Preview

Nephrology (Saint-Petersburg)

Advanced search

Modern pharmacological approaches to primary treatment nephrotic syndrome

https://doi.org/10.36485/1561-6274-2020-24-4-9-20

Abstract

The review is devoted to the consideration of the most common drugs currently used in the treatment of primary nephrotic syndrome. Mechanisms of pharmacological activity of glucocorticosteroids, ACTH, calcineurin inhibitors cyclosporine A and tacrolimus, alkylating compounds cyclophosphamide and chlorambucil, mycophenolate mofetil, levamisole, abatacept, rituximab and a number of other recently created monoclonal antibodies. An attempt is made to separate the immune and non-immune mechanisms of action of the most common drugs, concerning both the impact on the immunogenetics of the noted diseases and the direct impact on the podocytes that provide permeability of the glomerular filtration barrier and the development of proteinuria. It is shown that the immune mechanisms of corticosteroids are caused by interaction with glucocorticoid receptors of lymphocytes, and nonimmune – with stimulation of the same receptors in podocytes. It was found that the activation of adrenocorticotropic hormone melanocortin receptors contributes to the beneficial effect of the drug in nephrotic syndrome. It is discussed that the immune mechanism of calcineurin inhibitors is provided by the suppression of tissue and humoral immunity, and the non-immune mechanism is largely due to the preservation of the activity of podocyte proteins such as synaptopodin and cofilin. Evidence is presented to show that the beneficial effect of rituximab in glomerulopathies is related to the interaction of the drug with the protein SMPDL-3b in lymphocytes and podocytes. The mechanisms of action of mycophenolate mofetil, inhibiting the activity of the enzyme inosine 5-monophosphate dehydrogenase, which causes the suppression of the synthesis of guanosine nucleotides in both lymphocytes and glomerular mesangium cells, are considered. It is emphasized that the effect of levamisole in nephrotic syndrome is probably associated with the normalization of the ratio of cytokines produced by various T-helpers, as well as with an increase in the expression and activity of glucocorticoid receptors. The mechanisms of pharmacological activity of a number of monoclonal antibodies, as well as galactose, the beneficial effect of which may be provided by binding to the supposed permeability factor produced by lymphocytes, are considered.

About the Authors

Ya. F. Zverev
Altai State Medical University
Russian Federation

Prof. Yakov F. Zverev MD, DMedSci, Department of Pharmacology

656038, Barnaul, Lenin avenue, 40.

Phone: (3852)566-891



A. Ya. Rykunova
Barnaul Law Institute
Russian Federation

Anna Ya. Rykunova, Department of Criminology

656038, Barnaul, Chkalov st., 49.

Phone: (3852)379163



References

1. Зверев ЯФ, Рыкунова АЯ. Нарушения клубочкового фильтрационного барьера как причина протеинурии при нефротическом синдроме. Нефрология 2019;23(4):96–111. doi:10.24884/1561-6274-2019-23-4-96 Zverev YaF, Rykunova AYa. Disorders of glomerular filtration barrier as the cause of proteinuria in the nephrotic syndrome. Nephrology (Saint-Petersburg) 2019;23(4):96–111. (In Russ.)

2. Козловская ЛВ, Фомин ВВ. Нефротический синдром: подходы к диагностике и лечению. Consilium Med 2005;7(7):520–523 Kozlovskaya LV, Fomin VV. Nephrotic syndrome: approaches to diagnosis and treatment. Consilium Med 2005;7(7):520–523. (In Russ.)

3. Немцова ВД. Нефротический синдром. Часть II. Мистецтво лiкування 2008;51(5):25–30 Nemtsova VD. Nephrotic syndrome: Part II. Mystetstvo likuvannya 2008;51(5):25–30. (In Russ.)

4. Грене ГЙ, Кисс Е. Нефротический синдром: гистопатологическая дифференциальная диагностика. Часть 1: определение, классификация, патофизиология, генетические формы. Нефрология 2007;11(2):88–93 Grene GJ, Kiss E. Nephrotic syndrome: histopathologic differential diagnostics. Part 1: Definition, classification, pathophysiology, genetic forms. Nephrology (Saint-Petersburg) 2007;11(2):88–93. (In Russ.)

5. Бобкова ИН, Кахсуруева ПА, Ставровская ЕВ, Филатова ЕЕ. Эволюция в понимании патогенеза идиопатической мембранозной нефропатии: от экспериментальных моделей к клинике. Альманах клин мед 2017;45(7):553–564. doi: 10.18786/2072-0505-2017-45-7-553-564 Bobkova IN, Kakhsurueva PA, Stavrovskaya EV, Filatova EE. Evolution in the understanding of idiopathic membranous nephropathy pathogenesis: from experimental models to the clinic. Almanakh klin med 2017;45(7):553–564. (In Russ)

6. Арьев АЛ, Изотова АБ. Современные представления о патогенезе идиопатического мембранозного гломерулонефрита. Нефрология 2004;8(4):92–95 Ariev AL, Izotova AB. A modern image of pathogenesis of idiopathic membranous glomerulonephritis. Nephrology (SaintPetersburg) 2004;8(4):92–95. (In Russ.)

7. Петросян ЭК. Фокально-сегментарный гломерулосклероз – этиопатогенетические, клинические и морфологические особенности. Педиатрия 2007;86(3):129–132 Petrosjan JeK. Focal segmental glomerulosclerosis – etiopathogenetic, clinical and morphological features. Pediatrics 2007;86(3):129–132. (In Russ.)

8. Смирнов АВ, Трофименко ИИ, Сиповский ВГ. Болезнь минимальных изменений у взрослых. Нефрология 2013;17(6):9–36 Smirnov AV, Trofimenko II, Sipovskiy VG. Minimal change disease in adults. Nephrology (Saint-Petersburg) 2013;16(6):9–36. In Russ.)

9. Цыгин А. Нефротический синдром при болезни минимальных изменений. Врач 2013;6:2–6 Tsygin A. Nephrotic syndrome in minimal change disease. Vrach 2013;6:2–6. (In Russ.)

