Preview

Нефрология

Расширенный поиск

ВИЧ-АССОЦИИРОВАННАЯ БОЛЕЗНЬ ПОЧЕК: ИТОГИ СОГЛАСИТЕЛЬНОЙ КОНФЕРЕНЦИИ KDIGO

https://doi.org/10.24884/1561-6274-2018-22-6-84-100

Аннотация

ВИЧ-позитивные пациенты имеют высокий риск развития патологии почек, включая ВИЧ-ассоциированную нефропатию, неколлабирующий фокально-сегментарный гломерулосклероз, иммунокомплексное поражение почек, а также поражение почек, обусловленное длительным воздействием антиретровирусной терапии или оппортунистическими инфекциями. Клинические рекомендации по предупреждению заболеваний почек и лечению ВИЧ-позитивных пациентов в основном опираются на исследования, проведенные в общей популяции, и не до конца учитывают существующие знания в отношении уникальных патогенетических механизмов, ассоциированных с ВИЧ, и генетических факторов, способствующих развитию патологии почек в этой популяции. Мы провели встречу экспертов в нефрологии, почечной патологии, инфекционных болезнях с целью определения болезни почек в контексте ВИЧ-инфекции, уточнения роли генетических аномалий в истории заболевания, диагнозе и лечении ренальной патологии у ВИЧ-позитивных пациентов, оценки соотношения риск-польза антиретровирусной терапии и профилактики ВИЧ в отношении функции почек и разработки наилучшей тактики предупреждения и ведения болезни почек, ассоциированной с ВИЧ-инфекцией.

Об авторах

Ч. Р. Сванепоэль
Division of Nephrology and Hypertension, University of Cape Town, Cape Town.
Южно-Африканская Республика


М. Дж. Атта
Department of Medicine, Johns Hopkins University School of Medicine.
Соединённые Штаты Америки


В. Д. Д’Агати
Department of Pathology & Cell Biology, Columbia University Medical Center.
Соединённые Штаты Америки


М. М. Эстрелла
Department of Medicine, San Francisco VA Medical Center and University of California.
Соединённые Штаты Америки


А. Б. Фого
Department of Pathology, Microbiology and Immunology, Vanderbilt University.
Соединённые Штаты Америки


С. Найкер
Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand.
Соединённые Штаты Америки


Ф. А. Пост
King’s College Hospital NHS Foundation Trust.
Великобритания


Н. Верне
Division of Nephrology and Hypertension, University of Cape Town.
Южно-Африканская Республика


Ч. А. Винклер
Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health and Leidos Biomedical Research, Frederick National Laboratory.
Соединённые Штаты Америки


М. Чеунг
KDIGO.
Россия


Д. С. Вилер
University College London.
Великобритания


В. С. Винкельмайер
Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine.
Соединённые Штаты Америки


К. М. Вьятт
Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai.
Россия


за участников конференции

Россия


Список литературы

1. UNAIDS. AIDS info. Available at: http://aidsinfo.unaids.org/. Accessed July 19, 2017.

2. Lucas GM, Ross MJ, Stock PG, et al. Clinical practice guideline for the management of chronic kidney disease in patients infected with HIV: 2014 update by the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis. 2014;59:e96–e138.

3. Rosenberg AZ, Naicker S, Winkler CA, et al. HIV-associated nephropathies: epidemiology, pathology, mechanisms and treatment. Nat Rev Nephrol. 2015;11:150–160.

4. D’Agati V, Appel GB. HIV infection and the kidney. J Am Soc Nephrol. 1997;8:138–152.

5. Ross MJ. Advances in the pathogenesis of HIV-associated kidney diseases. Kidney Int. 2014;86:266–274.

6. Cohen AH, Nast CC. HIV-associated nephropathy. A unique combined glomerular, tubular, and interstitial lesion. Mod Pathol. 1988;1:87–97.

7. D’Agati V, Suh JI, Carbone L, et al. Pathology of HIV-associated nephropathy: a detailed morphologic and comparative study. Kidney Int. 1989;35:1358–1370.

8. Dijkman HB, Weening JJ, Smeets B, et al. Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells. Kidney Int. 2006;70:338–344.

9. Wyatt CM, Klotman PE, D’Agati VD. HIV-associated nephropathy: clinical presentation, pathology, and epidemiology in the era of antiretroviral therapy. Semin Nephrol. 2008;28:513–522.

10. Wearne N, Swanepoel CR, Boulle A, et al. The spectrum of renal histologies seen in HIV with outcomes, prognostic indicators and clinical correlations. Nephrol Dial Transplant. 2012;27:4109–4118.

