Preview

Nephrology (Saint-Petersburg)

Advanced search

CLINICAL AND PROGNOSTIC VALUE OF PROTEOLYSIS FACTORS IN CHILDREN WITH AUTOSOMAL DOMINANT POLYCYSTIC KIDNEY DISEASE

https://doi.org/10.24884/1561-6274-2019-23-2-91-99

Abstract

BACKGROUND. One of the perspectives of modern Nephrology is the study of the mechanisms of nephrosclerosis in ADPKD. Matrix metalloproteinase system (MMP/TIMP)— enzymes that play a key role in the processes of proteolysis in the kidney. THE AIM: to determine the expression of the urine MMP-2, MMP-3 and MMP-9 and their inhibitors TIMP-1 and 2, PAI-I, to establish their relationship with the volume of the kidney corrected to the surface of the body and the functional state of the kidneys, an additional criterion of progression. PATIENTS AND METHODS. The study included 34 children with ADPKD. The level of MMP-2, MMP-3 and MMP-9 and their inhibitors TIMP-1 and 2, PAI-I were determined in urine by ELISA. RESULTS. eGFR in children with total kidney volume greater than 97‰ was significantly lower than in children with normal total kidney volume. In the group of children with a total volume of the kidneys more than 97 percentile,a statistically significant increase in the level of TIMP-1 and TIMP-2 and PAI-I in the urine, and a statistically significant low level of urinary excretion of MMP-3 and MMP-9, compared with the group of children with ADPKD with normal total volume of the kidneys. In the group of children with ADPKD and total kidney volume of more than 97 percentiles of an inverse correlation relationship between the level of eGFR and TIMP-2 and PAI-I, as well as a direct correlation relationship between the total volume of kidney and the urinary excretion of TIMP-1. CONCLUSION. MMP and its inhibitors play an important role in renal damage in children with ADPKD. These proteolysis factors are promising to use as an indicator of the severity of the accumulation of extracellular matrix, that is, monitoring the process of fibrosis, and used as a predictor of progression.

About the Author

Z. R. Bashirova
Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow
Russian Federation
MD, department of hereditary and acquired kidney disease, research assistant


References

1. Ong AC, Devuyst O, Knebelmann B, Walz G. Autosomal dominant polycystic kidney disease: the changing face of clinical management. Lancet 2015;385(9981):1993–2002. DOI: 10.1016/ S0140-6736(15)60907-2

2. Wong ATY, Mannix C, Grantham JJ et. al. Randomised controlled trial to determine the efficacy and safety of prescribed water intake to prevent kidney failure due to autosomal dominant polycystic kidney disease (PREVENT-ADPKD). BMJ Open 2018 Jan 21;8(1):e018794. DOI: 10.1136/bmjopen-2017-018794

3. Gabow PA. Autosomal dominant polycystic kidney disease. N Engl J Med (1993) 329:332–342. DOI: 10.1056/ NEJM199307293290508

4. He WB, Xiao WJ, Tan YQ et al. Novel mutations of PKD genes in Chinese patients suffering from autosomal dominant polycystic kidney disease and seeking assisted reproduction. J BMC Med Genet 2018 Oct 17;19(1):186. DOI:0.1186/s12881-018-0693-7

5. De Rechter S, Breysem L, Mekahli D. Is Autosomal Dominant Polycystic Kidney Disease Becoming a Pediatric Disorder? Front Pediatr 2017;20;5:272. DOI:10.3389/fped.2017.00272

6. Kimberling WJ, Kumar S, Gabow PA et al. Autosomal dominant polycystic kidney disease: localization of the second gene to chromosome 4q13-q23. Genomics 1993;18(3):467–472. DOI: 10.1016/S0888-7543(11)80001-7

7. Audrézet MP, Cornec-Le Gall E, Chen JM et al. Auto-somal dominant polycystic kidney disease: comprehensive mutation analysis of PKD1 and PKD2 in 700 unrelated patients. Hum Mutat 2012;33(8):1239–1250. DOI: 10.1002/humu.22103 2012;33:1239–1250

8. Iliuta IA, Kalatharan V, Wang K et al. Polycystic kidney disease without an apparent family history. J Am Soc Nephrol 2017;28(9):2768–2776. DOI: 10.1681/ASN.2016090938

9. Porath B, Gainullin VG, Cornec-Le Gall E et al. Mutations in GANAB, encoding the glucosidase IIalpha subunit, cause autosomal-dominant polycystic kidney and liver disease. Am J Hum Genet 2016;98(6):1193–1207. DOI: 10.1016/j.ajhg.2016.05.004

