Preview

Нефрология

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

АУТОСОМНО-ДОМИНАНТНАЯ ТУБУЛОИНТЕРСТИЦИАЛЬНАЯ БОЛЕЗНЬ ПОЧЕК

https://doi.org/10.24884/1561-6274-2018-22-6-9-22

Полный текст:

Аннотация

В последние годы существенно пересматриваются определения и классификации врожденных тубулоинтерстициальных заболеваний почек. Это связано, прежде всего, с достижениями в области молекулярной биологии и генетики, позволившими существенно уточнить роль ряда генов, кодирующих те или иные белки, тесно вовлеченные в деятельность почек. В 2015 г. KDIGO предложено унифицировать терминологию, диагностические критерии и подходы к мониторингу состояний, ассоциированных с мутациями генов MUC1, UMOD, HNF1B и REN, что привело к разработке представлений о новой нозологии – аутосомно-доминантной тубулоинтерстициальной болезни почек (АДТБП). Краткое описание основных сведений об АДТБП составило содержание настоящего сообщения.

Об авторах

И. Г. Каюков
Научно-исследовательский институт нефрологии, Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова.
Россия

197022, Россия, Санкт-Петербург, ул. Л. Толстого, д. 17, корп. 54.

Проф. Каюков Иван Глебович, лаборатория клинической физиологии почек, заведующий.

Тел.: (812)346-39-26.



В. А. Добронравов
Научно-исследовательский институт нефрологии, Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова.
Россия

197022, Россия, Санкт-Петербург, ул. Л. Толстого, д. 17, корп. 54.

Проф. Добронравов Владимир Александрович, заместитель директора по научной работе.



О. Н. Береснева
Научно-исследовательский институт нефрологии, Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова.
Россия

197022, Россия, Санкт-Петербург, ул. Л. Толстого, д. 17, корп. 54.

Береснева Ольга Николаевна, канд. биол. наук, лаборатория клинической физиологии почек, ст. науч. сотр.

Тел.: (812)346-39-26



А. В. Смирнов
Научно-исследовательский институт нефрологии, Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова.
Россия

197022, Россия, Санкт-Петербург, ул. Л. Толстого, д. 17, корп. 54.

Проф. Смирнов Алексей Владимирович, директор.

Тел.: (812)338-69-01.



Список литературы

1. Freedman BI, Volkova NV, Satko SG et al. Population-based screening for family history of end-stage renal disease among incident dialysis patients. Am J Nephrol 2005; 25: 529–535. doi: 10. 1159/ 000088491

2. Devuyst O, Knoers NV, Remuzzi G et al. Rare inherited kidney diseases: challenges, opportunities, and perspectives. Lancet 2014; 383: 1844–1859. doi: 10.1016/S0140-6736(14)60659-0

3. Eckardt KU, Alper SL, Antignac C et al. Autosomal dominant tubulointerstitial kidney disease: diagnosis, classification, and management-A KDIGO consensus report. Kidney Int 2015; 88(4): 676–683. doi: 10.1038/ki.2015.28

4. Gast C, Marinaki A, Arenas-Hernandez M et al. Autosomal dominant tubulointerstitial kidney disease-UMOD is the most frequent non polycystic genetic kidney disease. BMC Nephrol 2018; 19(1): 301. doi: 10.1186/s12882-018-1107-y

5. North American Pediatric Renal Transplant Cooperative Study (NAPRTCS) 2008 Annual Report. [(accessed on 10 April 2017)]; Available online: https://web.emmes.com/study/ped/annlrept/Annual Report 20-2008.pdf

6. Ardissino G, Daccò V, Testa S et al. Epidemiology of chronic renal failure in children: Data from the ItalKid project. Pediatrics 2003; 111: 382–387. doi: 10.1542/peds.111.4.e382

7. Sanna-Cherchi S, Ravani P, Corbani V et al. Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int 2009; 76: 528–533. doi: 10.1038/ki.2009.220

