Soybean proteins counteract heart remodeling in wistar rats fed a high sodium chloride diet
https://doi.org/10.36485/1561-6274-2019-236-92-99
Abstract
BACKGROUND. Increased salt intake is associated with a number of cardiovascular events, including increased blood pressure (BP) and the development of left ventricular hypertrophy (LVH). However, there is much evidence that a high content of sodium chloride in the diet does not always lead to an increase in BP, but almost inevitably causes cardiac remodeling, in particular, LVH. Many aspects of myocardial remodeling induced by high sodium content in the food have not been studied enough. THE AIM of the study was to trace the echocardiographic changes in Wistar rats fed the high salt ration and the high salt ration supplemented with soy proteins.
MATERIAL AND METHODS. Echocardiography and BP measurements were performed on male Wistar rats, divided into three groups. The first (control; n = 8) included rats that received standard laboratory feed (20.16 % animal protein and 0.34 % NaCl); the second (n = 10) – animals that received standard feed and 8 % NaCl (high salt ration). The third group (n = 10) consisted of rats who consumed a low-protein diet containing 10 % soy protein isolate (SUPRO 760) and 8 % NaCl. The follow-up period was 2 and 4 months.
THE RESULTS of the study showed that: (1) the intake of a large amount of salt with a diet does not necessarily lead to the formation of arterial hypertension; (2) despite the absence of a distinct increase in BP, under these conditions signs of cardiac remodeling, in particular, LVH, appear rather quickly; (3) supplementing a high-salt diet with soy isolates counteracts the development of LVH.
CONCLUSION. High salt intake with food can cause heart remodeling, regardless of blood pressure, while soy proteins can counteract this process.
About the Authors
I. G. KayukovRussian Federation
Ivan G. Kayukov, Prof., MD, PhD, DMedSci. Pavlov First Saint Petersburg State Medical University, Research Institute of Nephrology, Head of The Laboratory of Clinical Physiology of the Kidney
197022, St. Petersburg, L. Tolstoy st., 17, build 54
O. N. Beresneva
Russian Federation
Olga N. Beresneva, PhD, senior researcher. Pavlov First Saint Petersburg State Medical University, Research Institute of Nephrology, Laboratory of Clinical Physiology of the Kidney
197022, St. Petersburg, L. Tolstoy st., 17, build 54
M. M. Parastaeva
Russian Federation
Marina M. Parastaeva, PhD, senior researcher. Pavlov First Saint Petersburg State Medical University, Research Institute of Nephrology, Laboratory of Clinical Physiology of the Kidney
197022, St. Petersburg, L. Tolstoy st., 17, build 54
G. T. Ivanova
Russian Federation
Galina T. Ivanova, PhD, senior researcher. Pavlov Institute of Physiology Russian Academy of Sciences, Laboratory of physiology of cardiovascular and lymphatic systems
197022, St. Petersburg, L. Tolstoy st., 17, build 54
A. N. Kulikov
Russian Federation
Aleksandr N. Kulikov, MD, PhD, DMedSci. Pavlov First Saint Petersburg State Medical University, Research and clinical research center, Department of clinical physiology and functional diagnostics, Head
197022, St. Petersburg, L. Tolstoy st., 17, build 54
A. G. Kucher
Russian Federation
Anatoly G. Kucher, Prof., MD, PhD, DMedSci. Pavlov First Saint Petersburg State Medical University, Research Institute of Nephrology, Research and Сlinical Research Center, Vice-Director
197022, St. Petersburg, L. Tolstoy st., 17, build 54
D. D. Karal-ogly
Russian Federation
Dzhina D. Karal-ogly, PhD. Scientifi c research institute of medical primatology, Head of Pre-clinical and clinical research laboratory medicines and medical products
354376, Krasnodar Territory, Sochi, Adler district, s. Vesyoloe, Mir st., 177
S. V. Orlov
Russian Federation
Sergey V. Orlov, Prof., MD, PhD, DMedSci, corresponding member Russian Academy of Sciences. Scientifi c research institute of medical primatology
354376, Krasnodar Territory, Sochi, Adler district, s. Vesyoloe, Mir st., 177
References
1. Brown IJ, Dyer AR, Chan Q et al. Estimating 24-hour urinary sodium excretion from casual urinary sodium concentrations in Western populations: the INTERSALT study. Am J Epidemiol 2013;177(11):1180–1192
2. Mente A, O'Donnell M, Rangarajan S et al. Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: a community-level prospective epidemiological cohort study. Lancet 2018;392(10146):496–506. doi: 10.1016/S01406736(18)31376-X
3. Mente A, O'Donnell M, Rangarajan S et al. Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: a pooled analysis of data from four studies. Lancet 2016;388(10043):465–475. doi: 10.1016/S0140-6736(16)30467-6
4. Felder RA, White MJ, Williams SM, Jose PA. Diagnostic tools for hypertension and salt sensitivity testing. Curr Opin Nephrol Hypertens 2013;22(1):65–76. doi: 10.1097/MNH.0b013e32835b3693
5. Parastaeva MM, Beresneva ON, Ivanova GT et al. Hypertension and salt intake: contribution to cardiac remodeling. Nephrology(Saint-Petersburg) 2016;20(5):97–105.(InRuss.)
6. Beresneva ON, Parastaeva MM, Ivanova GT at al. Changes in the cardiovascular system in rats associated with high consumption of sodium chloride. Arterial hypertension 2014;20(5):384–390. (In Russ.)