11. Nadasdy T, Laszik Z, Blick KE, et al. Tubular atrophy in the end-stage kidney: a lectin and immunohistochemical study. Hum Pathol. 1994;25:22–28.

12. Ross MJ, Bruggeman LA, Wilson PD, et al. Microcyst formation and HIV-1 gene expression occur in multiple nephron segments in HIV-associated nephropathy. J Am Soc Nephrol. 2001;12:2645–2651.

13. Rosenstiel PE, Gruosso T, Letourneau AM, et al. HIV-1 Vpr inhibits cytokinesis inhuman proximal tubule cells. Kidney Int. 2008;74:1049–1058.

14. Berliner AR, Fine DM, Lucas GM, et al. Observations on a cohort of HIV-infected patients undergoing native renal biopsy. Am J Nephrol. 2008;28:478–486.

15. Lescure FX, Flateau C, Pacanowski J, et al. HIV-associated kidney glomerular diseases: changes with time and HAART. Nephrol Dial Transplant. 2012;27:2349–2355.

16. Mallipattu SK, Salem F, Wyatt CM. The changing epidemiology of HIV related chronic kidney disease in the era of antiretroviral therapy. Kidney Int. 2014;86:259–265.

17. Strauss J, Abitbol C, Zilleruelo G, et al. Renal disease in children with the acquired immunodeficiency syndrome. N Engl J Med. 1989;321: 625–630.

18. Nobakht E, Cohen SD, Rosenberg AZ, et al. HIVassociated immune complex kidney disease. Nat Rev Nephrol. 2016;12:291–300.

19. Kimmel PL, Phillips TM, Ferreira-Centeno A, et al. Brief report: idiotypic IgA nephropathy in patients with human immunodeficiency virus infection. N Engl J Med. 1992;327:702–706.

20. Kimmel PL, Phillips TM, Ferreira-Centeno A, et al. HIV-associated immune-mediated renal disease. Kidney Int. 1993;44:1327–1340.

21. Haas M, Kaul S, Eustace JA. HIV-associated immune complex glomerulonephritis with “lupus-like” features: a clinicopathologic study of 14 cases. Kidney Int. 2005;67:1381–1390.

22. Chang BG, Markowitz GS, Seshan SV, et al. Renal manifestations of concurrent systemic lupus erythematosus and HIV infection. Am J Kidney Dis. 1999;33:441–449.

23. Gerntholtz TE, Goetsch SJ, Katz I. HIV-related nephropathy: a South African perspective. Kidney Int. 2006;69:1885–1891.

24. Cheng JT, Anderson HL Jr, Markowitz GS, et al. Hepatitis C virus associated glomerular disease in patients with human immunodeficiency virus coinfection. J Am Soc Nephrol. 1999;10: 1566–1574.

25. Mohan S, Herlitz LC, Tan J, et al. The changing pattern of glomerular disease in HIV and hepatitis C co-infected patients in the era of HAART. Clin Nephrol. 2013;79:285–291.

26. Stokes MB, Chawla H, Brody RI, et al. Immune complex glomerulonephritis in patients coinfected with human immunodeficiency virus and hepatitis C virus. Am J Kidney Dis. 1997;29: 514–525.

27. Herlitz LC, Mohan S, Stokes MB, et al. Tenofovir nephrotoxicity: acute tubular necrosis with distinctive clinical, pathological, and mitochondrial abnormalities. Kidney Int. 2010;78:1171–1177.

28. Fine DM, Perazella MA, Lucas GM, et al. Kidney biopsy in HIV: beyond HIV-associated nephropathy. Am J Kidney Dis. 2008;51:504–514.

29. Parkhie SM, Fine DM, Lucas GM, et al. Characteristics of patients with HIV and biopsy-proven acute interstitial nephritis. Clin J Am Soc Nephrol. 2010;5:798–804.

30. Zaidan M, Lescure FX, Brocheriou I, et al. Tubulointerstitial nephropathies in HIV-infected patients over the past 15 years: a clinicopathological study. Clin J Am Soc Nephrol. 2013;8:930–938.

31. Fox C, Walker-Bone K. Evolving spectrum of HIV-associated rheumatic syndromes. Best Pract Res Clin Rheumatol. 2015;29:244–258.

32. Yoo J, Baumstein D, Kuppachi S, et al. Diffuse infiltrative lymphocytosis syndrome presenting as reversible acute kidney injury associated with Gram-negative bacterial infection in patients with newly diagnosed HIV infection. Am J Kidney Dis. 2011;57:752–755.

33. Zafrani L, Coppo P, Dettwiler S, et al. Nephropathy associated with the diffuse infiltrative lymphocytosis syndrome. Kidney Int. 2007;72: 219–224.

