Inhibitors of canonical Wnt signaling pathway and inorganic phosphate imbalance in experimental chronic kidney disease
https://doi.org/10.36485/1561-6274-2019-236-83-91
Abstract
BACKGROUND. The molecular mechanisms of the initial stages of inorganic phosphate (Pi) metabolic disorders in chronic kidney disease (CKD) remain poorly understood.
THE AIM. To test the hypothesis about changes in canonical Wnt signaling pathway inhibitors biosynthesis and a concomitant decrease in bone turnover as one of early mechanisms of Pi imbalance in CKD.
MATERIAL AND METHODS. Creatinine (Cr), inorganic phosphate (Pi), serum parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), osteoprotegerin (OPG), sclerostin (SOST) and Dickkopf-1 (DKK), renal SOST and DKK mRNA expression, albuminuria (Alb), proteinuria (uTP) levels, fractional (FEPi) and daily (uPi24) Pi excretion were analyzed in SHR rats (N = 52) with 3/4 nephrectomy (NE) or sham operation (SO) and observation periods of 2, 4, and 6 months.
RESULTS. Experimental model was comparable with 1-2 stages of CKD. In groups NE4 and NE6, the concentration of sPi and renal Pi excretion (FEPi and uPi24) were significantly higher vs corresponding controls SO4 (p = 0.006, p <0.010) and SO6 (p = 0.002, p = 0.028). Serum concentrations of FGF23 and PTH in NE and SO animals did not change significantly. In NE4 and NE6 groups, serum SOST and DKK concentrations were significantly higher vs controls (p <0.049, p <0.043), while the kidney expression SOST and DKK mRNA in NE rats did not change significantly or decreased (p = 0.002, p <0.011). The serum concentration of OPG was higher in the NE6 vs SO6 control (p = 0.028).
CONCLUSION. The initial stages of experimental CKD are characterized by an increase in serum concentrations of Dikkopf-1, sclerostin and osteoprotegerin. The obtained data suggest the possible role of canonical Wnt signaling inhibition and reduction of bone turnover in the pathogenesis of Pi metabolic disorders in early stages of CKD.
About the Authors
E. O. BogdanovaRussian Federation
Evdokia O. Bogdanova, PhD, Pavlov First Saint Petersburg State Medical University, Research Institute of Nephrology, Laboratory of Biochemical Homeostasis
197022, St. Petersburg, L. Tolstoy st., 17, build. 54
O. N. Beresneva
Russian Federation
Olga N. Beresneva, PhD, senior researcher, Pavlov First Saint Petersburg State Medical University, Research Institute of Nephrology, Laboratory of Clinical Physiology of the Kidney
197022, St. Petersburg, L. Tolstoy st., 17, build. 54
I. M. Zubina
Russian Federation
Irina M. Zubina, PhD in Biology, Pavlov First Saint Petersburg State Medical University, Research Institute of Nephrology, Laboratory of Biochemical Homeostasis
197022, St. Petersburg, L. Tolstoy st., 17, build. 54
G. T. Ivanova
Russian Federation
Galina T. Ivanova, PhD, senior researcher, Laboratory of physiology of cardiovascular and lymphatic systems
199034, St. Petersburg, Makarova Emb., 6,
M. M. Parastaeva
Russian Federation
Marina M. Parastaeva, PhD, senior researcher, Pavlov First Saint Petersburg State Medical University, Research Institute of Nephrology, Laboratory of Clinical Physiology of the Kidney
197022, St. Petersburg, L. Tolstoy st., 17, build. 54
O. V. Galkina
Russian Federation
Olga V. Galkina, PhD in Biology, Pavlov First Saint Petersburg State Medical University, Research Institute of Nephrology, Head of The Laboratory of Biochemical Homeostasis
197022, St. Petersburg, L. Tolstoy st., 17, build. 54
I. G. Kayukov
Russian Federation
Ivan G. Kayukov, Prof., MD, PhD, DMedSci, Pavlov First Saint Petersburg State Medical University, Research Institute of Nephrology, Head of The Laboratory of Clinical Physiology of the Kidney
197022, St. Petersburg, L. Tolstoy st., 17, build. 54
V. A. Dobronravov
Russian Federation
Vladimir A. Dobronravov, Prof., MD, PhD, DMedSci, Pavlov First Saint Petersburg State Medical University, Research Institute of Nephrology, Vice-Director
197022, St. Petersburg, L. Tolstoy st., 17, build. 54
References
1. Schiavi SC, Tang W, Bracken C et al. Npt2b deletion attenuates hyperphosphatemia associated with CKD. J Am Soc Nephrol 2012;23:1691–1700. doi: 10.1681/ASN.2011121213
