Preview

Нефрология

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

СОВРЕМЕННЫЙ ВЗГЛЯД НА ПАТОГЕНЕЗ СИНДРОМА ИШЕМИИ–РЕПЕРФУЗИИ ПРИ ТРАНСПЛАНТАЦИИ ПОЧКИ

https://doi.org/10.24884/1561-6274-2018-22-6-23-29

Полный текст:

Аннотация

В обзоре освещены основные факторы патогенеза синдрома ишемии/реперфузии (ИРС) трансплантата почки (ТП). Описаны клеточные, гуморальные, а также неспецифические механизмы развития почечного повреждения. Возможности эффективного воздействия на него ограничены объективными трудностями, которые связаны, главным образом, с наличием множества альтернативный путей, которые, в конечном счете, приводят к тяжелому повреждению ТП, быстрому развитию хронической трансплантационной нефропатии и повышают риск утраты ТП. Необходимы дальнейшие исследования способов целенаправленного воздействия на основные звенья патогенеза ИРС.

Об авторах

Д. В. Артемов
Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского.
Россия

129110, Россия, Москва, ул. Щепкина, д. 61/2, корп. 1.

Артемов Дмитрий Владимирович, консультативно-диагностический центр, терапевтическое отделение.

Тел.: (915) 110-16-15.



А. Б. Зулькарнаев
Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского.
Россия

129110, Россия, Москва, ул. Щепкина, д. 61/2, корп. 6.

Зулькарнаев Алексей Батыргараевич, д-р мед. наук, кафедра трансплантологии, нефрологии и искусственных органов.

Тел.: (916) 705-98-99.



Список литературы

1. Choi JH, Pile-Spellman J. Reperfusion changes after stroke and practical approaches for neuroprotection. Neuroimaging Clin N Am 2018; 28(4):663–682. doi: 10.1016/j.nic.2018.06.008

2. Russo I, Penna C, Musso T et al. Diabetes and myocardial ischemia/reperfusion injury. Cardiovasc Diabetol 2017; 16(1):71. doi: 10.1186/s12933-017-0550-6

3. Lejay A, Fang F, John R et al. Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus. J Mol Cell Cardiol 2016; 91:11–22

4. González-Montero J, Brito R, Gajardo AI, Rodrigo R. Myocardial reperfusion injury and oxidative stress: Therapeutic opportunities. World J Cardiol 2018; 10(9):74–86. doi: 10.4330/wjc.v10.i9.74

5. Добронравов ВА. Обзор патофизиологии острого повреждения почек. В: Смирнов АВ, Добронравов ВА, Румянцев АШ, Каюков ИГ. Острое повреждение почек. МИА, М., 2015; 30–79

6. Ponticelli C. Ischaemia-reperfusion injury: a major protagonist in kidney transplantation. Nephrol Dial Transplant 2014; 29(6):1134–1140. doi: 10.1093/ndt/gft488

7. Saat TC, van den Akker EK, IJzermans JNM et al. Improving the outcome of kidney transplantation by ameliorating renal ischemia reperfusion injury: lost in translation? J Transl Med 2016; (14):20. doi: 10.1186/s12967-016-0767-2

8. Salvadori M, Rosso G, Bertoni E. Update on ischemiareperfusion injury in kidney transplantation: Pathogenesis and treatment. World J Transplant 2015; 5(2):52–67. doi: 10.5500/wjt.v5.i2.52

9. Zhao H, Alam A, Aurelie PS et al. Ischemia-Reperfusion Injury Reduces Long Term Renal Graft Survival: Mechanism and Beyond. EBioMedicine 2018; 28:31–42. doi: 10.1016/j.ebiom.2018.01.025

10. Cippà PE, Schiesser M, Ekberg H et al. Risk Stratification for Rejection and Infection after Kidney Transplantation Clin J Am Soc Nephrol 2015 7; 10(12): 2213–2220. doi: 10.2215/CJN.01790215

11. Прокопенко ЕИ. Инфекции у пациентов с почечным трансплантатом (лекция). Нефрология и диализ 2008; 10(1): 6-15