34. Martin-Blondel G, Debard A, Laurent C, et al. Mycobacterial-immune reconstitution inflammatory syndrome: a cause of acute interstitial nephritis during HIV infection. Nephrol Dial Transplant. 2011;26: 2403–2406.

35. Rarick MU, Espina B, Mocharnuk R, et al. Thrombotic thrombocytopenic purpura in patients with human immunodeficiency virus infection: a report of three cases and review of the literature. Am J Hematol. 1992;40:103–109.

36. del Arco A, Martinez MA, Pena JM, et al. Thrombotic thrombocytopenic purpura associated with human immunodeficiency virus infection: demonstration of p24 antigen in endothelial cells. Clin Infect Dis. 1993;17:360–363.

37. Remark R, Merghoub T, Grabe N, et al. In-depth tissue profiling using multiplexed immunohistochemical consecutive staining on single slide. Sci Immunol. 2016;1:aaf6925.

38. Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–457.

39. Xu GJ, Kula T, Xu Q, et al. Viral immunology. Comprehensive serological profiling of human populations using a synthetic human virome. Science. 2015;348:aaa0698.

40. Kopp JB, Winkler C. HIV-associated nephropathy in African Americans. Kidney Int Suppl. 2003:S43–S49.

41. Kopp JB, Smith MW, Nelson GW, et al. MYH9 is a majoreffect risk gene for focal segmental glomerulosclerosis. Nat Genet. 2008;40:1175–1184.

42. Kao WH, Klag MJ, Meoni LA, et al. MYH9 is associated with non diabetic end-stage renal disease in African Americans. Nat Genet. 2008;40: 1185–1192.

43. Behar DM, Rosset S, Tzur S, et al. African ancestry allelic variation at the MYH9 gene contributes to increased susceptibility to non-diabetic endstage kidney disease in Hispanic Americans. Hum Mol Genet. 2010;19: 1816–1827.

44. Nelson GW, Freedman BI, Bowden DW, et al. Dense mapping of MYH9 localizes the strongest kidney disease associations to the region of introns 13 to 15. Hum Mol Genet. 2010;19:1805–1815.

45. Genovese G, Friedman DJ, Ross MD, et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science. 2010;329:841–845.

46. Perez-Morga D, Vanhollebeke B, Paturiaux-Hanocq F, et al. Apolipoprotein L-I promotes trypanosome lysis by forming pores in lysosomal membranes. Science. 2005;309:469–472.

47. Vanhamme L, Paturiaux-Hanocq F, Poelvoorde P, et al. Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature. 2003;422:83–87.

48. Cooper A, Ilboudo H, Alibu VP, et al. APOL1 renal risk variants have contrasting resistance and susceptibility associations with African trypanosomiasis. Elife. 2017;6. pii:e25461.

49. Kopp JB, Nelson GW, Sampath K, et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol. 2011;22:2129–2137.

50. Limou S, Nelson GW, Kopp JB, et al. APOL1 kidney risk alleles: population genetics and disease associations. Adv Chronic Kidney Dis. 2014;21:426–433.

51. Kasembeli AN, Duarte R, Ramsay M, et al. APOL1 risk variants are strongly associated with HIV-Associated nephropathy in Black South Africans. J Am Soc Nephrol. 2015;26:2882–2890.

52. Behar DM, Kedem E, Rosset S, et al. Absence of APOL1 risk variants protects against HIV-associated nephropathy in the Ethiopian population. Am J Nephrol. 2011;34:452–459.

53. Dummer PD, Limou S, Rosenberg AZ, et al. APOL1 Kidney Disease risk variants: an evolving landscape. Semin Nephrol. 2015;35:222–236.

54. Atta MG, Estrella MM, Kuperman M, et al. HIV-associated nephropathy patients with and without apolipoprotein L1 gene variants have similar clinical and pathological characteristics. Kidney Int. 2012;82:338–343.

55. Ko WY, Rajan P, Gomez F, et al. Identifying Darwinian selection acting on different human APOL1 variants among diverse African populations. Am J Hum Genet. 2013;93:54–66.

56. Atta MG, Estrella MM, Skorecki KL, et al. Association of APOL1 genotype with renal histology among Black HIV-positive patients undergoing kidney biopsy. Clin J Am Soc Nephrol. 2016;11:262–270.

57. Fine DM, Wasser WG, Estrella MM, et al. APOL1 risk variants predict histopathology and progression to ESRD in HIV-related kidney disease. J Am Soc Nephrol. 2012;23:343–350.