10. Alam A. Risk factors for progression in ADPKD. Curr Opin Nephrol Hypertens 2015;24(3):290–294. DOI: 10.1097/ MNH.0000000000000113

11. Reed B, McFann K, Kimberling WJ et al. Presence of de novo mutations in autosomal dominant polycystic kidney disease patients without family history. Am J Kidney Dis 2008;52:1042– 1050. DOI: 10.1053/j.ajkd.2008.05.015

12. Iliuta IA, Kalatharan V, Wang K et al. Polycystic kidney disease without an apparent family history. J Am Soc Nephrol 2017;28:2768–2776. DOI:10.1681/ASN.2016090938

13. Rossetti S, Consugar MB, Chapman AB et al. Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 2007;18(7):2143–2160. DOI: 10.1681/ASN.2006121387

14. Grantham JJ. Clinical practice. Autosomal dominant polycystic kidney disease. N Engl J Med (2008)359:1477–1485. DOI: 10.1056/NEJMcp0804458

15. Mieusset R, Fauquet I, Chauveau D et. al. The spectrum of renal involvement in male patients with infertility related to excretory-system abnormalities: phenotypes, genotypes, and genetic counseling. J Nephrol 2017;30(2):211–218. DOI: 10.1007/ s40620-016-0286-5

16. Alam A, Dahl N, Lipschutz JH et al. Total Kidney Volume in Autosomal Dominant Polycystic Kidney Disease: A Biomarker of Disease Progression and Therapeutic Efficacy. Am J Kidney Dis 2015;66(4):564–576. DOI: 10.1053/j.ajkd.2015.01.030

17. Imed H, Berenice R, Kim McFann et al. Glomerular Hyperfiltration and Renal Progression in Children with Autosomal Dominant Polycystic Kidney Disease. Clin J Am Soc Nephrol 2011; 6(10): 2439–2443. DOI: 10.2215/CJN.01010211

18. Wong H, Vivian L, Weiler G, Filler G. Patients with autosomal dominant polycystic kidney disease hyperfiltrate early in their disease. Am J Kidney Dis 2004;43(4):624–628. PMID: 15042539

19. Grantham JJ. Rationale for early treatment of polycystic kidney disease. Pediatr Nephrol 2014;30:1053–1062. DOI:10.1007/s00467-014-2882-8

20. Velosa JA, Griffin MD, Larson TS et al. Can a transplanted living donor kidney function equivalently to its native partner? Am J Transplant 2002;2(3):252–259. DOI:10.1034/j.1600-6143.2002.20310.x

21. Klahr S, Breyer JA, Beck GJ et al. Modification of Diet in Renal Disease Study Group: Dietary protein restriction, blood pressure control, and the progression of polycystic kidney disease. J Am Soc Nephrol 1995;5(12):2037–2047. PMID: 7579052

22. Grantham JJ. Clinical practice. Autosomal dominant polycystic kidney disease. N Engl J Med 2008;359(14):1477–1485. DOI:10.1056/NEJMcp0804458

23. McEwan P, Bennett Wilton H, Ong ACM et al. A model to predict disease progression in patients with autosomal dominant polycystic kidney disease (ADPKD): the ADPKD Outcomes Model. BMC Nephrol 2018;19(1):37. DOI:10.1186/s12882-017-0804-2

24. Irazabal MV, Rangel LJ, Bergstralh EJ et al. Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials. J Am Soc Nephrol 2015 Jan;26(1):160–172. DOI: 10.1681/ASN.2013101138

25. Rockey DC, Bell PD, Hill JA.Fibrosis–a common pathway to organ injury and failure. N Engl J Med 2015;373(1):96. DOI: 10.1056/NEJMc1504848

26. Eddy AA. Can renal fibrosis be reversed? Pediatr Nephrol 2005;20(10):1369–1375. DOI: 10.1007/s00467-005-1995-5

27. Meguid E, Nahas A, Bello AK. Chronic kidney disease: the global challenge. Lancet 2005;365(9456):331–340. DOI: 10.1016/ S0140-6736(05)17789-7

28. Eddy AA. Molecular basis of renal fibrosis. Pediatr Nephrol 2000 Dec;15(3-4):290–301. PMID: 11149129

29. Bicer A, Guclu B, Ozkan A et al. Expressions of angiogenesis associated matrix metalloproteinases and extracellular matrix proteins in cerebral vascular malformations. J Clin Neurosci 2010;17(2):232–236. DOI: 10.1016/j.jocn.2009.06.008

30. Jeremy S. Duffield. Cellular and molecular mechanisms in kidney fibrosis. J Clin Invest 2014 Jun;124(6):2299–2306. DOI: 10.1172/JCI72267

31. Norman J. Fibrosis and progression of autosomal dominant polycystic kidney disease (ADPKD). Biochim Biophys Acta 2011;1812(10):1327–1336. DOI: 10.1016/j.bbadis.2011.06.012

32. Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem 1999;274(31):21491–21494. PMID: 10419448

33. Bobkova IN, Kozlovskaia LV, Li OA. The role of matrix metalloproteinases in pathogenesis of renal disease. Ter Arkh 2008;80(6):86–90 (In Russ.)