2. Takeda E, Yamamoto H, Yamanaka-Okumura H, Taketani Y. Dietary phosphorus in bone health and quality of life. Nutr Rev 2012;70:311–321. doi: 10.1111/j.1753-4887.2012.00473
3. Karp HJ, Kemi VE, Lamberg-Allardt CJ, Karkkainen MU. Monoand polyphosphates have similar effects on calcium and phosphorus metabolism in healthy young women. Eur J Nutr 2013;52:991–996. doi: 10.1007/s00394-012-0406-5
4. Plotkin LI, Mathov I, Aguirre JI et al. Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins, Src kinases and ERKs. Am J Physiol Cell Physiol 2005;289:633–C643. doi: 10.1152/ajpcell.00278.2004
5. Liu H, Fergusson MM, Castilho RM et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science 2007;317:803–806. doi: 10.1126/science.1143578
6. Gittenberger-de Groot AC, Winter EM, Bartelings MM et al. The arterial and cardiac epicardium in development, disease and repair. Differentiation 2012;84(1):41–53. doi: 10.1016/j.diff.2012.05.002
7. Mill C, George SJ. Wnt signalling in smooth muscle cells and its role in cardiovascular disorders. Cardiovasc Res 2012;95(2):233–240. doi: 10.1093/cvr/cvs141
8. Von Gise A, Pu WT. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res 2012;110(12):1628–1645. doi: 10.1161/CIRCRESAHA.111.259960
9. Kawakami T, Ren S, Duffield JS. Wnt signalling in kidney diseases: dual roles in renal injury and repair. J Pathol 2013;229(2):221–231. doi: 10.1002/path.4121
10. Tsuji K, Bandyopadhyay A, Harfe BD et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 2006;38:1424–1429. doi: 10.1038/ng1916
11. Moyses RM, Schiavi SC. Sclerostin, osteocytes, and chronic kidney disease – mineral bone disorder. Semin Dial 2015;28(6):578–586. doi:10.1111/sdi.12415
12. Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis 2008;4(2):68–75. doi: 10.4161/org.4.2.5851
13. Compton JT, Lee FY. А Review of Osteocyte Function and the Emerging Importance of Sclerostin. J Bone Joint Surg Am 2014;96(19):1659–1668. doi: 10.2106/JBJS.M.01096
14. Bafico A, Liu G, Yaniv A et al. Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/ Arrow. Nat Cell Biol 2001;3(7):683–686. doi: 10.1038/35083081
15. Dobronravov VA. Current view on the pathophysiology of secondary hyperparathyroidism: role of fibroblast growth factor 23 and klotho. Nephrology (Saint-Petersburg) 2011;15(4):11–20. (In Russ.) doi: 10.24884/1561-6274-2011-15-4-11-20
16. Dobronravov VA. Phosphate, kidneys, bones and cardiovascular system. Nephrology (Saint-Petersburg) 2016;20(4):10–24. (In Russ.)
17. Takahashi S, Okada K, Nagura Y et al. Three-quarters nephrectomy in rats as a model of early renal failure. Nihon Jinzo Gakkai Shi 1991;33(1):27–31
18. Poole KE, van Bezooijen RL, Loveridge N et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB Journal 2005;19:1842–1844. doi: 10.1096/fj.05-4221fje
19. Dorit Naot, Usha Bava, Brya Matthews et al. Differential Gene Expression in Cultured Osteoblasts and Bone Marrow Stromal Cells From Patients With Paget's Disease of Bone. JBMR 2009. doi: 10.1359/jbmr.061108
20. Lu KCh, Wu CC, Yen JF, Liu WCh. Vascular Calcification and Renal Bone Disorders. The Scientific World Journal 2014. doi: 10.1155/2014/637065
21. Surendran K, Schiavi S, Hruska KA. Wnt-dependentβ-catenin signaling is activated after unilateral ureteral obstruction, and recombinant secreted frizzled-related protein 4 alters the progression of renal fibrosis. J Am Soc Nephrol 2005;16:2373–2384. doi: 10.1681/ASN.2004110949
22. Zhu D, Mackenzie NC, Millan JL et al. The appearance and modulation of osteocyte marker expression during calcification of vascular smooth muscle cells. PLoS One 2011;6(5):e19595. doi: 10.1371/journal.pone.0019595
23. Koyama S, Tsuruda T, Ideguchi T et al. Osteoprotegerin is secreted into the coronary circulation: a possible association with the renin-angiotensin system and cardiac hypertrophy. Horm Metab Res 2014;46(8):581–586. doi: 10.1055/s-0034-1375611
24. Qureshi AR, Olauson H, Witasp A et al. Increased circulating sclerostin levels in end-stage renal disease predict biopsy-verified vascular medial calcification and coronary artery calcification. Kidney Int 2015;88(6):1356–1364. doi: 10.1038/ki.2015.194
25. De Mare A, Maudsley S, Azmi A et al. Sclerostin as Regulatory Molecule in Vascular Media Calcification and the Bone–Vascular Axis. Toxins (Basel) 2019;11(7)pii:E428. doi: 10.3390/toxins11070428.