8. Capone VP, Morello W, Taroni F, Montini G. Genetics of congenital anomalies of the kidney and urinary tract: the current state of play. Int J Mol Sci 2017; 18(4). pii: E796. doi: 10.3390/ijms18040796

9. Bleyer AJ, Kidd K, Živná M, Kmoch S. Autosomal dominant tubulointerstitial kidney disease. Adv Chronic Kidney Dis 2017; 24(2): 86–93. doi: 10.1053/j.ackd.2016.11.012

10. Dahan K, Devuyst O, Smaers M et al. A cluster of mutations in the UMOD gene causes familial juvenile hyperuricemic nephropathy with abnormal expression of uromodulin. J Am Soc Nephrol 2003; 14: 2883–2893

11. Kirby A, Gnirke A, Jaffe DB et al. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat Genet 2013; 45: 299–303

12. Bingham C, Ellard S, van't Hoff WG et al. Atypical familial juvenile hyperuricemic nephropathy associated with a hepatocyte nuclear factor-1beta gene mutation. Kidney Int 2003; 63: 1645–1651.doi:10.1046/j.1523-1755.2003.00903.x

13. Zivná M, Hůlková H, Matignon M et al. Dominant renin gene mutations associated with early-onset hyperuricemia, anemia, and chronic kidney failure. Am J Hum Genet 2009; 85: 204–213. doi:1016/j.ajhg.2009.07.010

14. Bolar NA, Golzio C, Zivna M et al. Heterozygous loss-offunction SEC61A1 mutations cause autosomal-dominant tubulointerstitial and glomerulocystic kidney disease with anemia. Am J Hum Genet 2016; 99: 174–187. doi: 10.1016/j.ajhg.2016.05.028

15. Stavrou C, Koptides M, Tombazos C et al. Autosomaldominant medullary cystic kidney disease type 1: clinical and molecular findings in six large Cypriot families. Kidney Int 2002; 62: 1385–1394. doi:10.1111/j.1523-1755.2002.kid581.x

16. Thompson GR, Weiss JJ, Goldman RT et al. Familial occurrence of hyperuricemia, gout, and medullary cystic disease. Arch Intern Med 1978; 138: 1614–1617. doi:10.1001/archinte.1978.03630360012009

17. Hart TC, Gorry MC, Hart PS et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J Med Genet 2002; 39(12): 882–892. doi: 10.1136/jmg.39.12.882

18. Rampoldi L, Caridi G, Santon D et al. Allelism of MCKD, FJHN and GCKD caused by impairment of uromodulin export dynamics. Hum Mol Genet 2003; 12(24): 3369–3384. doi: 10.1093/hmg/ddg353

19. Turner JJ, Stacey JM, Harding B et al. Uromodulin mutations cause familial juvenile hyperuricemic nephropathy. J Clin Endocrinol Metab 2003; 88: 1398–1401. doi: 10.1210/jc. 2002-021973

20. Wolf MT, Mucha BE, Attanasio M et al. Mutations of the Uromodulin gene in MCKD type 2 patients cluster in exon 4, which encodes three EGF-like domains. Kidney Int 2003; 64: 1580–1587. doi:10.1046/j.1523-1755. 2003.00269.x

21. Kuma A, Tamura M, Ishimatsu N et al. A novel UMOD gene mutation associated with uromodulin-associated kidney disease in a young woman with moderate kidney dysfunction. Intern Med 2015; 54(6): 631–635. doi: 10.2169/internalmedicine.54.3151

22. Bhargava R, Saigal R, Sharma R et al. Familial juvenile hyperuricemic nephropathy 1 (FJHN1). J Assoc Physicians India 2014; 62(8): 749–753

23. Prejbisz A, Sellin L, Szwench-Pietrasz E et al. Smaller caliber renal arteries are a novel feature of uromodulin-associated kidney disease. Kidney Int 2015; 88(1): 160–166. doi: 10.1038/ki.2015.2