10. Петросян ЭК, Длин ВВ. Клинические рекомендации по диагностике и лечению болезни минимальных изменений у детей. Нефрология 2015;19(3):90–96 Petrosjan JeK, Dlin VV. Clinical practice guidelines for the diagnostics and treatment of minimal change disease in children. Nephrology (Saint-Petersburg) 2015;19(3):90–96. (In Russ)

11. Yoo T-H, Fornoni A. Nonimmunologic targets of immunosuppressive agents in podocytes. Kidney Res Clin Pract 2015;34:69–75. doi: 10.1016/j.krcp.2015.03.003

12. Saleem MA, Kobayashi Y. Cell biology and genetics of minimal change disease. F1000Res 2016;5.pii:F1000 Faculty Rev-412. doi: 10.12688/f1000research.7300.1

13. Bierzynska A, Saleem M. Recent advances in understanding and treating nephrotic syndrome. F1000Res 2017;6:121. doi: 10.12688/f1000research.10165.1

14. Wen Y, Shah S, Campbell KN. Molecular mechanisms of proteinuria in focal segmental glomerulosclerosis. Front Med (Lausanne) 2018;5:98. doi: 10.3389/fmed.2018.00098

15. Мельник АА. Фокально-сегментарный гломерулосклероз: генетический анализ и целевая терапия. Почки 2018 7(1):35–49 Melnyk AA. Focal segmental glomerulosclerosis: genetic analysis and target therapy. Pochki 2018;7(1):35–49. (In Russ.)

16. Suzuki T, Matsusaka T, Nakayama M et al. Genetic podocyte lineage reveals progressive podocytopenia with parietal cell hyperplasia in a murine model of cellular/collapsing focal segmental glomerulosclreosis. Am J Pathol 2009;174(5):1675–1682. doi: 10.2353/ajpath.2009.080789

17. Akchurin O, Reidy KJ. Genetic causes of proteinuria and nephrotic syndrome: Impact on podocyte pathobiology. Pediatr Nephrol 2014;30(2):221–233. doi: 10.1007/s00467-014-2753-3

18. Nguyen TQ, Goldschmeding R, van den Heuvel LP. Genetic testing for podocyte genes in sporadic focal segmental glomerulosclerosis. Nephrol Dial Transplant 2014;29:1985–1986. doi: 10.1093/ndt/glu247

19. Pollak MR. Familial FSGS. Adv Chronic Kidney Dis 2014;21(5):422–425. doi: 10.1053/j.ackd.2014.06.001

20. Chen YM, Liapis H. Focal segmental glomerulosclerosis: molecular genetics and targeted therapies. BMC Nephrology 2015;16(101):1–10. doi: 10.1186/s12882-015-0090-9

21. Fogo AB. Causes and pathogenesis of focal segmental glomerulosclerosis. Nat Rev Nephrol 2015;11(2):76–87. doi: 10.1038/nrneph.2014.2016

22. Trautmann A, Lipska-Ziętkiewicz BS, Schaefer F. Exploring the clinical and genetic spectrum of steroid resistant nephrotic syndrome: The PodoNet registry. Front Pediatr 2018;6:200. doi: 10.3389/fped.2018.00200

23. Bensimhon AR, Williams AE, Gbadegesin RA. Treatment of steroid-resistant nephrotic syndrome in the genomic era. Pediatr Nephrol 2019;34(11):2279–2293. doi: 10.1007/s00467-018-4093-1

24. Arneil GC, Wilson HEC. Cortisone treatment of nephrosis.Arch Dis Child 1952;27(134):322–328. doi: 10.1136/adc.27.134.322

25. Barbieri DD. Early results of prednisone therapy of nephrotic syndromes. Minerva Med 1955;46(99):1728

26. Chaudhuri JN, Ghosal SP. Observations on prednisolone treated cases of nephrotic syndrome. Indian J Pediatr 1958;25(5):201–209. doi: 10.1007/BF02903017

27. Pal A, Kaskel F. History of nephrotic syndrome and evolution of its treatment. Front Pediatr 2016;4:56. doi: 10.3389/fped.2016.00056

28. Downie ML, Lallibois C, Parekh RS, Noone DG. Nephrotic syndrome in infants and children: pathophysiology and management. Pediatrics Health 2017;37(4):248–258. doi: 10.1080/20469047.2017.1374003

29. Schijvens AM, ter Heine R, de Wildt SN, Schreuder MF. Pharmacology and pharmacogenetics of prednisone and prednisolone in patients with nephrotic syndrome. Pediatr Nephrol 2019;34:389–403. doi: 10.1007/s00467-018-3929-z

30. Zhao J, Liu Z. Treatment of nephrotic syndrome: going beyond immunosuppressive therapy. Pediatr Nephrol 2019;March 23, Publ online. doi: 10.1007/s00467-019-04225-7

31. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group. KDIGO clinical practice guideline for glomerulonephritis. Kidney Int Suppl 2012;2:139–274

32. Руденко ЕВ, Томилина НА, Захарова ЕВ. Применение Циклоспорина А для лечения нефротических типов хронических гломерулонефритов – болезни минимальных изменений и фокально-сегментарного гломерулосклероза. Нефрол диал 2015;17(2):156–172 Rudenko EV, Tomilina NA, Zakharova EV. Cyclosporin A usage for the treatment of nephrotic syndrome in glomerulonephrytes – minimal changes disease and focal segmental glomeruosclerosis. Nephrol Dial 2015;17(2):156–172. (In Russ.)