58. Kopp JB, Winkler CA, Zhao X, et al. Clinical features and histology of apolipoprotein L1-associated nephropathy in the FSGS clinical trial. J Am Soc Nephrol. 2015;26:1443–1448.

59. Estrella MM, Li M, Tin A, et al. The association between APOL1 risk alleles and longitudinal kidney function differs by HIV viral suppression status. Clin Infect Dis. 2015;60:646–652.

60. Estrella MM, Wyatt CM, Pearce CL, et al. Host APOL1 genotype is independently associated with proteinuria in HIV infection. Kidney Int. 2013;84:834–840.

61. Beckerman P, Bi-Karchin J, Park AS, et al. Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nat Med. 2017;23:429–438.

62. Nichols B, Jog P, Lee JH, et al. Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1. Kidney Int. 2015;87:332–342.

63. Fu Y, Zhu JY, Richman A, et al. APOL1-G1 in nephrocytes induces hypertrophy and accelerates cell death. J Am Soc Nephrol. 2017;28: 1106–1116.

64. Kruzel-Davila E, Shemer R, Ofir A, et al. APOL1-mediated cell injury involves disruption of conserved trafficking processes. J Am Soc Nephrol. 2017;28:1117–1130.

65. Ma L, Chou JW, Snipes JA, et al. APOL1 renal-risk variants induce mitochondrial dysfunction. J Am Soc Nephrol. 2017;28:1093–1105.

66. Olabisi OA, Zhang JY, VerPlank L, et al. APOL1 kidney disease risk variants cause cytotoxicity by depleting cellular potassium and inducing stress-activated protein kinases. Proc Natl Acad Sci U S A. 2016;113:830–837.

67. Bruggeman LA, Wu Z, Luo L, et al. APOL1-G0 or APOL1-G2 Transgenic Models Develop Preeclampsia but Not Kidney Disease. J Am Soc Nephrol. 2016;27:3600–3610.

68. Wan G, Zhaorigetu S, Liu Z, et al. Apolipoprotein L1, a novel Bcl-2 homology domain 3-only lipid-binding protein, induces autophagic cell death. J Biol Chem. 2008;283:21540–21549.

69. Lan X, Jhaveri A, Cheng K, et al. APOL1 risk variants enhance podocyte necrosis through compromising lysosomal membrane permeability. Am J Physiol Renal Physiol. 2014;307:F326–F336.

70. Atta MG, Gallant JE, Rahman MH, et al. Antiretroviral therapy in the treatment of HIV-associated nephropathy. Nephrol Dial Transplant. 2006;21:2809–2813.

71. Booth JW, Hamzah L, Jose S, et al. Clinical characteristics and outcomes of HIV-associated immune complex kidney disease. Nephrol Dial Transplant. 2016;31:2099–2107.

72. Foy MC, Estrella MM, Lucas GM, et al. Comparison of risk factors and outcomes in HIV immune complex kidney disease and HIV-associated nephropathy. Clin J Am Soc Nephrol. 2013;8:1524–1532.

73. Ibrahim F, Naftalin C, Cheserem E, et al. Immunodeficiency and renal impairment are risk factors for HIV-associated acute renal failure. AIDS. 2010;24:2239–2244.

74. Mocroft A, Lundgren JD, Ross M, et al. Development and validation of a risk score for chronic kidney disease in HIV infection using prospective cohort data from the D:A:D study. PLoS Med. 2015;12: e1001809.

75. Scherzer R, Gandhi M, Estrella MM, et al. A chronic kidney disease risk score to determine tenofovir safety in a prospective cohort of HIVpositive male veterans. AIDS. 2014;28:1289–1295.

76. Woodward CL, Hall AM, Williams IG, et al. Tenofovirassociated renal and bone toxicity. HIV Med. 2009;10:482–487.

77. Hamzah L, Jose S, Booth JW, et al. Treatment-limiting renal tubulopathy in patients treated with tenofovir disoproxil fumarate. J Infect. 2017;74: 492–500.

78. Mocroft A, Lundgren JD, Ross M, et al. Cumulative and current exposure to potentially nephrotoxic antiretrovirals and development of chronic kidney disease in HIV-positive individuals with a normal baseline estimated glomerular filtration rate: a prospective international cohort study. Lancet HIV. 2016;3:e23–e32.

79. Scherzer R, Estrella M, Li Y, et al. Association of tenofovir exposure with kidney disease risk in HIV infection. AIDS. 2012;26:867–875.

80. Jose S, Hamzah L, Campbell LJ, et al. Incomplete reversibility of estimated glomerular filtration rate decline following tenofovir disoproxil fumarate exposure. J Infect Dis. 2014;210:363–373.

