): 550-557

73. Gorska M, Dobrzyn A, Baranowski M. Concentrations of sphingosine and sphinganine in plasma of patients with type 2 diabetes. Med Sci Monit 2005; (11): 35-38.

74. Geoffroy K, Troncy L, Wiernsperger N et al. Glomerular proliferation during early stages of diabetic nephropathy is associated with local increase of sphingosine-1-phosphate levels. FEBS Lett 2005; (579): 1249-1254

75. Zador IZ, Deshmukh GD, Kunkel R et al. A role for glycosphingolipid accumulation in the renal hypertrophy of streptozoto-cin-induced diabetes mellitus. J Clin Invest 1993; (91): 797-803

76. Kwak DH, Rho YI, Kwon OD et al. Decreases of ganglioside GM3 in streptozotocin-induced diabetic glomeruli of rats. Life Sci 2003; (72): 1997-2006

77. Liu G, Han F, Yang Y et al. Evaluation of sphingolipid metabolism in renal cortex of rats with streptozotocin-induced diabetes and the effects of rapamycin. Nephrol Dial Transplant 2011; (26): 1493-1502

78. Yoo TH, Pedigo CE, Guzman J et al. SMPDL3b expression levels determine podocyte injury phenotypes in glomerular disease. J Am Soc Nephrol 2014 25[4]: 737-744

79. Brunskill EW, Potter SS. Changes in the gene expression programs of renal mesangial cells during diabetic nephropathy. BMC Nephrol 2012; (13):70

80. Ishizawa S, Takahashi-Fujigasaki J, Kanazawa Y et al. Sphingosine-1-phosphate induces differentiation of cultured renal tubular epithelial cells under Rho kinase activation via the S1P2 receptor. Clin Exp Nephrol 2014

81. Samad F, Hester KD, Yang G et al. Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes 2006; (55): 2579-2587

82. Holthofer H, Reivinen J, Solin ML et al. Decrease of glomerular disialogangliosides in puromycin nephrosis of the rat. Am J Pathol 1996; (149): 1009-15

83. Andrews PM. Glomerular epithelial alterations resulting from sialic acid surface coat removal. Kidney Int 1979; (15): 376-385

84. Pawluczyk IZ, Ghaderi Najafabadi M, Patel S et al. Sialic acid attenuates puromycin aminonucleoside-induced desialylation and oxidative stress in human podocytes. Exp Cell Res 2013; (320): 258-268

85. Barisoni L, Bruggeman LA, Mundel P et al. HIV-1 induces renal epithelial dedifferentiation in a transgenic model of HIV-associated nephropathy. Kidney Int 2000; (58): 173-181

86. Bruggeman LA, Dikman S, Meng C, et al. Nephropathy in human immunodeficiency virus-1 transgenic mice is due to renal transgene expression. J Clin Invest 1997; (100): 84-92

87. Mikulak J, Singhal PC. HIV-1 entry into human podocytes is mediated through lipid rafts. Kidney Int 2010; (77): 72-3; author reply 73-74

88. Kopp JB, Klotman ME, Adler SH et al. Progressive glomerulosclerosis and enhanced renal accumulation of basement membrane components in mice transgenic for human immunodeficiency virus type 1 genes. Proc Natl Acad Sci U S A 1992; (89): 1577-1581

89. Husain M, Gusella GL, Klotman ME et al. HIV-1 Nef induces proliferation and anchorage-independent growth in podocytes. J Am Soc Nephrol 2002; (13): 1806-1815

90. Kajiyama W, Kopp JB, Marinos NJ et al. Glomerulosclerosis and viral gene expression in HIV-transgenic mice: role of nef. Kidney Int 2000; (58): 1148-1159

91. Sunamoto M, Husain M, He JC et al. Critical role for Nef in HIV-1-induced podocyte dedifferentiation. Kidney Int 2003; (64) 1695-1701

92. Hanna Z, Priceputu E, Hu C, et al. HIV-1 Nef mutations abrogating downregulation of CD4 affect other Nef functions and show reduced pathogenicity in transgenic mice. Virology 2006; (346): 40-52

93. Kopp JB, Nelson GW, Sampath K et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol 2011; (22): 2129-2137

94. Liu XH, Lingwood CA, Ray PE. Recruitment of renal tubular epithelial cells expressing verotoxin-1 (Stx1) receptors in HIV-1 transgenic mice with renal disease. Kidney Int 1999; (55): 554-561

95. Kitiyakara C, Eggers P, Kopp JB. Twenty-one-year trend in ESRD due to focal segmental glomerulosclerosis in the United States. Am J Kidney Dis 2004; (44): 815-825