33. Yan K, Kudo A, Hirano H et al. Subcellular localization of glucocorticoid receptor protein in the human kidney glomerulus. Kidney Int 1999;56:65–73

34. Gamal Y, Badawy A, Swelam S et al. Glomerular glucocorticoid receptors expression and clinicopathological types of childhood nephrotic syndrome. Fetal Pediatr Pathol 2017;36(1):16–26. doi: 10.1080/15513815.2016.1225872

35. Zhao X, Khurana S, Charkraborty S et al.αactinin 4 (ACTN4) regulates glucocorticoid receptor-mediated transactivation and transrepression in podocytes. J Biol Chem 2017;292(5):1637–1647. doi: 10.1074/jbc.M116.755546

36. Wada T, Pippin JW, Marshall CB et al. Dexamethasone prevents podocyte apoptosis induced by puromycin aminonucleoside: role of p53 and Bcl-2 related family proteins. J Am Soc Nephrol 2005;16(9):2615–2625. doi: 10.1681/ASN.2005020142

37. Ransom RF, Lam NG, Hallett MA et al. Glucocorticoids protect and enhance recovery of cultured murine podocytes via actin filament stabilization. Kidney Int 2005;68(6):2473–2483. doi: 10.1111/j.1523-1755.2005.00723.x

38. Xing CY, Saleem MA, Coward RJ et al. Direct effects of dexamethasone on human podocytes. Kidney Int 2006;70(6):1038– 1045. doi: 10.1038/sj.ki.5001655

39. International Study of Kidney Disease in Children. The primary nephrotic syndrome in children. Identification of patients with minimal change nephritic syndrome from initial response to prednisone. J Pediatr 1981;98(4):561–564

40. Nourbakhsh N, Mak RH. Steroid-resistant nephrotic syndrome: past and current perspectives. Pediatric Health Med Ther 2017;8:29–37. doi: 10.2147/PHMT.S100803

41. Iijima K, Sako M, Kamei K, Nozu K. Rituximab in steroid-sensitive nephrotic syndrome: lessons from clinical trials. Pediatr Nephrol 2018;33(9):1449–1455. doi: 10.1007/s00467-017-3746-9

42. Kemper MJ, Valentin L, van Husen M. Difficult-to-treat idiopathic nephrotic syndrome: established drugs, open questions and future options. Pediatr Nephrol 2018;33(10):1641–1649. doi: 10.1007/s00467-017-3780-7

43. Tullus K, Webb H, Bagga A. Management of steroidresistant nephrotic syndrome in children and adolescents. Lancet Child Adolesc Health 2018;2(12):880–890. doi: 10.1016/s2352-4642(18)30283-9

44. Lieberman KV, Pavlova-Wolf A. Adrenocorticotropic hormone therapy for the treatment of idiopathic nephrotic syndrome in children and young adults: a systematic review of early clinical studies with contemporary relevance. J Nephrol 2017;30:35–44. doi: 10.1007/s40620-016-0308-3

45. Bomback AS, Tumlin JA, Baranski J et al. Treatment of nephrotic syndrome with adrenocorticotropic hormone (ACTH) gel. Drug Des Devel Ther 2011;5:147–153. doi: 10.2147/DDDT.S17521

46. Bomback AS, Canetta PA, Beck LH Jr. et al. Treatment of resistant glomerular diseases with adrenocorticotropic hormone gel: a prospective trial. Am J Nephrol 2012;36(1):58–67. doi: 10.1159/000339287

47. Hogan J, Bomback AS, Mehta K et al. Treatment of idiopathic FSGS with adrenocorticotropic hormone gel. Clin J Am Soc Nephrol 2013;8(12):2072–2081. doi: 10.2215/CJN.02840313

48. Tumlin JA, Galphin CM, Rovin BH. Advanced diabetic nephropathy with nephrotic range proteinuria: a pilot study of the long-term efficacy of subcutaneous ACTH gel on proteinuria, progression of CKD, and urinary levels of VEGF and MCP-1. J Diabetes Res 2013;2013:489869. doi: 10.1155/2013/489869

49. Watson MJ. Membranous glomerulopathy and treatment with Achtar®: a case study. Int J Nephrol Renovasc Dis 2013;6:229– 232. doi: 10.2147/IJNRD.S50660

50. Hladunewich MA, Cattran D, Beck LH et al. A pilot study to determine the dose and effectiveness of adrenocorticotropic hormone (H.P.Acthar® Gel) in nephrotic syndrome due to idiopathic membranous nephropathy. Nephrol Dial Transplant 2014;29(8):1570–1577. doi: 10.1093/ndt/gfu069

51. Mittal T, Dedhia P, Roy-Chaudhury P et al. Complete remission of post-transplantation recurrence of focal segmental glomerulosclerosis with the use of adrenocorticotropic hormone gel: case report. Transplant Proc 2015;47(7):2219–2222. doi: 10.1016/j.transproceed.2015.07.013

52. Madan A, Mijovic-Das S, Stankovic A et al. Acthar gel in the treatment of nephrotic syndrome: a multicenter retrospective case series. BMC Nephrology 2016;17:37. doi: 10.1186/s12882-016-0241-7

53. Siligato R, Cernaro V, Nardi C et al. Emerging therapeutic strategies for minimal change disease and focal and segmental glomerulosclerosis. Expert Opin Investig Drugs 2018;27(11):839– 879. doi: 10.1080/13543784.2018.1540587

54. Olsen NJ, Decker DA, Higgins P et al. Direct effects of HP Acthar Gel on human B lymphocyte activation in vitro. Arthritis Res Ther 2015;17:300–308. doi: 10.1186/s13075-015-0823-y

55. Lindskog A, Ebefors K, Johansson ME et al. Melanocortin 1 receptor agonists reduce proteinuria. J Am Soc Nephrol 2010;21(8):1290–1298. doi: 10.1681/ASN.2009101025

56. Elvin J, Buvall L, Lindskog Jonsson A et al. Melanocortin 1 receptor agonist protects podocytes through catalase and RhoA activation. Am J Physiol Renal Physiol 2016;310(9):F846–F856. doi: 10.1152/ajprenal.00231.2015

57. Gong R. Leveraging melanocortin pathways to treat glomerular diseases. Adv Chronic Kidney Dis 2014;21(2):134–151. doi: 10.1053/j.ackd.2013.09.004

58. Lieberman KV, Ettinger L, Picarelli C. Adrenocorticotropic hormone for steroid-intolerant children with minimal change nephrotic syndrome. J Clin Pediatr Nephrol 2014;2:2

59. Обухова ВА, Игнатова МС, Длин ВВ. Эффективность циклоспорина при лечении стероидрезистентного нефротического синдрома у детей. Нефрология 2009;13(3):113 Obuchova VA, Ignatova MS, Dlin VV. Effectiveness ofcyclosporine in the treatment of steroid resistant nephrotic syndrome in children. Nephrology (Saint-Petersburg) 2009;13(3):113. (In Russ.)