12. Kosieradzki M, Rowinski W. Ischemia/Reperfusion Injury in Kidney Transplantation: Mechanisms and Prevention. Transplantation Proceedings 2008; 40:3279–3288. doi: 10.1016/j.transproceed.2008.10.004

13. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002; 10:417–426

14. Lutz J, Thürmel K, Heemann U. Anti-inflammatory treatment strategies for ischemia/reperfusion injury in transplantation. Journal of Inflammation 2010; 7:27. doi: 10.1186/1476-9255-7-27

15. Carden DL, Granger DN. Pathophysiology of ischaemia- reperfusion injury. J Pathol 2000; 190:255–266. doi: 10.1002/(SICI)1096-9896(200002)190:3<255::AIDPATH526>3.0.CO;2-6

16. Maxwell SR, Lip GY. Reperfusion injury: A review of the pathophysiology, clinical manifestations and therapeutic options. Int J Cardiol 1997; 58:95–117

17. Toyokuni S. Reactive oxygen species-induced molecular damage and its application in pathology. Pathol Int 1999; 49:91–102

18. Thurman JM. Triggers of Inflammation after Renal Ischemia/Reperfusion. Clin Immunol 2007; 123(1):7–13. doi: 10.1016/j.clim.2006.09.008

19. Meldrum DR, Dinarello CA, Cleveland JC Jr et al. Hydrogen peroxide induces tumor necrosis factor alphamediated cardiac injury by a P38 mitogen-activated protein kinasedependent mechanism. Surgery 1998; 124:291–297

20. Casiraghi F, Azzollini N, Todeschini M et al. Complement alternative pathway deficiency in recipients protects kidney allograft from ischemia/reperfusion injury and alloreactive T cell response. Am J Transplant 2017; 17(9):2312–2325. doi: 10.1111/ajt.14262

21. Lan JH, Tinckam K. Clinical utility of complement dependent assays in kidney transplantation. Transplantation 2018; 102(1, suppl 1):14–22. doi: 10.1097/TP.0000000000001819

22. Lefaucheur C, Viglietti D, Hidalgo LG et al. Complementactivating anti-HLA antibodies in kidney transplantation: allograft gene expression profiling and response to treatment. J Am Soc Nephrol 2018; 29(2):620–635. doi: 10.1681/ASN.2017050589

23. Rosenberger C, Griethe W, Gruber G et al. Cellular responses to hypoxia after renal segmental infarction. Kidney Int 2003; 64:874–886. doi: 10.1046/j.1523-1755.2003.00159.x

24. Cernoch M, Viklicky O. Complement in kidney transplantation. Front Med 2017; 4:66. doi: 10.3389/fmed.2017.00066

25. Collard CD, Lekowski R, Jordan JE et al. Complement activation following oxidative stress. Mol Immunol 1999; 36:941–948

26. Danobeitia JS, Ziemelis M, Ma X et al. Complement inhibition attenuates acute kidney injury after ischemia-reperfusion and limits progression to renal fibrosis in mice. PloS One 2017; 12(8):e0183701. doi: 10.1371/journal.pone.0183701

27. Farrar CA, Zhou W, Sacks SH. Role of the lectin complement pathway in kidney transplantation. Immunobiology 2016; 221(10):1068–1072. doi: 10.1016/j.imbio.2016.05.004

28. Kościelska-Kasprzak K, Bartoszek D, Myszka M et al. The complement cascade and renal disease. Arch Immunol Ther Exp (Warsz) 2014; 62(1):47–57. doi: 10.1007/s00005-013-0254-x

29. Zwaini Z, Dai H, Stover C, Yang B. Role of complement properdin in renal ischemia-reperfusion injury. Curr Gene Ther 2018; 17(6):411–423. doi: 10.2174/1566523218666180214093043

30. Castellano G, Intini A, Stasi A et al. Complement modulation of anti-aging factor klotho in ischemia/reperfusion injury and delayed graft function. Am J Transplant Surgery 2016; 16(1):325–333. doi: 10.1111/ajt.13415

31. Kezić A, Stajic N, Thaiss F. Innate immune response in kidney ischemia/reperfusion injury: potential target for therapy. J Immunol Res 2017; 2017:6305439. doi: 10.1155/2017/6305439