81. Post FA, Tebas P, Clarke A, et al. Brief report: switching to tenofovir alafenamide, coformulated with elvitegravir, cobicistat, and emtricitabine, in HIV-Infected adults with renal impairment: 96-week results from a single-arm, multicenter, open-label phase 3 study. J Acquir Immune Defic Syndr. 2017;74:180–184.

82. Ryom L, Mocroft A, Kirk O, et al. Predictors of estimated glomerular filtration rate progression, stabilization or improvement after chronic renal impairment in HIV-positive individuals. AIDS. 2017;31:1261–1270.

83. Waheed S, Attia D, Estrella MM, et al. Proximal tubular dysfunction and kidney injury associated with tenofovir in HIV patients: a case series. Clin Kidney J. 2015;8:420–425.

84. Hamzah L, Booth JW, Jose S, et al. Renal tubular disease in the era of combination antiretroviral therapy. AIDS. 2015;29:1831–1836.

85. Chughlay MF, Njuguna C, Cohen K, et al. Acute interstitial nephritis caused by lopinavir/ritonavir in a surgeon receiving antiretroviral postexposure prophylaxis. AIDS. 2015;29:503–504.

86. Doco-Lecompte T, Garrec A, Thomas L, et al. Lopinavirritonavir (Kaletra) and lithiasis: seven cases. AIDS. 2004;18:705–706.

87. Hamada Y, Nishijima T, Watanabe K, et al. High incidence of renal stones among HIV-infected patients on ritonavir-boosted atazanavir than in those receiving other protease inhibitor-containing antiretroviral therapy. Clin Infect Dis. 2012;55:1262–1269.

88. Schmid S, Opravil M, Moddel M, et al. Acute interstitial nephritis of HIV positive patients under atazanavir and tenofovir therapy in a retrospective analysis of kidney biopsies. Virchows Arch. 2007;450: 665–670.

89. Shafi T, Choi MJ, Racusen LC, et al. Ritonavir-induced acute kidney injury: kidney biopsy findings and review of literature. Clin Nephrol. 2011;75(Suppl 1):60–64.

90. Jose S, Nelson M, Phillips A, et al. Improved kidney function in patients who switch their protease inhibitor from atazanavir or lopinavir to darunavir. AIDS. 2017;31:485–492.

91. Cahn P, Andrade-Villanueva J, Arribas JR, et al. Dual therapy with lopinavir and ritonavir plus lamivudine versus triple therapy with lopinavir and ritonavir plus two nucleoside reverse transcriptase inhibitors in antiretroviral-therapy-naive adults with HIV-1 infection: 48 week results of the randomised, open label, non-inferiority GARDEL trial. Lancet Infect Dis. 2014;14:572–580.

92. Perez-Molina JA, Rubio R, Rivero A, et al. Dual treatment with atazanavir-ritonavir plus lamivudine versus triple treatment with atazanavir-ritonavir plus two nucleos(t)ides in virologically stable patients with HIV-1 (SALT): 48 week results from a randomised, openlabel, non-inferiority trial. Lancet Infect Dis. 2015;15:775–784.

93. Raffi F, Babiker AG, Richert L, et al. Ritonavir-boosted darunavir combined with raltegravir or tenofovir-emtricitabine in antiretroviralnaive adults infected with HIV-1: 96 week results from the NEAT001/ ANRS143 randomised non-inferiority trial. Lancet. 2014;384: 1942–1951.

94. Abraham AG, Althoff KN, Jing Y, et al. End-stage renal disease among HIV-infected adults in North America. Clin Infect Dis. 2015;60:941–949.

95. Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382:260–272.

96. Wong C, Gange SJ, Buchacz K, et al. First occurrence of diabetes, chronic kidney disease, and hypertension among North American HIVinfected adults, 2000-2013. Clin Infect Dis. 2017;64:459–467.

97. Lucas GM, Jing Y, Sulkowski M, et al. Hepatitis C viremia and the risk of chronic kidney disease in HIV-infected individuals. J Infect Dis. 2013;208: 1240–1249.

98. Mocroft A, Neuhaus J, Peters L, et al. Hepatitis B and C co-infection are independent predictors of progressive kidney disease in HIV-positive, antiretroviral-treated adults. PLoS One. 2012;7:e40245.

99. Jha V, Prasad N. CKD and infectious diseases in Asia Pacific: challenges and opportunities. Am J Kidney Dis. 2016;68:148–160.

100. Shen TC, Huang KY, Chao CH, et al. The risk of chronic kidney disease in tuberculosis: a population-based cohort study. QJM. 2015;108:397–403.