34. Catania JM, Chen G, Parrish AR. Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol 2007;292(3): F905–911. DOI: 10.1152/ajprenal.00421.2006

35. Keeling J, Herrera GA. Human matrix metalloproteinases: characteristics and pathologic role in altering mesangial homeostasis. Microsc Res Tech 2008 May;71(5):371–379. DOI: 10.1002/jemt.20565

36. Sternlicht MD. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001;17:463–516. DOI: 10.1146/ annurev.cellbio.17.1.463

37. Woon C, Bielinski-Bradbury A, O'Reilly K, Robinson P. A systematic review of the predictors of disease progression in patients with autosomal dominant polycystic kidney disease. BMC Nephrol 2015;16:140. DOI: 10.1186/s12882-015-0114-5

38. Grantham J, Torres V, Chapman AB et al. Volume progression in polycystic kidney disease. Clin J Am Soc Nephrol 2006;1(1):148–157. DOI: 10.2215/CJN.00330705

39. Chapman AB, Bost JE, Torres VE et al. Kidney volume and functional outcomes in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 2012;7(3):479–486. DOI: 10.2215/ CJN.09500911

40. Chapman AB, Guay-Woodford LM, Grantham JJ et al. Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort. Kidney Int 2003;64:1035–1045. DOI:10.1046/j.1523-1755.2003.00185.x

41. Lacquaniti A, Chirico V, Lupica R et al. Apelin and copeptin: two opposite biomarkers associated with kidney function decline and cyst growth in autosomal dominant polycystic kidney disease. Peptides 2013;49:1–8. DOI: 10.1016/j.peptides.2013.08.007

42. Thong KM, Ong ACM. The natural history of autosomal dominant polycystic kidney disease: 30-year experience from a single centre. QJM 2013;106:639–646. DOI: 10.1093/qjmed/ hct082

43. Higashihara E, Nutahara K, Okegawa T et al. Kidney volume and function in autosomal dominant polycystic kidney disease. Clin Exp Nephrol 2014;18:157–165. DOI:10.1007/ s10157-013-0834-4

44. Griveas I, Bishop K, World M. Adult polycystic kidney disease: who needs hospital follow-up? Artif Organs 2012;36(7):594– 599. DOI: 10.1111/j.1525-1594.2012.01441.x

45. Perrone RD, Mouksassi MS, Romero K et al. Total kidney volume is a prognostic biomarker for worsening of kidney function in patients with autosomal dominant polycystic kidney disease. Kidney Int Rep 2017;2(3):442–450. DOI: 10.1016/j.ekir.2017.01.003

46. Schwartz GJ, Brion LP, Spizer A. The use of plasma creatinine concentration in for astimating glomerular filtration rate in infants, children and adolescents. Pediat Clin North Am 1987; 34: 571–590. PMID: 3588043

47. National Kidney Foundation Kidney Disease Outcomes Quality Initiatives K/DOQI Clinical Practice Guidelines for Chronic Kidney Disease Evaluation Classification Stratification. Am J Kidney Dis 2002; 39: 1–266

48. Singer E, Golijanni D, Davis R et al. What’s new in urologic ultrasound? Urol Clin North Am 2006; 3: 279–286. DOI: 10.1016/j. ucl.2006.03.004

49. Scholbach Th, Weitzel D. Body-Surface-Area Related Renal Volume: A Common Normal Range from Birth to Adulthood. Scientifica. Scientifica (Cairo). 2012;2012:949164. DOI: 10.6064/2012/949164

50. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function and biochemistry. Circ Res 2003;92:827–839. DOI:10.1161/01. RES.0000070112.80711.3D

51. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 2006;69(3):562–573. DOI: 10.1016/j.cardiores.2005.12.002

52. Tan TK, Zheng G, Hsu TT et al. Macrophage matrix metalloproteinase-9 mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells. Am J Pathol 2010;176:1256–1270. DOI:10.2353/ajpath.2010.090188