60. Матвеева МВ, Зробок ОИ, Вашурина ТВ и др. Оценка эффективности такролимуса у детей с нефротическим синдромом, рефрактерным к терапии циклоспорином А. Педиатрия 2014;93(2):81–85 Matveeva MV, Zrobok OI, Vashurina TV et al. Evaluating the effectiveness of tacrolimus in children with nephrotic syndrome refractory to cyclosporin A therapy. Pediatrics 2014;93(2):81–85. (In Russ.)

61. Кальянова ЕВ, Бирюкова ЛС, Томилина НА и др. Течение болезни минимальных изменений у взрослых в условиях применения циклоспорина А. Нефрол диал 2013;15(4):315–316 Kalyanova EV, Biryukova LS, Tomilina ON et al. The course of the disease of minimal changes in adults under the conditions of cyclosporine A. Nephrol Dial 2013;15(4):315–316. (In Russ.)

62. Нефротический синдром у детей. Клинические рекомендации. Союз педиатров России 2016. МКБ 10:N04 Nephrotic syndrome in children. Clinical recommendations. Union of pediatricians of Russia. 2016. ICD 10: N04. (In Russ.)

63. Shah SR, Altaf A, Arshad MH et al. Use of cyclosporine therapy in steroid resistant nephrotic syndrome (SRNS): A review. Glob J Health Sci 2015;8(4):136-141. doi: 10.5539/gihs.v8n4p136

64. Нестеренко ОВ, Елизарова СЮ, Горемыкин ВИ и др. Опыт использования иммуносупрессивной терапии в лечении детей с рецидивирующим нефротоксическим синдромом. Рос вестн перинатол и педиатр 2015;60(4):212 Nesterenko OV, Elizarova SYu, Goremykin VI et al. Experience in using immunosuppressive therapy in the treatment of children with recurrent nephrotic syndrome. Ros Vestn Perinatol i Pediatr 2015;60(4):212. (In Russ.)

65. Laurin L-P, Nachman PH, Foster BJ. Calcineurin inhibitors in the treatment of primary focal segmental glomerulosclerosis: a systematic review and meta-analysis of the literature. Can J Kidney Health Dis 2017;4:1–14. doi: 10.1177/2054358117692559

66. Бобкова ВВ, Носов ВП, Филина ЛВ. Возможности улучшения результатов терапии стероид-резистентного нефротического синдрома. Нефрол диал 2013;15(4):307–308 Bobkova VV, Nosov VP, Filina LV. Possibilities for improving the results of treatment of steroid-resistant nephrotic syndrome. Nephrol dial 2013;15(4):307–308. (In Russ.)

67. Чеботарева НВ, Приходина ЛС, Шилов ЕМ. Стероид- и циклофосфамид-резистентный нефротический синдром. Леч врач 2013;2:65 Chebotareva NV, Prikhodina LS, Shilov EM. [Steroid – and cyclophosphamide-resistant nephrotic syndrome. Lech vrach 2013;2:65. (In Russ.)

68. Beaudreuil S, Lorenzo HK, Elias M et al. Optimal management of primary focal segmental glomerulosclerosis in adults. Int J Nephrol Renovasc Dis 2017;10:97–107. doi: 10.2147/IJNRD.S126844

69. Buscher AK, Kranz B, Buscher R et al. Immunosuppression and renal outcome in congenital and pediatric steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 2010;5(11):2075–2084. doi: 10.2215/CJN.01190210

70. Buscher AK, Beck BB, Melk A et al. Rapid response to cyclosporin A and favorable renal outcome in nongenetic versus genetic steroid resistant nephrotic syndrome. Clin J Am Soc Nephrol 2016;11(2):245–253. doi: 10.2215/CJN.07370715

71. Клим Ф. Такролимус при трансплантации почки. Сообщение I. Нефрология 2007;11(2):7–25 Klim F. Tacrolimus in transplantation of the kidney. Communication 1. Nephrology (Saint-Petersburg) 2007;11(2):7–25. (In Russ.)

72. Arslansoyu Çamlar S, Soylu A, Kavukçu S. Cyclosporine in pediatric nephrology. Iranian J Kidney Dis 2018;12(6):319–330

73. Liu F, Mao J-H. Calcineurin inhibitors and nephrotoxicity in children. World J Pediatr 2018;14(2):121–126. doi: 10.1007/s12519-018-0125-y

74. Приходина ЛС, Тупитко ОЮ, Длин ВВ, Игнатова МС. Такролимус в лечении стероид-резистентного нефротического синдрома у детей (Предварительные результаты одноцентрового исследования). Нефрол диал 2010;12(4):266–272 Prikhodina LS, Turpitko OYu, Dlin VV, Ignatova MS.Tacrolimus in treatment of steroid-resistant nephrotic syndrome in children (Preliminary results of a single-center study). Nefrol dial 2010;12(4):266–272. (In Russ.)

75. Faul C, Donnelly M, Merscher-Gomez S et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. A Nat Med 2008;14(9):931–938. doi: 10.1038/nm.1857

76. Tian X, Ishibe S. Targeting the podocyte cytoskeleton: from pathogenesis to therapy in proteinuric kidney disease. Nephrol Dial Transplant 2016;31:1577–1583. doi: 10.1093/ndt/gfwo21

77. Bertelli R, Bonanni A, Caridi G et al. Molecular and cellular mechanisms for proteinuria in minimal change disease. Front Med (Lausanne) 2018;5:170. doi: 10.3389/fmed.2018.00170

78. Li X, Liu H. Role of cofilin in kidney disease. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2018;43(10):1159–1163. doi: 10.11817/j.issn.1672-7347.2018.10.018

79. Li X, Zhang X, Li X et al. Cyclosporine A protects podocytes via stabilization of cofilin-1 expression in the unphosphorylated state. Exp Biol Med (Maywood) 2014;239(8):922–936. doi: 10.1177/1535370214530365