24. Lee MN, Jun JE, Kwon GY et al. A novel UMOD mutation (c.187T>C) in a Korean family with juvenile hyperuricemic nephropathy. Ann Lab Med 2013; 33(4): 293–296. doi: 10.3343/alm. 2013.33.4.293

25. Bollée G, Dahan K, Flamant M et al. Phenotype and outcome in hereditary tubulointerstitial nephritis secondary to UMOD mutations. Clin J Am Soc Nephrol 2011; 6(10): 2429–2438. doi: 10.2215/CJN.01220211

26. Moskowitz JL, Piret SE, Lhotta K et al. Association between genotype and phenotype in uromodulin-associated kidney disease. Clin J Am Soc Nephrol 2013; 8(8): 1349–1357. doi: 10.2215/CJN.11151012

27. Plumb LA, Marlais M, Bierzynska A et al. Unilateral hypoplastic kidney – a novel highly penetrant feature of familial juvenile hyperuricaemic nephropathy. BMC Nephrol 2014; 15: 76. doi: 10.1186/1471-2369-15-76

28. Lin Z, Yang J, Liu H et al. A novel uromodulin mutation in autosomal dominant tubulointerstitial kidney disease: a pedigreebased study and literature review. Ren Fail 2018; 40(1): 146–151. doi: 10.1080/0886022X.2018.1450757

29. Ayasreh N, Bullich G, Miquel R et al. Autosomal dominant tubulointerstitial kidney disease: clinical presentation of patients with ADTKD-UMOD and ADTKD-MUC1. Am J Kidney Dis 2018; 72(3): 411–418. doi: 10.1053/j.ajkd.2018.03.019

30. Jennings P, Aydin S, Kotanko P. Membrane targeting and secretion of mutant uromodulin in familial juvenile hyperuricemic nephropathy. J Am Soc Nephrol 2007; 18(1): 264–273. doi:10.1681/ASN.2006020158

31. Bleyer AJ, Hart TC, Shihabi Z et al. Mutations in the uromodulin gene decrease urinary excretion of Tamm-Horsfall protein. Kidney Int 2004; 66(3): 974–977. doi: 10.1111/j.1523-1755.2004.00845.x

32. Choi SW, Ryu OH, Choi SJ et al. Mutant tamm-horsfall glycoprotein accumulation in endoplasmic reticulum induces apoptosis reversed by colchicine and sodium 4-phenylbutyrate. J Am Soc Nephrol 2005; 16(10): 3006–3014. doi: 10.1681/ASN.2005050461

33. Bernascone I, Janas S, Ikehata M et al. A transgenic mouse model for uromodulin-associated kidney diseases shows specific tubulo-interstitial damage, urinary concentrating defect and renal failure. Hum Mol Genet 2010; 19(15): 2998–3010. doi: 10.1093/hmg/ddq205

34. Ma L, Liu Y, El-Achkar TM, Wu XR. Molecular and cellular effects of Tamm-Horsfall protein mutations and their rescue by chemical chaperones. J Biol Chem 2012; 287: 1290–1305. doi: 10.1074/jbc.M111.283036

35. Iorember FM, Vehaskari VM. Uromodulin: old friend with new roles in health and disease. Pediatr Nephrol 2014; 29(7): 1151–1158. doi: 10.1007/s00467-013-2563-z

36. Prajczer S, Heidenreich U, Pfaller W et al. Evidence for a role of uromodulin in chronic kidney disease progression. Nephrol Dial Transplant 2010; 25(6): 1896–1903. doi: 10.1093/ndt/gfp748

37. Williams SE, Reed AA, Galvanovskis J et al. Uromodulin mutations causing familial juvenile hyperuricaemic nephropathy lead to protein maturation defects and retention in the endoplasmic reticulum. Hum Mol Genet 2009; 18: 2963–2974. doi: 10. 1093/hmg/ddp235

38. Liu Y, El-Achkar T, Wu X. Tamm–Horsfall protein regulates circulating and renal cytokines by affecting glomerular filtration rate and acting as a urinary cytokine trap. J Biol Chem 2012; 287: 16365–16378. doi: 10.1074/jbc.M112.348243