53. Aresu L, Benali S, Garbisa S et al. Matrix metalloproteinases and their role in the renal epithelial mesenchymal transition. Histol Histopathol 2011;26(3):307–313. DOI:10.14670/HH-26.307

54. Okada Y, Gonoji Y, Naka K et al. Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT 1080 human fibrosarcoma cells: purification and activation of the precursor and enzymic properties. J Biol Chem 1992;267:21712–21719. PMID: 1400481

55. Toth M, Sado Y, Ninomiya Y et al. Biosynthesis of alpha2(IV) and alpha1(IV) chains of collagen IV and interactions with matrix metalloproteinase-9. J Cell Physiol 1999;180(1):131–139. DOI: 10.1002/(SICI)1097-4652(199907)180:13.0.CO;2-S

56. Morrison CJ, Butler GS, Rodriguez D et al. Matrix metalloproteinase proteomics: substrates, targets, and therapy. Curr Opin Cell Biol 2009;21:645–653. DOI: 10.1016/j.ceb.2009.06.006

57. Overall CM. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol Biotechnol 2002;22(1):51–86. DOI: 10.1385/MB:22:1:051

58. Schaefer L, Han X, Gretz N et al. Tubular gelatinase A (MMP-2) and its tissue inhibitors in polycystic kidney disease in the Han: SPRD rat. Kidney Int 1996;49:75–81. PMID: 8770951

59. Ronco С, Lelongt B, Piedagnel R et al. Matrix metalloproteinases in kidney disease progression and repair: a case of flipping the coin. Semin Nephrol 2007;27(3):352–362. DOI: 10.1016/j. semnephrol.2007.02.006

60. Inkinen KA, Soots AP, Krogerus LA et al. Fibrosis and matrix metalloproteinases in rat renal allografts. Transpl Int 2005;18(5):506–512. DOI: 10.1111/j.1432-2277.2004.00053.x

61. Kuroda T, Yoshida Y, Kamiie J et al. Expression of MMP-9 in mesangial cells and its changes in anti-GBM glomerulonephritis in WKY rats. Clin Exp Nephrol 2004;8(3):206–215. DOI: 10.1007/ s10157-004-0289-8

62. Ogbureke KU, Fisher LW. Renal expression of SIBLING proteins and their partner matrix metalloproteinases (MMPs). Kidney Int 2005 Jul;68(1):155–166. DOI: 10.1111/j.1523-1755.2005.00389.x

63. Toth M, Chvyrkova I, Bernardo MM et al. Pro-MMP-9 activation by the MT1-MMP/MMP-2 axis and MMP-3: role of TIMP-2 and plasma membranes. Biochem Biophys Res Commun 2003;308(2):386–395. PMID: 12901881

64. Tan TK, Zheng G, Hsu TT et al. Matrix metalloproteinase-9 of tubular and macrophage origin contributes to the pathogenesis of renal fibrosis via macrophage recruitment through osteopontin cleavage. Lab Invest 2013;93(4):434–449. DOI: 10.1038/labinvest.2013.3

65. Pawlak K, Mysliwiec M, Pawlak D. Peripheral blood level alterations of MMP-2 and MMP-9 in patients with chronic kidney disease on conservative treatment and on hemodialysis. Clin Biochem 2011;44(10-11):838–843. DOI: 10.1016/j.clinbiochem.2011.03.143

66. Marti HP. Role of matrix metalloproteinases in the progression of renal lesions. Presse Med 2000;29:811–817. PMID: 10816726

67. Musiał K, Bargenda A, Zwolińska D. Urine survivin, E-cadherin and matrix metalloproteinases as novel biomarkers in children with chronic kidney disease. Biomarkers 2015;20(3):177–182. DOI: 10.3109/1354750X.2015.1061598.

68. Jared J Grantham, Vicente E Torres. The importance of total kidney volume in evaluating progression of polycystic kidney disease. Nat Rev Nephrol 2016;12(11): 667–677. DOI: 10.1038/ nrneph.2016.135

69. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Аnnu Rev Cel Dev Biol 2001; 17: 463–516. DOI: 10.1146/annurev.cellbio.17.1.463


Review

For citations:


Bashirova Z.R. CLINICAL AND PROGNOSTIC VALUE OF PROTEOLYSIS FACTORS IN CHILDREN WITH AUTOSOMAL DOMINANT POLYCYSTIC KIDNEY DISEASE. Nephrology (Saint-Petersburg). 2019;23(2):91-99. (In Russ.) https://doi.org/10.24884/1561-6274-2019-23-2-91-99

Views: 924


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)