80. Shen X, Jiang H, Ying M et al. Calcineurin inhibitors cyclosporin A and tacrolimus protect against podocyte injury induced by puromycin aminonucleoside in rodent models. Sci Rep 2016;6:32087. doi: 10.1038/srep32087

81. Nankivell BJ, P'Ng CH, O'Connell PJ, Chapman JR. Calcineurin inhibitor nephrotoxicity through the lens of longitudinal histology: comparison of cyclosporine and tacrolimus eras. Transplantation 2016;100(8):1723–1731. doi: 10.1097/TP.0000000000001243

82. Ponticelli C, Escoli R, Moroni G. Does cyclophosphamide still play a role in glomerular diseases? Autoimmun Rev 2018;17(10):1022–1027. doi: 10.1016/j.autrev.2018.04.007

83. Madanchi N, Bitzan M, Takano T. Rituximab in minimal change disease: mechanisms of action and hypothesis for future studies. Can J Kidney Health Dis 2017;4:1–15. doi: 10.1177/2054358117698667

84. Maloney DG, Grillo-López AJ, White JA et al. IDEC-C2B8 (Rituximab) anti- CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodkin’s lymphoma. Blood 1997;90(6):2188–2195

85. Benz K, Dötsch J, Rascher W, Stachel D. Change of the course of steroid-dependent nephrotic syndrome after rituximab therapy. Pediatr Nephrol 2004;19(7):794–797. doi: 10.1007/s00467-004-1434-z

86. Пулин АА, Горностаева ЕЮ, Рощупкина СВ и др. Эффективность лечения ритуксимабом больного идиопатической мембранозной нефропатией, резистентной к стандартной иммуносупрессивной терапии. Клин нефрол 2011;5:72–77 Pulin AA, Gornostaeva EYu, Roschupkina SV et al. Effectiveness of treatment with rituximab in patients with idiopathic membranous nephropathy resistant to standard immunosuppressive therapy. Clin nephrol 2011;5:72–77. (In Russ.)

87. Вашурина ТВ, Зробок ОИ, Комарова ОВ и др. Применение ритуксимаба при стероид-зависимом нефротическом синдроме у детей. Нефрол диал 2016;18(1):50–61 Vashurina TV, Zrobok OI, Komarova OV et al. Rituximab treatment for idiopathic steroid-dependent nephrotic syndrome in children. Nephrol dial 2016;18(1):50–61. (In Russ.)

88. Ravani P, Bonanni A, Rossi R et al. Anti-CD20 antibodies for idiopathic nephrotic syndrome in children. Clin J Am Soc Nephrol 2016;11(4):710–720. doi: 10.2215/CJN.08500815

89. Kallash M, Smoyer WE, Mahan JD. Rituximab use in the management of childhood nephrotic syndrome. Front Pediatr 2019;7:178. doi: 10.3389/fped.2019.00178

90. Kamei K, Ishikura K, Sako M et al. Rituximab therapy for refractory steroid-resistant nephrotic syndrome in children. Pediatr Nephrol 2020;35(1):17–24. doi: 10.1007/s00467-018-4166-1

91. Colucci M, Carsetti R, Cascioli S et al. B cell reconstitution after rituximab treatment in idiopathic nephrotic syndrome. J Am Soc Nephrol 2016;27:1811–1822. doi: 10.1681/ASN.2015050523

92. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 2013;13(4):227–242. doi: 10.1038/nri3405

93. Hoffman W, Lakkis FG, Chalasani G. B cells, antibodies, and more. Clin J Am Soc Nephrol 2016;11(1):137–154. doi: 10.2215/CJN.09430915

94. Biancone L, Andres G, Ahn H et al. Inhibition of the CD40-CD40 ligand pathway prevents murine membranous glomerulonephritis. Kidney Int 1995;48(2):458–468. doi: 10.1038/ki.1995.314

95. Kairaitis L, Wang Y, Zheng L et al. Blockade of CD40-CD40 ligand protects against renal injury in chronic proteinuric renal disease. Kidney Int 2003;64(4):1265–1272. doi: 10.1046/j.1523-1755.2003.00223.x

96. Lee VW, Qin X, Wang Y et al. The CD4-CD154 co-stimulation pathway mediates innate immune injury in adriamycin nephrosis. Nephrol Dial Transplant 2010;25(3):717–730. doi: 10.1093/ndt/gfp569

97. Prasad N, Jaiswal AK, Agarwal V et al. Differential alteration in peripheral T-regulatory and T-effector cells with change in P-glycoprotein expression in Childhood Nephrotic Syndrome: a longitudinal study. Cytokine 2015;72(2):190–196. doi: 10.1016/j.cyto.2014.12.028

98. Araya C, Diaz L, Wasserfall C et al. T regulatory cell function in idiopathic minimal lesion nephrotic syndrome. Pediatr Nephrol 2009;24(9):1691–1698. doi: 10.1007/s00467-009-1214-x

99. Le Berre L, Bruneau S, Naulet J et al. Induction of T regulatory cells attenuates idiopathic nephrotic syndrome. J Am Soc Nephrol 2009;20(1):57–67. doi: 10.1681/ASN.2007111244

100. Sfikakis PP, Souliotis VL, Fragiadaki KG et al. Increased expression of the FoxP3 functional marker of regulatory T cells following B cell depletion with rituximab in patients with lupus nephritis. Clin Immunol 2007;123(1):66–73. doi: j.clim.2006.12.006

101. Stasi R, Cooper N, Del Poeta G et al. Analysis of regulatory T-cell changes in patients with idiopathic thrombocytopenic purpura receiving B cell-depleting therapy with rituximab. Blood 2008;112(4):1147–1150. doi: 10.1182/blood-2007-12-129262

102. van de Veerdonk FL, Lauwerys B, Marijnissen RJ et al. The anti-CD20 antibody rituximab reduces the Th17 cell response. Arthritis Rheum 2011;63(6):1507–1516. doi: 10.1002/art.30314

103. Melet J, Mulleman D, Goupille P et al. Rituximab-induced T cell depletion in patients with rheumatoid arthritis: association with clinical response. Arthritis Rheum 2013;65(11):2783–2790. doi: 10.1002/art.38107