39. Dinour D, Ganon L, Nomy LI. et al. Wild-type uromodulin prevents NFkB activation in kidney cells, while mutant uromodulin, causing FJHU nephropathy, does not. J Nephrol 2014; 27(3): 257–264. doi: 10.1007/s40620-014-0079-7

40. Trudu M, Schaeffer C, Riba M et al. Early involvement of cellular stress and inflammatory signals in the pathogenesis of tubulointerstitial kidney disease due to UMOD mutations. Sci Rep 2017; 7(1): 7383. doi: 10.1038/s41598-017-07804-6

41. Ayasreh FN, Miquel RR, Matamala GA et al. A review on autosomal dominant tubulointerstitial kidney disease. Nefrologia 2017; 37(3): 235–243. doi: 10.1016/j.nefro.2016.10.024.

42. Bleyer AJ, Hart PS, Kmoch S. Autosomal dominant tubulointerstitial kidney disease, UMOD-related. In: Adam MP, Ardinger HH, Pagon RA et al, editors. GeneReviews®[Internet]. Seattle (WA): University of Washington, Seattle; 1993–2018.2007 Jan 12 [updated 2016 Jun 30].

43. Bleyer AJ, Woodard AS, Shihabi Z et al. Clinical characterization of a family with a mutation in the uromodulin (Tamm- Horsfall glycoprotein) gene. Kidney Int 2003; 64: 36–42. doi: 10.1046/j.1523-1755.2003.00081.x

44. Johnson RJ, Nakagawa T, Jalal D et al. Uric acid and chronic kidney disease: which is chasing which? Nephrol Dial Transplant 2013; 28(9): 2221–2228. doi:10.1093/ndt/gft029.

45. Nasr SH, Lucia JP, Galgano SJ et al. Uromodulin storage disease. Kidney Int 2008; 73(8): 971–976. doi: 10.1038/sj.ki.5002679

46. Смирнов АВ, Хасун М, Каюков ИГ и др. Уромодулин сыворотки крови, как ранний биомаркер атрофии канальцев и интерстициального фиброза у пациентов с гломерулопатиями. Тер архив 2018; 90(6): 41–47. doi: 10.26442/terarkh 201890641-47

47. Scherberich JE, Gruber R, Nockher WA et al. Serum uromodulin-a marker of kidney function and renal parenchymal integrity. Nephrol Dial Transplant 2018; 33(2): 284–295. doi: 10.1093/ndt/gfw422

48. Fedak D, Kuźniewski M, Fugiel A et al. Serum uromodulin concentrations correlate with glomerular filtration rate in patients with chronic kidney disease. Pol Arch Med Wewn 2016; 126(12): 995–1004. doi: 10.20452/pamw.3712

49. Steubl D, Block M, Herbst V et al. Plasma uromodulin correlates with kidney function and identifies early stages in chronic kidney disease patients. Medicine (Baltimore) 2016; 95(10): e3011. doi: 10.1097/MD.0000000000003011

50. Sircar D, Chatterjee S, Waikhom R et al. Efficacy of febuxostat for slowing the GFR decline in patients with CKD and asymptomatic hyperuricemia: a 6-month, double-blind, randomized, placebo-controlled trial. Am J Kidney Dis 2015; 66: 945–950. doi: 10.1053/j.ajkd.2015.05.017

51. Faruque LI, Ehteshami-Afshar A, Wiebe N et al. A systematic review and meta-analysis on the safety and efficacy of febuxostat versus allopurinol in chronic gout. Semin Arthritis Rheum 2013; 43:367–375. doi: 10.1016/j.semarthrit.2013.05.004

52. Kmoch S, Živná M, Bleyer AJ. Autosomal dominant tubulointerstitial kidney disease, REN-r elated. In: Adam MP, Ardinger HH, Pagon RA et al, editors. GeneReviews®[Internet]. Seattle (WA): University of Washington, Seattle; 1993–2018. 2011 Apr 5 [updated 2015 Dec 29]