101. Wen YK, Chen ML. Crescentic glomerulonephritis associated with miliary tuberculosis. Clin Nephrol. 2009;71:310–313.

102. Choi AI, Li Y, Parikh C, et al. Long-term clinical consequences of acute kidney injury in the HIV-infected. Kidney Int. 2010;78:478–485.

103. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl. 2013;3: 1–150.

104. Choi A, Scherzer R, Bacchetti P, et al. Cystatin C, albuminuria, and 5-year all-cause mortality in HIV-infected persons. Am J Kidney Dis. 2010;56: 872–882.

105. Shlipak MG, Matsushita K, Arnlov J, et al. Cystatin C versus creatinine in determining risk based on kidney function. N Engl J Med. 2013;369: 932–943.

106. Inker LA, Wyatt C, Creamer R, et al. Performance of creatinine and cystatin C GFR estimating equations in an HIVpositive population on antiretrovirals. J Acquir Immune Defic Syndr. 2012;61:302–309.

107. Lucas GM, Cozzi-Lepri A, Wyatt CM, et al. Glomerular filtration rate estimated using creatinine, cystatin C or both markers and the risk of clinical events in HIV-infected individuals. HIV Med. 2014;15: 116–123.

108. Seape T, Gounden V, van Deventer HE, et al. Cystatin C- and creatininebased equations in the assessment of renal function in HIV-positive patients prior to commencing highly active antiretroviral therapy. Ann Clin Biochem. 2016;53:58–66.

109. Yombi JC, Pozniak A, Boffito M, et al. Antiretrovirals and the kidney in current clinical practice: renal pharmacokinetics, alterations of renal function and renal toxicity. AIDS. 2014;28:621–632.

110. Knight EL, Verhave JC, Spiegelman D, et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 2004;65:1416–1421.

111. Stevens LA, Levey AS. Measurement of kidney function. Med Clin North Am. 2005;89:457–473.

112. Stevens LA, Schmid CH, Greene T, et al. Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int. 2009;75:652–660.

113. Yombi JC, Jones R, Pozniak A, et al. Monitoring of kidney function in HIV-positive patients. HIV Med. 2015;16:457–467.

114. Yahaya I, Uthman AO, Uthman MM. Interventions for HIV-associated nephropathy. Cochrane Database Syst Rev. 2009:CD007183.

115. World Health Organization. Consolidated guidelines on HIV prevention, diagnosis, treatment and care for key populations. Geneva, Switzerland; 2014.

116. Kidney Disease: Impproving global Outcomes (KDIGO) Blood Pressure Working Group. KDIGO Clinical Practice Guidelines for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Intl Suppl. 2012;2: 337–414.

117. Wright JT Jr, Williamson JD, Whelton PK, et al. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N Engl J Med. 2015;373:2103–2116.

118. World Health Organization. Guidelines for the prevention, care and treatment of persons with chronic hepatitis B infection. Geneva, Switzerland; 2015.

119. Nahid P, Dorman SE, Alipanah N, et al. Executive Summary: Official American Thoracic Society/Centers for Disease Control and Prevention/ Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin Infect Dis. 2016;63: 853–867.

120. Pol S, Jadoul M, Vallet-Pichard A. An update on the management of hepatitis C virus-infected patients with stage 4-5 chronic kidney disease while awaiting the revised KDIGO Guidelines. Nephrol Dial Transplant. 2017;32:32–35.

121. Terrault NA, Bzowej NH, Chang KM, et al. AASLD guidelines for treatment of chronic hepatitis B. Hepatology. 2016;63:261–283.

122. Ahuja TS, Grady J, Khan S. Changing trends in the survival of dialysis patients with human immunodeficiency virus in the United States. J Am Soc Nephrol. 2002;13:1889–1893.

123. Ahuja TS, Collinge N, Grady J, et al. Is dialysis modality a factor in survival of patients with ESRD and HIV-associated nephropathy? Am J Kidney Dis. 2003;41:1060–1064.

124. Soleymanian T, Raman S, Shannaq FN, et al. Survival and morbidity of HIV patients on hemodialysis and peritoneal dialysis: one center’s experience and review of the literature. Int Urol Nephrol. 2006;38: 331–338.

125. Mitchell D, Krishnasami Z, Young CJ, et al. Arteriovenous access outcomes in haemodialysis patients with HIV infection. Nephrol Dial Transplant. 2007;22:465–470.

126. Wreghitt TG. Blood-borne virus infections in dialysis units–a review. Rev Med Virol. 1999;9:101–109.

127. Centers for Disease Control and Prevention. Current trends recommendations for providing dialysis treatment to patients infected with human T-lymphotropic virus type III/lymphadenopathy-associated virus. MMWR. 1986;35:376–378, 383.