104. Eggleton P, Bremer E. Direct and indirect rituximabinduced T cell depletion: comment on the article by Melet et al. Arthritis Rheum 2014;66(4):1053. doi: 10.1002/art.38347

105. Piantoni S, Scarsi M, Tincani A, Airò P. Circulating CD40Tcell number decreases in rheumatoid patients with clinical response to rituximab. Rheumatol Int 2015;35(9):1571–1573. doi: 10.1007/s00296-015-3295-0

106. Alunno A, Carubbi F, Bistoni O et al. Interleukin (IL)-17- producing pathogenic T lymphocytes co-express CD20 and are depleted by rituximab in primary Sjorgen's syndrome: a pilot study. Clin Exp Immunol 2016;184(3):284–292. doi: 10.1111/cei.12771

107. Roccatello D, Sciascia S, Di Simone D et al. New insights into immune mechanisms underlying response to Rituximab in patients with membranous nephropathy: a prospective study and a review of the literature. Autoimmun Rev 2016;15(6):529–538. doi: 10.1016/j.autrev.2016.02.014

108. Fornoni A, Sageshima J, Wei C et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med 2011;3(85):85ra46. doi: 10.1126/scitranslmed.3002231

109. Yoo TH, Pedigo CE, Guzman J et al. Sphingomyelinaselike phosphodiesterase 3b expression levels determine podocyte injury phenotypes in glomerular disease. J Am Soc Nephrol 2015;26(1):133–147. doi: 10.1681/ASN.2013111213

110. Мершер С, Форнони А. Патология подоцитов и нефропатия – роль сфинголипидов в гломерулярных болезнях. Нефрология 2016; 20(1):10–23 Merscher S, Fornoni A. Podocyte pathology and nephropathy – sphingolipids in glomerular diseases. Nephrology (SaintPetersburg) 2016;20(1):10–23. (In Russ.)

111. Takahashi Y, Ikezumi Y, Saitoh A. Rituximab protects podocytes and exerts anti-proteinuric effects in rat adriamycininduced nephropathy independent of B-lymphocytes. Nephrology 2017;22(1):49–57. doi: 10.1111/nep.12737

112. Allison AC, Kowalski WJ, Muller CD, Eugui EM. Mechanisms of action of mycophenolic acid. Ann N Y Acad Sci 1993;696:63–87. doi: 10.1111/j.1749-6632.1993.tb17143.x

113. Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 2000;47(2-3): 85–118. doi: 10.1016/s0162-3109(00)00188-0

114. Hackl A, Ehren R, Weber LT. Effect of mycophenolic acid in experimental, nontransplant glomerular diseases: new mechanisms beyond immune cells. Pediatr Nephrol. 2017; 32(8): 1315–1322. doi: 10.1007/s00467-016-3437-y

115. Приходина ЛС, Турпитко ОЮ, Длин ВВ, Игнатова МС. Микофенолата мофетил в лечении стероид-резистентного нефротического синдрома у детей. Клин нефрол 2011;2:56–60 Prikhodina LS, Turpitko OYu, Dlin VV, Ignatova MS. Mycophenolate mofetil in the treatment of steroid-resistant nephrotic syndrome in children. Clin nephrol 2011;2:56–60. (In Russ.)

116. Вознесенская ТС, Сергеева ТВ. Мофетила микофенолат в терапии нефротического синдрома у детей. Нефрол диал 2003;5(1):45–47 Voznesenskaya TS, Sergeeva TV. Mofetil mycophenolate in the treatment of nephrotic syndrome in children. Nephrol dial 2003;5(1):45–47. (In Russ.)

117. Канатбаева АБ, Диканбаева СА, Абеулова БА и др. Микофенолата мофетил в терапии гломерулопатий у детей. Нефрол диал 2006; 8(4): 355–358 Kanatbaeva AB, Dikanbaeva SA, Abeulova BA et al. Mycophenolate mofetil in the treatment of glomerulopathy in children. Nephrol dial 2006;8(4):355–358. (In Russ.)

118. Briggs WA, Choi MJ, Scheel PJ. Successful mycophenolate mofetil treatment of glomerular disease. Am J Kidney Dis 1998;31(2):213–217. doi: 10.1053/ajkd.1998.v.31.pm9469489

119. Senthi Nayagam L, Ganguli A, Rathi M et al. Mycophenolate mofetil or standart therapy for membranous nephropathy and focal segmental glomerulosclerosis: a pilot study. Nephrol Dial Transplant 2008;23(6):1926–1930. doi: 10.1093/ndt/gfm538

120. Kim J, Patnaik N, Chorny N et al. Second-line immunosuppressive treatment of childhood nephrotic syndrome: a single-center experience. Nephron Extra 2014;4(1):8–17. doi: 10.1159/000357355

121. Dehoux L, Hoqan J, Dossier C et al. Mycophenolate mofetil in steroid-dependent idiopathic nephrotic syndrome. Pediatr Nephrol 2016;31(11):2095–2101. doi: 10.1007/s00467-016-3400-y

122. Han KH, Kim SH. Recent advances and treatments of primary focal segmental glomerulosclerosis in children. BioMed Res Intern 2016;2016:30537706. doi: 10.1155/2016/3053706

123. Afzal K, Bagga A, Menon S et al. Treatment with mycophenolate mofetil and prednisolone for sterjid-dependent nephrotic syndrome. Pediatr Nephrol 2007;22(12):2059–2065. doi: 10.1007/s00467-007-0617-9

124. Dorresteijn EM, Kist-van Holthe JE, Levtchenko EN et al. Mycophenolate mofetil versus cyclosporine for remission maintenance in nephrotic syndrome. Pediatr Nephrol 2008;23(11):2013– 2020. doi: 10.1007/s00467-008-0899-6

125. Sinha A, Gupta A, Kalaivani M et al. Mycophenolate mofetil is inferior to tacrolimus in sustaining remission in children with idiopathic steroid-resistant nephrotic syndrome. Kidney Int 2017;92(1):248–257. doi: 10.1016/j.kint.2017.01.019