26. van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development 2009;136:3205– 3214. doi: 10.1242/dev.033910.
27. Cosin-Roger J, Ortiz-Masia MD, Barrachina MD. Macrophages as an Emerging Source of Wnt Ligands: Relevance in Mucosal Integrity Front. Immunol 2019. doi: 10.3389/fimmu.2019.02297
28. Bonewald LF. The amazing osteocyte. J of Bone and Mineral Res 2011;26(2):229–238. doi: 10.1002/jbmr.320
29. Chande S, Bergwitz C. Role of phosphate sensing in bone and mineral metabolism. Nature Reviews Endocrinology 2018;14:637–655. doi: 10.1038/s41574-018-0076-3
30. Conrads KA, Yu LR, Lucas DA et al. Quantitative proteomic analysis of inorganic phosphate-induced murine MC3T3-E1 osteoblast cells. Electrophoresis 2004;25(9):1342–1352. doi: 10.1002/elps.200405892
31. Conrads KA, Yi M, Simpson KA et al. A combined proteome and microarray investigation of inorganic phosphate-induced preosteoblast cells. Mol Cell Proteomics 2005;4(9):1284–1296. doi: 10.1074/mcp.M500082-MCP200
32. Pesta DH, Tsirigotis DN, Befroy DE et al. Hypophosphatemia promotes lower rates of muscle ATP synthesis. FASEB J 2016;30(10):3378–3387. doi: 10.1096/fj.201600473R
33. Beck L, Leroy C, Salaun C et al. Identification of a novel function of PiT1 critical for cell proliferation and independent of its phosphate transport activity. J Biol Chem 2009;284(45):31363–74. doi: 10.1074/jbc.M109.053132.
34. Chavkin NW, Chia JJ, Crouthamel MH, Giachelli CM. Phosphate uptake-independent signaling functions of the type III sodium-dependent phosphate transporter, PiT-1, in vascular smooth muscle cells. Exp Cell Res 2015;333(1):39–48. doi: 10.1016/j.yexcr.2015.02.002
35. Kanatani M, Sugimoto T, Kano J et al. Effect of high phosphate concentration on osteoclast differentiation as well as bone-resorbing activity. J Cell Physiol 2003;196(1):180–189. doi: 10.1002/jcp.10270
36. Kang JH, Ko HM, Moon JS et al. Osteoprotegerin Expressed by Osteoclasts An Autoregulator of Osteoclastogenesis. J Dent Res 2014;93(11):1116–1123. doi: 10.1177/0022034514552677
37. Dobronravov VA, Bogdanova EO, Semenova NY et al. Renal aKlotho expression, fibroblast growth factor 23 and parathyroid hormone in experimental modeling of early stages of chronic kidney injury. Nephrology (Saint-Petersburg) 2014;18(2):72–78. (In Russ.)
38. Bogdanova EO, Galkina OV, Zubina IM, Dobronravov VA. Klotho, fibroblast growth factor 23 and inorganic phosphate in early stages of cronic kidney disease. Nephrology (Saint-Petersburg) 2016;20(4):54–61. (In Russ.)
Review
For citations:
Bogdanova E.O., Beresneva O.N., Zubina I.M., Ivanova G.T., Parastaeva M.M., Galkina O.V., Kayukov I.G., Dobronravov V.A. Inhibitors of canonical Wnt signaling pathway and inorganic phosphate imbalance in experimental chronic kidney disease. Nephrology (Saint-Petersburg). 2019;23(6):83-91. (In Russ.) https://doi.org/10.36485/1561-6274-2019-236-83-91