128. Centers for Disease Control and Prevention. Preventing infections in dialysis setting guideline. Available at: https://www.cdc.gov/infectioncontrol/guidelines/dialysis/index.html. Accessed July 19, 2017.

129. Ndlovu KC, Sibanda W, Assounga A. Peritonitis outcomes in patients with HIV and end-stage renal failure on peritoneal dialysis: a prospective cohort study. BMC Nephrol. 2017;18:48.

130. Farzadegan H, Ford D, Malan M, et al. HIV-1 survival kinetics in peritoneal dialysis effluent. Kidney Int. 1996;50:1659–1662.

131. Ndlovu KC, Sibanda W, Assounga A. Detection of human immunodeficiency virus-1 ribonucleic acid in the peritoneal effluent of renal failure patients on highly active antiretroviral therapy. Nephrol Dial Transplant. 2017;32:714–721.

132. Stock PG, Barin B, Murphy B, et al. Outcomes of kidney transplantation in HIV-infected recipients. N Engl J Med. 2010;363:2004–2014.

133. Locke JE, Gustafson S, Mehta S, et al. Survival benefit of kidney transplantation in HIV-infected patients. Ann Surg. 2017;265:604–608.

134. Gathogo EN, Hamzah L, Hilton R, et al. Kidney transplantation in HIV-positive adults: the UK experience. Int J STD AIDS. 2014;25:57–66.

135. Gathogo EN, Shah S, Post FA. Kidney transplant outcomes in HIV serodiscordant recipient pairs. AIDS. 2017;31:1199–1201.

136. Locke JE, Mehta S, Sawinski D, et al. Access to kidney transplantation among HIV-infected waitlist candidates. Clin J Am Soc Nephrol. 2017;12: 467–475.

137. Muller E, Barday Z, Mendelson M, et al. HIV-positive-to-HIV-positive kidney transplantation–results at 3 to 5 years. N Engl J Med. 2015;372: 613–620.

138. Waheed S, Sakr A, Chheda ND, et al. Outcomes of re nal transplantation in HIV-1 associated nephropathy. PLoS One. 2015;10:e0129702.

139. McLean FE, Gathogo E, Goodall D, et al. Alemtuzumab induction therapy in HIV-positive renal transplant recipients. AIDS. 2017;31:1047–1048.

140. Gathogo E, Harber M, Bhagani S, et al. Impact of tacrolimus compared with cyclosporin on the incidence of acute allograft rejection in human immunodeficiency virus-positive kidney transplant recipients. Transplantation. 2016;100:871–878.

141. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J Hepatol. 2017;67:370–398.

142. Karuthu S, Blumberg EA. Common infections in kidney transplant recipients. Clin J Am Soc Nephrol. 2012;7:2058–2070.

143. Kidney Disease: Improving Global Outcomes. KDIGO clinical practice guidelines for the prevention, diagnosis, evaluation, and treatment of hepatitis C in chronic kidney disease. Kidney Int Suppl. 2008;109:S1–S99.

144. Lok AS, McMahon BJ. Chronic hepatitis B: update 2009. Hepatology. 2009;50:661–662.

145. Sawinski D, Shelton BA, Mehta S, et al. Impact of protease inhibitor based anti-retroviral therapy on outcomes for HIVю kidney transplant recipients. Am J Transplant. 2017;17:3114–3122.

146. Canaud G, Dejucq-Rainsford N, Avettand-Fenoel V, et al. The kidney as a reservoir for HIV-1 after renal transplantation. J Am Soc Nephrol. 2014;25:407–419.

147. APOL1 Long-term Kidney Transplantation Outcomes Network (APOLLO) Clinical Centers (Collaborative U01), RFADK- 16–025. In: Department of Health and Human Services N, ed. Available at: https://grants.nih.gov/grants/guide/rfa-files/RFA-DK-16-025.html. Accessed June 19, 2017.

148. Muller E, Barday Z, Kahn D. HIV-positive-to-HIV-positive kidney transplantation. N Engl J Med. 2015;372:2070–2071.

149. Muller E, Kahn D, Mendelson M. Renal transplantation between HIV-positive donors and recipients. N Engl J Med. 2010;362:2336–2337.

150. Organ procurement and transplantation: implementation of the HIV Organ Policy Equity Act. Final rule. Fed Regist. 2015;80:26464–26467.

151. Boyarsky BJ, Segev DL. From bench to bill: how a transplant nuance became 1 of only 57 laws passed in 2013. Ann Surg. 2016;263:430–433.

152. Papeta N, Kiryluk K, Patel A, et al. APOL1 variants increase risk for FSGS and HIVAN but not IgA nephropathy. J Am Soc Nephrol. 2011;22: 1991–1996.