126. Halloran PF. Molecular mechanisms of new immunosuppressants. Clin Transplant 1996;10(1 Pt 2):118–123

127. Allison AC. Mechanisms of action of mycophenolate mofetil. Lupus 2005;14(Suppl 1):s2–s8

128. Blaheta RA, Leckel K, Witting B et al. Mycophenolate mofetil impairs transendothelial migration of allogeneic CD4 and CD8 T-cells. Transplant Proc 1999;31(1-2):1250–1252. doi: 10.1016/s0041-1345(98)01984-8

129. Cohn RG, Mirkovich A, Dunlap B et al. Mecophenolic acid increases apoptosis, lysosomes and lipid droplets in human lymphoid and monocytic cell lines. Transplantation 1996;68(3): 411–418. doi: 10.1097/00007890-199908150-00014

130. Cohn RG, Mirkovich A, Caulfield J, Eugui EM. Apoptosis of human activated peripheral T-cells and T lymphocitic and promonocytic cell lines induced by mycophenolic acid, the active metabolite of CellCept. In: The Sixth Basic Sciences Symposium of the Transplantation Society. Monterey, CA, 1999; 173

131. Andrikos E, Yavuz A, Bordoni V et al. Effect of cyclosporine mycophenolate mofetil, and their combination with steroids on apoptosis in a human cultured monocytic U937 cell line. Transplant Proc 2005;37(7):3226–3229. doi: 10.1016/j.transproceed.2005.07.001

132. Nakamura M, Ogawa N, Shalabi A et al. Positive effect on T-cell regulatory apoptosis by mycophenolate mofetil. Clin Transplant 2001;15(Suppl 6):36–40

133. Takahashi K, Reynolds M, Ogawa N et al. Augmentation of T-cell apoptosis by immunosuppressive agents. Clin Transplant 2004;18(Suppl 12):72–75. doi: 10.1111/j.1399-0012.2004.00222.x

134. Ziswiler R, Steinmann-Niggli K, Kappeler A et al. Mycophenolic acid: a new approach to the therapy of experimental mesangial proliferative glomerulonephritis. J Am Soc Nephrol 1998;9(11):2055–2066

135. Hauser IA, Renders L, Radeke HH et al. Mycophenolate mofetil inhibits rat and human mesangial cell proliferation by guanosine depletion. Nephrol Dial Transplant 1999;14(1):58–63. doi: 10.1093/ndt/14.1.58

136. Chiara M, Menegatti E, Di Simone D et al. Mycophenolate mofetil and roscovitine decrease cyclin expression and increase p27 (kip1) expression in anti Thy1 mesangial proliferative nephritis. Clin Exp Immunol 2005;139(2):225–235. doi: 10.1111/j.1365-2249.2004.02684.x

137. Nakhoul F, Ramadan R, Khankin E et al. Glomerular abundance of nephrin and podocin in experimental nephrotic syndrome: different effects of antiproteinuric therapies. Am J Physiol Renal Pgysiol 2005;289(4):880–890. doi: 10.1152/ajprenal.00451.2004

138. Lv W, Lou J, Zhang Y et al. Mycophenolate mofetil inhibits hypertrophy and apoptosis of podocyte in vivo and in vitro. Int J Clin Exp Med 2015;8(10):19781–19790

139. Lv W, Zhang Y, Guan G et al. Mycophenolate mofetil and valsartan inhibit podocyte apoptosis in streptozotocin-induced diabetic rats. Pharmacology 2013;92(3-4):227–234. doi: 10.1159/000354600

140. Imaizumi T, Kawasaki Y, Matsuura H et al. Efficacy of steroid pulse, plasmapheresis, and mizoribine in a patient with focal segmental glomerulosclerosis. Pediatr Nephrol 2007;22(8):1215– 1218. doi: 10.1007/s00467-007-0461-y

141. Aizawa-Yashiro T, Tsuruda K, Watanabe S et al. Novel multidrug therapy for children with cyclosporine-resistant or -intolerant nephrotic syndrome. Pediat Nephrol 2011;26(8):1255–1261. doi: 10.1007/s00467-011-1876-z

142. Tanphaichitr P, Tanphaichitr D, Sureeratanan J, Chatasingh S. Treatment of nephrotic syndrome with levamisole. J Pediatr 1980;96(3 Pt 1):490–493. doi: 10.1016/S0022-3476(80)80707-4

143. British Association for Paediatric Nephrology. Levamisole for corticosteroid-dependent nephrotic syndrome in childhood. Lancet 1991;337(8757):1555–1557

144. Bagga A, Ali U, Banerjee S et al. Management of steroid sensitive nephrotic syndrome: revised guidelines. Indian Pediatr 2008;45(3):203–214

145. Gruppen MB, Bouts AH, Jansen-van der Weide MC et al. A randomized clinical trial indicates that levamisole increases the time to relapse in children with steroid-sensitive idiopathic nephrotic syndrome. Kidney Int 2018;93(2):510–518. doi: 10.1016/j.kint.2017.08.011

146. Kemper MJ, Neuhaus TJ. Levamisole in relapsing steroidsensitive nephrotic syndrome: Where do we stand? Kidney Int 2018;93(2):310–313. doi: 10.1016/j.kint.2017.09.024

147. Sinha A, Puraswani M, Kalaivani M et al. Efficacy and safety of mycophenolate mofetil versus levamisole in frequently relapsing nephrotic syndrome: an open-label randomized controlled trial. Kidney Int 2019;95(1):210–218. doi: 10.1016/j.kint.2018.08.039

148. Yap HK, Cheung W, Murugasu B et al. Th1 and Th2 cytokine mRNA profiles in childhood nephrotic syndrome: evidence for increased IL-13 mRNA expression in relapse. J Am Soc Nephrol 1999;10(3):529–537

149. Shalaby SA, Al-Edressi HM, El-Tarhouny SA et al. Type1/ type2 cytokine serum levels and role of interleukin-18 in children with steroid-sensitive nephrotic syndrome. Arab J Nephrol Transpl 2013;6(2):83–88