32. Snelgrove SL, Lo C, Hall P et al. Activated renal dendritic cells cross present intrarenal antigens after ischemia-reperfusion injury. Transplantation 2017; 101(5):1013–1024. doi: 10.1097/TP.0000000000001427

33. Huang Y, Rabb H, Womer KL. Ischemia-reperfusion and immediate T cell responses. Cell Immunol 2007; 248(1):4–11. doi: 10.1016/j.cellimm.2007.03.009

34. Metelitsa LS, Naidenko OV, Kant A et al. Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol 2001; 167:3114–3122

35. Ascon DB, Lopez-Briones S, Liu M et al. Phenotypic and functional characterization of kidney-infiltrating lymphocytes in renal ischemia reperfusion injury. J Immunol 2006; 177:3380–3387

36. Li L, Huang L, Sung SS et al. NKT cell activation mediates neutrophil IFN-gamma production and renal ischemia–reperfusion injury. J Immunol 2007; 178:5899–5911

37. De Greef KE, Ysebaert DK, Dauwe S et al. Anti-B7-1 blocks mononuclear cell adherence in vasa recta after ischemia. Kidney Int 2001; 60:1415–1427. doi: 10.1046/j.1523-1755.2001.00944.x

38. Wang S, Diao H, Guan Q et al. Decreased renal ischemia–reperfusion injury by IL-16 inactivation. Kidney Int 2008; 73:318–326. doi: 10.1038/sj.ki.5002692

39. Yokota N, Burne-Taney M, Racusen L, Rabb H. Contrasting roles for STAT4 and STAT6 signal transduction pathways in murine renal ischemia–reperfusion injury. Am J Physiol Renal Physiol 2003; 285:319–325. doi: 10.1152/ajprenal.00432.2002

40. Jun C, Qingshu L, Ke W et al. Protective effect of CXCR3+CD4+CD25+Foxp3+ regulatory T cells in renal ischemiareperfusion injury. Mediators Inflamm 2015; 2015: 960–973. doi: 10.1155/2015/360973

41. Nguyen MT, Fryml E, Sahakian SK et al. Pretransplant recipient circulating CD4+CD127lo/- tumor necrosis factor receptor 2+ regulatory T cells: a surrogate of regulatory T cell-suppressive function and predictor of delayed and slow graft function after kidney transplantation. Transplantation 2016; 100(2): 314–324. doi: 10.1097/TP.0000000000000942

42. Burne-Taney MJ, Ascon DB, Daniels F et al. B cell deficiency confers protection from renal ischemia reperfusion injury. J Immunol 2003; 171:3210–3215

43. Jang HR, Ko GJ. The interaction between ischemia–reperfusion and immune responses in the kidney. J Mol Med 2009; 87:859–886. doi: 10.1007/s00109-009-0491-y

44. Takada M, Nadeau KC, Shaw GD et al. The Cytokineadhesion molecule cascade in ischemia/reperfusion injury of the rat kidney inhibition by a soluble P-selectin ligand. J Clin Invest 1997; 99(11):2682–2690. doi: 10.1172/JCI119457

45. Bonventre JV, Zuk A. Ischemic acute renal failure: an inflammatory disease? Kidney Int 2004; 66:480–485. doi: 10.1111/j.1523-1755.2004.761_2.x

46. Daha MR, van Kooten C. Is the proximal tubular cell a proinflammatory cell? Nephrol Dial Transplant 2000; 15(6):41–43

47. Quintana FJ, Cohen IR. Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J Immunol 2005; 175:2777–2782

48. Kim BS, Lim SW, Li C et al. Ischemia-reperfusion injury activates innate immunity in rat kidneys. Transplantation 2005; 79:1370–1377

49. Sabroe I, Read RC, Whyte MK et al. Toll-like receptors in health and disease: complex questions remain. J Immunol 2003; 171(4):1630–1635

50. Kaminska D, Tyran B, Mazanowska O et al. Cytokine gene expression in kidney allograft biopsies after donor brain death and ischemia-reperfusion injury using in situ reverse-transcription polymerase chain reaction analysis. Transplantation 2007; 84:1118–1124. doi: 10.1097/01.tp.0000287190.86654.74