153. Purswani MU, Patel K, Winkler CA, et al. Brief report: APOL1 renal risk variants are associated with chronic kidney disease in children and youth with perinatal HIV infection. J Acquir Immune Defic Syndr. 2016;73:63–68.

154. Sax PE, Wohl D, Yin MT, et al. Tenofovir alafenamide versus tenofovir disoproxil fumarate, coformulated with elvitegravir, cobicistat, and emtricitabine, for initial treatment of HIV-1 infection: two randomised, double-blind, phase 3, non-inferiority trials. Lancet. 2015;385: 2606–2615.

155. Abboud O, Becker G, Bellorin-Font E, et al. KDIGO clinical practice guidelines on hepatitis C in chronic kidney disease acknowledged by ISN. Nat Clin Pract Nephrol. 2008;4:648–649.

156. Mendizabal M, Reddy KR. Chronic hepatitis C and chronic kidney disease: Advances, limitations and unchartered territories. J Viral Hepat. 2017;24:442–453.

157. Pockros PJ, Reddy KR, Mantry PS, et al. Efficacy of Direct-Acting Antiviral Combination for Patients With Hepatitis C Virus Genotype 1 Infection and Severe Renal Impairment or End- Stage Renal Disease. Gastroenterology. 2016;150:1590–1598.

158. Roth D, Nelson DR, Bruchfeld A, et al. Grazoprevir plus elbasvir in treatment-naive and treatment-experienced patients with hepatitis C virus genotype 1 infection and stage 4-5 chronic kidney disease (the C-SURFER study): a combination phase 3 study. Lancet. 2015;386: 1537–1545.

159. Bhamidimarri KR, Czul F, Peyton A, et al. Safety, efficacy and tolerability of half-dose sofosbuvir plus simeprevir in treatment of Hepatitis C in patients with end stage renal disease. J Hepatol. 2015;63:763–765.

160. Dumortier J, Bailly F, Pageaux GP, et al. Sofosbuvir-based antiviral therapy in hepatitis C virus patients with severe renal failure. Nephrol Dial Transplant. 2017;32:2065–2071.

161. Saxena V, Koraishy FM, Sise ME, et al. Safety and efficacy of sofosbuvir containing regimens in hepatitis C-infected patients with impaired renal function. Liver Int. 2016;36:807–816.

162. Kim PS, Woods C, Georgoff P, et al. A1C underestimates glycemia in HIV infection. Diabetes Care. 2009;32:1591–1593.

163. Slama L, Palella FJ Jr, Abraham AG, et al. Inaccuracy of haemoglobin A1c among HIV-infected men: effects of CD4 cell count, antiretroviral therapies and haematological parameters. J Antimicrob Chemother. 2014;69:3360–3367.

164. Gane E, Lawitz E, Pugatch D, et al. Glecaprevir and pibrentasvir in patients with HCV and severe renal impairment. N Engl J Med. 2017;377: 1448–1455.

165. AASLD/IDSA. HCV guidance: recommendations for testing, managing, and treating hepatitis C. Patients with renal impairment. Available at: https://www.hcvguidelines.org/uniquepopulations/renal-impairment.


Рецензия

Для цитирования:


Сванепоэль Ч.Р., Атта М.Д., Д’Агати В.Д., Эстрелла М.М., Фого А.Б., Найкер С., Пост Ф.А., Верне Н., Винклер Ч.А., Чеунг М., Вилер Д.С., Винкельмайер В.С., Вьятт К.М., конференции з.у. ВИЧ-АССОЦИИРОВАННАЯ БОЛЕЗНЬ ПОЧЕК: ИТОГИ СОГЛАСИТЕЛЬНОЙ КОНФЕРЕНЦИИ KDIGO. Нефрология. 2018;22(6):84-100. https://doi.org/10.24884/1561-6274-2018-22-6-84-100

For citation:


Swanepoel C.R., Atta M.G., D’Agati V.D., Estrella M.M., Fogo A.B., Naicker S., Post F.A., Wearne N., Winkler Ch.A., Cheung M., Wheeler D.C., Winkelmayer W.C., Wyatt Ch.M., Participants f.C. KIDNEY DISEASE IN THE SETTING OF HIV INFECTION: CONCLUSIONS FROM A KIDNEY DISEASE: IMPROVING GLOBAL OUTCOMES (KDIGO) CONTROVERSIES CONFERENCE. Nephrology (Saint-Petersburg). 2018;22(6):84-100. https://doi.org/10.24884/1561-6274-2018-22-6-84-100

Просмотров: 2579


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)