150. Kim AH, Chung JJ, Akilesh S et al. B cell-derived IL-4 acts on podocytes to induce proteinuria and foot process effacement. JCI Insight 2017;2(21): e81836. doi: 10.1172/jci.insight.81836

151. Mühlig AK, Lee JY, Kemper MJ. et al. Levamisole in children with idiopathic nephrotic syndrome: clinical efficacy and pathophysiological aspects. J Clin Med 2019; 8(6):E860. doi: 10.3390/jcm8060860

152. Szeto C, Gillespie KM, Mathieson PW. Levamisole induces interleukin-18 and shifts type1/type2 cytokine balance. Immunology 2000;100(2):217–224. doi: 10.1046/j.1365-2567.2000.00042.x

153. Jiang L, Dasgupta I, Hurcombe JA et al. Levamisole in steroid-sensitive nephrotic syndrome: usefulness in adult patients and laboratory insights into mechanisms of action via direct action on the kidney podocyte. Clin Sci (Lond) 2015;128(12):883–893. doi: 10.1042/CS20140749

154. Basu B. Ofatumumab for rituximab-resistant nephrotic syndrome. N Engl J Med 2014;370(13):1268–1270. doi: 10.1056/NEJMc1308488

155. Bonanni A, Rossi R, Murtas C, Ghiggeri GM. Low-dose ofatumumab for rituximab-resistant nephrotic syndrome. BMJ Case Rep 2015; 2015:bcr2015210208. doi: 10.1136/bcr-2015-210208

156. Ravani P, Bonanni A, Ghiggeri GM. Randomised controlled trial comparing ofatumumab to rituximab in children with steroiddependent and calcineurin inhibitor-dependent idiopathic nephrotic syndrome: study protocol. BMJ Open 2017;7(3):e013319. doi: 10.1136/bmjopen-2016-013319

157. Wang C, Liverman RS, Garro R et al. Ofatumumab for treatment of childhood nephrotic syndrome. Pediatr Nephrol 2017;32(5):835–841. doi: 10.1007/s00467-017-3621-8

158. Joy MS, Gipson DS, Powell L et al. Phase 1 trial of adalimumab in Focal Segmental Glomeruloslerosis (FSGS): II. Report of the FONT (Novel Therapies for Resistant FSGS) study group. Am J Kidney Dis 2010;55(1):50–60. doi: 10.1053/j.ajkd.2009.08.019

159. Peyser A, Machardy N, Tarapore F et al. Follow-up of phase I trial of adalimumab and rosiglitazone in FSGS: III. Report of the FONT study. BMC Nephrol 2010;11:2. doi: 10.1186/1471-2369-11-2

160. Trachtman H, Vento S, Herreshoff E et al. Efficacy of galactose and adalimumab in patients with resistant focal segmental glomerulosclerosis: report of font clinical trial group. BMC Nephrol 2015;16:111. doi: 10.1186/s12882-015-0094-5

161. Trachtman H, Fervenza FC, Gipson DS et al. A phase 1, single-dose study of fresolimumab, an anti-TGF-beta antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int 2011;79(11):1236–1243. doi: 10.1038/ki.2011.33

162. Ling H, Li X, Jha S et al. Therapeutic role ofTGF-beta-neutralizing antibody in mouse cyclosporin A nephropathy: morphologic improvement associated with functional preservation. J Am Soc Nephrol 2003;14(2):377–388. doi: 10.1097/01.asn.0000042168.43665.9b

163. Vincenti F, Fervenza FC, Campbell KN et al. A phase 2, double-blind, placebo-controlled, randomized study of fresolimumab in patients with steroid-resistant primary focal segmental glomerulosclerosis. Kidney Int Rep 2017;2(5):800–810. doi: 10.1016/jekir.2017.03.011

164. Delville M, Sigdel TK, Wei C et al. A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci Transl Med 2014;6(256):256ra136. doi: 10.1126/scitranslmed.3008538

165. Sansom DM. CD28, CTLA-4, and their ligands: who does what and to whom? Immunology 2000;101(2):169–177. doi: 10.1046/j.1365-2567.2000.00121.x

166. Novelli R, Benigni A, Remuzzi G. The role of B7-1 in proteinuria of glomerular origin. Nat Rev Nephrol 2018;14(9):589–596. doi: 10.1038/s41581-018-0037-z

167. Gardner D, Jeffery LE, Sansom DM. Understanding the CD28/CTLA-4 (CD152) pathway and its implications for costimulatory blockade. Am J Transplant 2014;14(9):1985–1991. doi: 10.1111/ajt.12834

168. Reiser J, von Gersdorff G, Loos M et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 2004;113:1390–1397. doi: 10.1172/JCI20402

169. Yu CC, Fornoni A, Weins A et al. Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med 2013;369(25):2416–2423. doi: 10.1056/MEJMoa1304572

170. Savin VJ, McCarthy ET, Sharma R et al. Galactose binds to focal segmental glomerulosclerosis permeability factor and inhibits its activity. Transl Res 2008;151(6):288–292. doi: 10.1016/j.trsl.2008.04.001

171. De Smet E, Rioux JP, Ammann H et al. FSGS permeability factor-associated nephrotic syndrome: remission after oral galactose therapy. Nephrol Dial Transplant 2009;24(9):2938–2940. doi: 10.1093/ndt/gfp278

172. Kopac M, Meglic A, Rus RR. Partial remission of resistant nephrotic syndrome after oral galactose therapy. Ther Apher Dial 2011;15(3):269–272. doi: 10.1111/j.1744-9987.2011.00949.x

173. Sgambat K, Banks M, Moudgil A. Effect of galactose on glomerular permeability and proteinuria in steroid-resistant nephrotic syndrome. Pediatr Nephrol 2013;28(11):2131–2135. doi: 10.1007/s00467-013-2539-z


Review

For citations:


Zverev Ya.F., Rykunova A.Ya. Modern pharmacological approaches to primary treatment nephrotic syndrome. Nephrology (Saint-Petersburg). 2020;24(4):9-20. (In Russ.) https://doi.org/10.36485/1561-6274-2020-24-4-9-20

Views: 1738


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)