7. Grigorova YN, Wei W, Petrashevskaya N et al. Dietary sodium restriction reduces arterial stiffness, vascular TGF-β-dependent fibrosis and marinobufagenin in young normotensive rats. Int J MolSci 2018;19(10):pii: E3168. doi: 10.3390/ijms19103168
8. Grigorova YN, Juhasz O, Zernetkina V et al. Aortic fibrosis, induced by high salt intake in the absence of hypertensive response, is reduced by a monoclonal antibody to marinobufagenin. Am J Hypertens 2016;29(5):641–646. doi: 10.1093/ajh/hpv155
9. Titze J, Dahlmann A, Lerchl K et al. Spooky sodium balance. Kidney Int 2014;85(4):759–767. doi: 10.1038/ki.2013.367
10. Titze J, Luft FC. Speculations on salt and the genesis of arterial hypertension. Kidney Int 2017;91(6):1324–1335. doi: 10.1016/j.kint.2017.02.034
11. Yang GH, Zhou X, Ji WJ et al. VEGF-C-mediated cardiac lymphangiogenesis in high salt intake accelerated progression of left ventricular remodeling in spontaneously hypertensive rats. Clin Exp Hypertens 2017;39(8):740–747. doi: 10.1080/10641963.2017.1324478
12. Despa S, Bers DM. Na transport in the normal and failing heart – remember the balance. J Mol Cell Cardiol 2013;61:2–10. doi: 10.1016/j.yjmcc.2013.04.011
13. MacLeod KT. Recent advances in understanding cardiac contractility in health and disease. F1000Res 2016; 20(5): pii: F1000–1770. doi: 10.12688/f1000research.8661.1.eCollection2016
14. Dong Y, Xu S, Liu J et al. Non-coding RNA-linked epigenetic regulation in cardiac hypertrophy. Int J BiolSci 2018;14(9):1133– 1141. doi: 10.7150/ijbs.26215
15. Li Y, Liang Y, Zhu Y et al. Noncoding RNAs in cardiac hypertrophy. J CardiovascTranslRes 2018;11(6):439–449. doi: 10.1007/s12265-018-9797-x
16. Santos L, Davel AP, Almeida TI et al. Soy milk versus simvastatin for preventing atherosclerosis and left ventricle remodeling in LDL receptor knockout mice. Braz J MedBiol Res 2017;50(3):e5854. doi: 10.1590/1414-431X20165854
17. Yanai H, Katsuyama H, Hamasaki H et al. Effects of soy protein and isoflavones intake on HDL metabolism in Asian populations. J Endocrinol Metab 2014;4:51–55
18. Tezuka H, Imai S. Immunomodulatory effects of soybeans and processed soy food compounds. Recent Pat Food Nutr Agric 2015;7(2):92–99
19. Liu XX, Li SH, Chen JZ et al. Effect of soy isoflavones on blood pressure: A meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 2012;22:463–470. doi: 10.1016/j.numecd.2010.09.006
20. Dong JY, Tong X, Wu ZW et al. Effect of soya protein on blood pressure: A meta-analysis of randomised controlled trials. Br J Nutr 2011;106:317–326. doi: 10.1017/S0007114511000262
21. Beresneva ON, Ivanova GT, Parastaeva MM et al. Influence of protein diet of plant and animal origin on the state of the cardiovascular system and the progression of experimental uremia in rats. Nephrology and dialysis 2013;15(4):305. (InRuss.)
22. Beresneva ON, Parastaeva MM, Ivanova GT et al. Assessment of cardioprotective effect of low-protein soy diet and the level of inorganic anions of blood serum in spontaneously hypertensive rats with nephrectomy. Nephrology (Saint-Petersburg) 2007;11(3):7076.(In Russ.)
23. Garcia JAD, Santos L, Moura AL et al. S-nitroso-Nacetylcysteine (SNAC) prevents myocardial alterations in hypercholesterolemic LDL receptor knockout mice by antiinflammatory action. J Cardiovasc Pharmacol 2008;51:78-85. doi: 10.1097/FJC.0b013e31815c39d4
24. Ganai AA, Farooqi H. Bioactivity of genistein: A review of in vitro and in vivo studies.Biomed Pharmacother 2015;76:30–38. doi: 1016/j.biopha.2015.10.026
25. Ajdžanović VZ, Medigović IM, Pantelić JB, Milošević VLj. Soy isoflavones and cellular mechanics.J BioenergBiomembr 2014;46(2):99–107. doi: 10.1007/s10863-013-9536-6
26. Cha M, Park JR. Production and characterization of a soy protein-derived angiotensin Iconverting enzyme inhibitory hydrolysate. J Med Food 2005;8(3):305–310
27. Daliri EB, Ofosu FK, Chelliah R et al. Development of a soy protein hydrolysate with an antihypertensive effect. Int J Mol Sci 2019;20(6):pii: E1496. doi: 10.3390/ijms20061496
Review
For citations:
Kayukov I.G., Beresneva O.N., Parastaeva M.M., Ivanova G.T., Kulikov A.N., Kucher A.G., Karal-ogly D.D., Orlov S.V. Soybean proteins counteract heart remodeling in wistar rats fed a high sodium chloride diet. Nephrology (Saint-Petersburg). 2019;23(6):92-99. (In Russ.) https://doi.org/10.36485/1561-6274-2019-236-92-99