96. Baum MA. Outcomes after renal transplantation for FSGS in children. Pediatr Transplant 2004; (8): 329-333

97. Hubsch H, Montané B, Abitbol C et al. Recurrent focal glomerulosclerosis in pediatric renal allografts: the Miami experience. Pediatr Nephrol 2005; (20): 210-216

98. Senggutuvan P, Cameron JS, Hartley RB et al. Recurrence of focal segmental glomerulosclerosis in transplanted kidneys: analysis of incidence and risk factors in 59 allografts. Pediatr Nephrol 1990; (4):21-28

99. Fornoni A, Sageshima J, Wei C, et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med 2011; (3): 8546

100. Tasaki M, Shimizu A, Hanekamp I et al. Rituximab treatment prevents the earl y development of proteinuria following pig-to-baboon xeno-kidney transplantation. J Am Soc Nephrol 2014; (25): 737-744

101. Wei C, Möller CC, Altintas MM et al. Modification of kidney barrier function by the urokinase receptor. Nat Med 2008; (14): 55-63

102. Wei C, Trachtman H, Li J et al. Circulating suPAR in two cohorts of primary FSGS. J Am Soc Nephrol 2012; (23): 2051-2059

103. Merscher-Gomez S, Guzman J, Pedigo CE et al. Cyclodextrin protects podocytes in diabetic kidney disease. Diabetes 2013; 62[11]: 3817-3827

104. Pyne NJ, Long JS, Lee SC et al. New aspects of sphingosine 1-phosphate signaling in mammalian cells. Adv Enzyme Regul 2009; (49): 214-221

105. Rosen H, Goetzl EJ. Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol 2005; (5): 560-570

106. Imasawa T, Kitamura H, Ohkawa R et al. Unbalanced expression of sphingosine 1-phosphate receptors in diabetic nephropathy. Exp Toxicol Pathol 2010; (62): 53-60

107. Koch A, Völzke A, Puff B et al. PPARgamma agonists upregulate sphingosine 1-phosphate (S1P) receptor 1 expression, which in turn reduces S1P-induced [Ca(2+)]i increases in renal mesangial cells. Biochim Biophys Acta 2013; (1831): 1634-1643

108. Awad AS, Rouse MD, Khutsishvili K et al. Chronic sphingosine 1-phosphate 1 receptor activation attenuates early-stage diabetic nephropathy independent of lymphocytes. Kidney Int 2011; (79): 1090-1098

109. Park SW, Kim M, Chen SW et al. Sphinganine-1-phosphate protects kidney and liver after hepatic ischemia and reperfusion in mice through S1P1 receptor activation. Lab Invest 2010; (90): 1209-1224

110. Kim M, Park SW, Pitson SM, Lee HT. Isoflurane protects human kidney proximal tubule cells against necrosis via sphin-gosine kinase and sphingosine-1-phosphate generation. Am J Nephrol 2010; (31):353-362

111. Awad AS, Ye H, Huang L, et al. Selective sphingosine 1-phosphate 1 receptor activation reduces ischemia-reperfusion injury in mouse kidney. Am J Physiol Renal Physiol 2006; (290): 1516-1524

112. Park SW, Kim M, D’Agati VD, Lee HT. Sphingosine kinase 1 protects against renal ischemia-reperfusion injury in mice by sphingosine-1-phosphate1 receptor activation. Kidney Int 2011; (80):1315-1327

113. Zager RA, Conrad S, Lochhead K et al. Altered sphingomyelinase and ceramide expression in the setting of ischemic and nephrotoxic acute renal failure. Kidney Int 1998; (53): 573-582

114. Kalhorn T, Zager RA. Renal cortical ceramide patterns during ischemic and toxic injury: assessments by HPLC-mass spectrometry. Am J Physiol 1999; (277): 723-733.

115. Zager RA, Iwata M, Conrad DS et al. Altered ceramide and sphingosine expression during the induction phase of ischemic acute renal failure. Kidney Int 1997; (52): 60-70

116. Peters H, Martini S, Wang Y et al. Selective lymphocyte inhibition by FTY720 slows the progressive course of chronic anti-thy 1 glomerulosclerosis. Kidney Int 2004; (66): 1434-1443

117. Martini S, Krämer S, Loof T, et al. S1P modulator FTY720 limits matrix expansion in acute anti-thy1 mesangioproliferative glomerulonephritis. Am J Physiol Renal Physiol 2007; (292): 1761-1770