51. Barklin A. Systemic inflammation in the brain-dead organ donor. Acta Anaesthesiol Scand 2009; 53:425–435. doi: 10.1111/j.1399-6576.2008.01879.x

52. Pratschke J, Wilhelm MJ, Laskowski I et al. Influence of donor brain death on chronic rejection of renal transplants in rats. J Am Soc Nephrol 2001; 12:2474–2481

53. van der Hoeven JA, Molema G, Ter Horst GJ et al. Relationship between duration of brain death and hemodynamic (in) stability on progressive dysfunction and increased immunologic activation of donor kidneys. Kidney Int 2003; 64:1874–1882. doi: 10.1046/j.1523-1755.2003.00272.x

54. Gueler F, Gwinner W, Schwarz A, Haller H. Long-term effects of acute ischemia and reperfusion injury. Kidney Int 2004; 66:523-527. doi: 10.1111/j.1523-1755.2004.761_11.x

55. Bhalodia YS, Sheth NR, Vaghasiya JD, Jivani NP. Homocysteine-dependent endothelial dysfunction induced by renal ischemia/reperfusion injury. J Nephrol 2011; 24(5):631–635. doi: 10.5301/JN.2011.6245

56. Collett JA, Mehrotra P, Crone A et al. Endothelial colonyforming cells ameliorate endothelial dysfunction via secreted factors following ischemia-reperfusion injury. Am J Physiol Renal Physiol 2017; 312(5):897–907. doi: 10.1152/ajprenal.00643.2016

57. Pushpakumar SB, Perez-Abadia G, Soni C et al. Enhancing complement control on endothelial barrier reduces renal postischemia dysfunction. J Surg Res 2011; 170(2):263–270. doi: 10.1016/j.jss.2011.06.010

58. Milsom AB, Patel NS, Mazzon E et al. Role for endothelial nitric oxide synthase in nitrite-induced protection against renal ischemia-reperfusion injury in mice. Nitric Oxide 2010; 22(2):141–148. doi: 10.1016/j.niox.2009.10.010

59. Pallet N, Thervet E, Timsit M-O. Angiogenic response following renal ischemia reperfusion injury: new players. Proq Urol 2014; 24 (Suppl 1):20–25. doi: 10.1016/S1166-7087(14)70059-4

60. Barin-Le Guellec C, Largeau B, Bon D et al. Ischemia/reperfusion-associated tubular cells injury in renal transplantation: can metabolomics inform about mechanisms and help identify new therapeutic targets? Pharmacol Res 2018; 129:34–43. doi: 10.1016/j.phrs.2017.12.032

61. Snoeijs MG, van Bijnen A, Swennen E et al. Tubular epithelial injury and inflammation after ischemia and reperfusion in human kidney transplantation. Ann Surg 2011; 253(3):598–604. doi: 10.1097/SLA.0b013e31820d9ae9

62. Lemoine M, Guerrot D, Bertrand D. Focusing on kidney transplantation in the elderly. Nephrol Ther 2017; 14(2):71–80. doi: 10.1016/j.nephro.2017.06.003


Для цитирования:


Артемов Д.В., Зулькарнаев А.Б. СОВРЕМЕННЫЙ ВЗГЛЯД НА ПАТОГЕНЕЗ СИНДРОМА ИШЕМИИ–РЕПЕРФУЗИИ ПРИ ТРАНСПЛАНТАЦИИ ПОЧКИ. Нефрология. 2018;22(6):23-29. https://doi.org/10.24884/1561-6274-2018-22-6-23-29

For citation:


Artemov D.V., Zulkarnaev A.B. THE MODERN VIEW ON THE PATHOGENESIS OF THE ISCHEMIA–REPERFUSION SYNDROME IN KIDNEY TRANSPLANTATION. Nephrology (Saint-Petersburg). 2018;22(6):23-29. (In Russ.) https://doi.org/10.24884/1561-6274-2018-22-6-23-29

Просмотров: 57


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)