53. Clissold RL, Clarke HC, Spasic-Boskovic O et al. Discovery of a novel dominant mutation in the REN gene after forty years of renal disease: a case report. BMC Nephrol 2017; 18(1): 234. doi: 10.1186/s12882-017-0631-5

54. Bleyer AJ, Zivna M, Hulkova H et al. Clinical and molecular characterization of a family with a dominant renin gene mutation and response to treatment with fludrocortisone. Clin Nephrol 2010; 74: 411–422. doi: 10.5414/CNP74411

55. Levin A, Stevens PE. Summary of KDIGO 2012 CKD guideline: behind the scenes, need for guidance, and a framework for moving forward. Kidney Int 2014; 85: 49–61. 10.1038/ki.2013.444

56. Labriola L, Olinger E, Belge H et al. Paradoxical response to furosemide in uromodulin-associated kidney disease. Nephrol Dial Transplant 2015; 30: 330–335. doi: 10.1093/ndt/gfu389

57. Bleyer AJ, Kmoch S. Autosomal dominant tubulointerstitial kidney disease, MUC1-related. In: Adam MP, Ardinger HH, Pagon RA et al, aditors. GeneReviews®[Internet]. Seattle (WA): University of Washington, Seattle; 1993–2018

58. Musetti C, Babu D, Fusco I et al. Testing for the cytosine insertion in the VNTR of the MUC1 gene in a cohort of Italian patients with autosomal dominant tubulointerstitial kidney disease. J Nephrol 2016; 29(3): 451–455. doi: 10.1007/s40620-016-0282-9

59. Pemberton LF, Rughtetti A, Taylor-Papadimitriou J, Gendler SJ. The epithelial mucin MUC1 contains at least two discrete signals specifying membrane localization in cells. J Biol Chem 1996; 271:2332–2340. doi: 10.1074/jbc.271.4.2332

60. Al-Bataineh MM, Sutton TA, Hughey RP. Novel roles for mucin 1 in the kidney. Curr Opin Nephrol Hypertens 2017; 26: 384–391. doi: 10.1097/MNH. 0000000000000350

61. Nie M, Bal MS, Yang Z et al. Mucin-1 Increases Renal TRPV5 Activity in vitro, and urinary level associates with calcium nephrolithiasis in patients. J Am Soc Nephrol 2016; 27: 3447–3458. doi: 10.1681/ASN.2015101100

62. Spicer AP, Duhig T, Chilton BS, Gendler SJ. Analysis of mammalian MUC1 genes reveals potential functionally important domains. Mamm Genome 1995; 6: 885–888

63. Gale DP, Kleta R. MUC1 Makes Me Miserable. J Am Soc Nephrol 2018; 29(9): 2257–2258. doi: 10.1681/ASN.2018070742

64. Bleyer AJ, Kmoch S, Antignac C et al. Variable clinical presentation of an MUC1 mutation causing medullary cystic kidney disease type 1. Clin J Am Soc Nephrol 2014; 9: 527–535. doi: 10.2215/CJN.06380613

65. Knaup KX, Hackenbeck T, Popp B et al. Biallelic expression of Mucin-1 in autosomal dominant tubulointerstitial kidney disease: implications for nongenetic disease recognition. J Am Soc Nephrol 2018; 29(9): 2298–2309. doi: 10.1681/ASN.2018030245

66. Živná M, Kidd K, Přistoupilová A et al. Noninvasive immunohistochemical diagnosis and novel MUC1 mutations causing autosomal dominant tubulointerstitial kidney disease. J Am Soc Nephrol 2018; 29(9): 2418–2431. doi: 10.1681/ASN.2018020180

67. Heidet L, Decramer S, Pawtowski A et al. Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin J Am Soc Nephrol 2010; 5(6): 1079–1090. doi: 10.2215/CJN.06810909