118. Schwalm S, Pfeilschifter J, Huwiler A. Targeting the sphingosine kinase/sphingosine 1-phosphate pathway to treat chronic inflammatory kidney diseases. Basic Clin Pharmacol Toxicol 2014; (114): 44-49

119. Ferguson R. FTY720 immunomodulation: optimism for improved transplant regimens. Transplant Proc 2004; (36): 549-553

120. Fujishiro J, Kudou S, Iwai S et al. Use of sphingosine-1-phosphate 1 receptor agonist, KRP-203, in combination with a subtherapeutic dose of cyclosporine A for rat renal transplantation. Transplantation 2006; (82): 804-812

121. Watson L, Tullus K, Marks SD et al. Increased serum concentration of sphingosine-1-phosphate in juvenile-onset systemic lupus erythematosus. J Clin Immunol 2012; (32): 1019-1025

122. Snider AJ, Ruiz P, Obeid LM, Oates Jc. Inhibition of sphingosine kinase-2 in a murine model of lupus nephritis. PLoS One 2013; (8): 53521

123. Ruotsalainen V, Ljungberg P, Wartiovaara J et al. Nephrin is specifically located at the slit diaphragm of glomerular podocytes. Proc Natl Acad Sci U S A 1999; (96): 7962-7967

124. Tryggvason K. Unraveling the mechanisms of glomerular ultrafiltration: nephrin, a key component of the slit diaphragm. J Am Soc Nephrol 1999; (10): 2440-2445

125. Saleem MA, O’Hare MJ, Reiser J et al. A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J Am Soc Nephrol 2002; (13): 630-638

126. Smoyer WE, Mundel P. Regulation of podocyte structure during the development of nephrotic syndrome. J Mol Med (Berl) 1998; (76): 172-183

127. Kerjaschki D. Caught flat-footed: podocyte damage and the molecular bases of focal glomerulosclerosis. J Clin Invest 2001; (108): 1583-1587

128. Asanuma K, Mundel P. The role of podocytes in glomerular pathobiology. Clin Exp Nephrol 2003; (7): 255-259

129. Ichimura K, Kurihara H, Sakai T Actin filament organization of foot processes in rat podocytes. J Histochem Cytochem 2003; (51): 1589-1600

130. Ichimura K, Kurihara H, Sakai T Actin filament organization of foot processes in vertebrate glomerular podocytes. Cell Tissue Res 2007; (329): 541-557

131. Yuan H, Takeuchi E, Salant DJ. Podocyte slit-diaphragm protein nephrin is linked to the actin cytoskeleton. Am J Physiol Renal Physiol 2002; (282): 585-591

132. Huber TB, Simons M, Hartleben B et al. Molecular basis of the functional podocin-nephrin complex: mutations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains. Hum Mol Genet 2003; (12): 3397-3405

133. Huber TB, Kottgen M, Schilling B et al. Interaction with podocin facilitates nephrin signaling. J Biol Chem 2001; (276): 41543-41546

134. Fanning AS, Ma TY Anderson JM. Isolation and functional characterization of the actin binding region in the tight junction protein ZO-1. FASEB J 2002; (16): 1835-1837

135. Simons M, Schwarz K, Kriz W et al. Involvement of lipid rafts in nephrin phosphorylation and organization of the glomerular slit diaphragm. Am J Pathol 2001; (159): 1069-1077

136. Wang F, Nobes CD, Hall A, Spiegel S. Sphingosine 1-phosphate stimulates rho-mediated tyrosine phosphorylation of focal adhesion kinase and paxillin in Swiss 3T3 fibroblasts. Biochem J 1997; 324[Pt 2]: 481-488

137. Shabahang S, Liu YH, Huwiler A, Pfeilschifter J. Identification of the LIM kinase-1 as a ceramide-regulated gene in renal mesangial cells. Biochem Biophys Res Commun 2002; (298): 408-413

138. Takenouchi H, Kiyokawa N, Taguchi T et al. Shiga toxin binding to globotriaosyl ceramide induces intracellul ar signals that mediate cytoskeleton remodeling in human renal carcinoma-derived cells. J Cell Sci 2004; (117): 3911-3922

139. Jin J, Sison K, Li C et al. Soluble FLT1 binds lipid micro-domains in podocytes to control cell morphology and glomerular barrier function. Cell 2012; (151): 384-399


Review

For citations:


Merscher S., Fornoni A. PODOCYTE PATHOLOGY AND NEPHROPATHY - SPHINGOLIPIDS IN GLOMERULAR DISEASES. Nephrology (Saint-Petersburg). 2016;20(1):10-23. (In Russ.)

Views: 886


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)