68. Kerecuk L, Schreuder MF, Woolf AS. Renal tract malformations: perspectives for nephrologists. Nat Clin Pract Nephrol 2008; 4(6): 312–325. doi: 10.1038/ncpneph0807

69. Massa F, Garbay S, Bouvier R et al. Hepatocyte nuclear factor 1beta controls nephron tubular development. Development 2013; 140: 886–896. doi:10.1242/dev.086546

70. Chan SC, Zhang Y, Shao A et al. Mechanism of fibrosis in HNF1B-related autosomal dominant tubulointerstitial kidney disease. J Am Soc Nephrol 2018; 29(10): 2493–2509. doi: 10.1681/ASN.2018040437

71. Decramer S, Parant O, Beaufils S et al. Anomalies of the TCF2 gene are the main cause of fetal bilateral hyperechogenic kidneys. J Am Soc Nephrol 2007; 18: 923–933. doi: 10.1681/ASN. 2006091057

72. Verhave JC, Bech AP, Wetzels JF, Nijenhuis T. Hepatocyte nuclear factor 1beta-associated kidney disease: more than renal cysts and diabetes. J Am Soc Nephrol 2016; 27: 345–353. doi: 10.1681/ASN. 2015050544

73. Faguer S, Chassaing N, Bandin F et al. The HNF1B score is a simple tool to select patients for HNF1B gene analysis. Kidney Int 2014; 86(5): 1007–1015. doi: 10.1038/ki.2014.202

74. Bellanne-Chantelot C, Chauveau D, Gautier JF et al. Clinical spectrum associated with hepatocyte nuclear factor- 1beta mutations. Ann Intern Med 2004; 140: 510–517. doi: 10.7326/0003-4819-140-7-200404060-00009

75. Kompatscher A, de Baaij JHF, Aboudehen K et al. Loss of transcriptional activation of the potassium channel Kir5.1 by HNF1B drives autosomaldominant tubulointerstitial kidney disease. Kidney Int 2017; 92(5): 1145–1156. doi: 10.1016/j.kint. 2017.03.034

76. Kompatscher A, de Baaij JHF, Aboudehen K et al. Transcription factor HNF1B regulates expression of the calciumsensing receptor in the thick ascending limb of the kidney. Am J Physiol Renal Physiol 2018; 315(1): F27–F35. doi: 10.1152/ajprenal.00601.2017

77. Derakhshan N, Derakhshan D, Basiratnia M et al. Gouty arthritis in a 15-year-old girl with Bartter's syndrome. Saudi J Kidney Dis Transpl 2010; 21(6): 1129–1131

78. Seys E, Andrini O, Keck M et al. Clinical and genetic spectrum of bartter syndrome type 3. J Am Soc Nephrol 2017; 28(8): 2540–2552. doi: 10.1681/ASN.2016101057

79. Wolff ML, Cruz JL, Vanderman AJ, Brown JN. The effect of angiotensin II receptor blockers on hyperuricemia. Ther Adv Chronic Dis 2015; 6(6): 339–346. doi: 10.1177/2040622315596119

80. Bleyer AJ, Kmoch S. Autosomal dominant tubulointerstitial kidney disease: of names and genes. Kidney Int 2014; 86(3): 459–461. doi: 10.1038/ki.2014.125


Для цитирования:


Каюков И.Г., Добронравов В.А., Береснева О.Н., Смирнов А.В. АУТОСОМНО-ДОМИНАНТНАЯ ТУБУЛОИНТЕРСТИЦИАЛЬНАЯ БОЛЕЗНЬ ПОЧЕК. Нефрология. 2018;22(6):9-22. https://doi.org/10.24884/1561-6274-2018-22-6-9-22

For citation:


Kayukov I.G., Dobronravov V.A., Beresneva O.N., Smirnov A.V. AUTOSOMAL DOMINANT TUBULOINTERSTITIAL KIDNEY DISEASE. Nephrology (Saint-Petersburg). 2018;22(6):9-22. (In Russ.) https://doi.org/10.24884/1561-6274-2018-22-6-9-22

Просмотров: 150


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)