Preview

Nephrology (Saint-Petersburg)

Advanced search

Cardiomyocyte TRPC6 overexpression as one of the myocardial hypertrophy mechanisms in chronic kidney dysfunction

https://doi.org/10.36485/1561-6274-2020-24-4-93-101

Abstract

BACKGROUND. Klotho is a transmembrane and circulating protein primarily synthesized by the kidney. Klotho deficiency characterizes chronic kidney disease (CKD), as myocardial hypertrophy (GM). The cardioprotective effect of the Klotho protein is due to the negative regulation of a variety of stress signals, leading to the activation of the hypertrophic intracellular signaling pathway calcineurin (CaN) / NFAT in the myocardium. The effect of Klotho may presumably be mediated by the modulation of Ca2 + channels and / or Foxo factors essential for CaN signaling.
THE AIM: to study the activity of CaN/ NFAT signaling pathway in the myocardium and to determine the molecular mechanisms of its regulation in conditions of Klotho level decrease in spontaneous hypertensive rats (SHR) with experimental CKD.
MATERIAL AND METHODS. The experimental model of CKD was 3/4 or 5/6 nephrectomy (Nx) in SHR. Sham-operated (SO) SHR, and Wistar Kyoto rats (WKY) were used as controls. In all animals were measured systolic blood pressure, myocardial mass index – MMI, creatinine clearance, cardiomyocyte (CM) diameter, Klotho levels in serum (ELISA) and kidney (IHC), myocardial expression of calcineurin (IHC, PCR), transcription factor NFAT (IHC), TRPC6 (IHC), FOXO3A (PCR) and phosphor-Foxo1/3/4 (IHC). The tissue expressions of calcineurin, TRPC6, and Klotho were calculated as the IHC specific product area to the field of view ratio. NFAT expression was evaluated as the positively stained nuclei to the number of nuclei ratio in the field of view. Measurements were performed in 10 fields of view for each histology slide. RESULTS. The model has corresponded to the initial stages of CKD. The increase in MMI (p = 0.005) and CM diameter (p = 0.002) were observed compared in Nx rats to SO. Renal Klotho expression (p < 0.001), and serum Klotho level (p = 0.019) were lower in the Nx. In multiple linear regression analyzes, the values of MMI and CM thickness were independently associated with the level of renal Klotho protein (β = -0.38 ± 0.16, p = 0.026, β = -0.64 ± 0.14, p <0.001, respectively). Nx and systemic hypertension were accompanied by an increase in the expression of the calcineurin gene (p = 0.005) and cytoplasmic calcineurin in CM (p = 0.004), the number of NFAT-positive nuclei (p = 0.007), and an increase in the expression of the FOXO3A gene (p <0.001) in the absence of accumulation of phosphorylated Foxo1/3/4 in CM cytoplasm. SHR rats were characterized by positive IHC staining for TRPC6 compared to WKY (p = 0.004). The expression of calcineurin and TRPC6 varied co-directionally (r = 0.69, p <0.001), and both of these indicators were associated with the Klotho levels (calcineurin vs Klotho in the kidney, r = -0.73, p <0.001; TRPC6 vs Klotho in serum, r = -0.43, p = 0.025).
CONCLUSION. The development of Klotho deficiency on early-stage CKD is associated with the expression of transient Ca2+ channels TRPC6 and activation of the calcineurin / NFAT
hypertrophic signaling pathway in cardiomyocytes.

About the Authors

E. O. Bogdanova
Institute of Nephrology Pavlov First Saint Petersburg State Medical University
Russian Federation

Bogdanova Evdokia PhD, Biochemical Homeostasis

197022, St. Petersburg, L. Tolstoy st., 17, build. 54

Phone: (812)338-69-31



N. Yu. Semenova
Research Department of Pathomorphology, Center for Preclinical and Translational Research, Institute of Experimental Medicine, Almazov National Medical Research Center
Russian Federation

Natalia Y. Semenova, PhD

197341, St. Petersburg, Akkuratova st., 2

Phone: (812)338-69-31



O. N. Beresneva
Institute of Nephrology Pavlov First Saint Petersburg State Medical University
Russian Federation

Olga N. Beresneva PhD, Laboratory of Kidney Clinical Physiology

197022, St. Petersburg, L. Tolstoy st., 17, build. 54

Phone: (812)338-69-31



O. V. Galkina
Institute of Nephrology Pavlov First Saint Petersburg State Medical University
Russian Federation

Olga V. Galkina PhD, Laboratory of Biochemical Homeostasis, head

197022, St. Petersburg, L. Tolstoy st., 17, build. 54

Phone: (812)338-69-31



I. M. Zubina
Institute of Nephrology Pavlov First Saint Petersburg State Medical University
Russian Federation

Irina M. Zubina PhD, Laboratory of Biochemical Homeostasis

197022, St. Petersburg, L. Tolstoy st., 17, build. 54

Phone: (812)338-69-31



G. T. Ivanova
Research Department of Pathomorphology, Center for Preclinical and Translational Research, Institute of Experimental Medicine, Almazov National Medical Research Center
Russian Federation

Galina T. Ivanova PhD, Physiology of the Russian Academy of Sciences Laboratory of cardiovascular and lymphatic systems physiology

199034, St. Petersburg, seafront Makarova, build. 6

Phone: (812)328-11-01



M. M. Parastaeva
Institute of Nephrology Pavlov First Saint Petersburg State Medical University
Russian Federation

Marina M. Parastaeva PhD, Laboratory of Kidney Clinical Physiology

197022, St. Petersburg, L. Tolstoy st., 17, build. 54

Phone: (812)338-69-01



V. A. Dobronravov
Institute of Nephrology Pavlov First Saint Petersburg State Medical University
Russian Federation

Prof. Vladimir A. Dobronravov, MD, PhD, DSc, Vice Director

197022, St. Petersburg, L. Tolstoy st., 17, build. 54

Phone: (812)338-69-01



References

1. Go AS, Chertow GM, Fan D et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004;351(13):1296–1305. doi:10.1056/ NEJMoa041031

2. Faul C, Amaral AP, Oskouei B et al. FGF23 induces left ventricular hypertrophy. J Clin Invest 2011;121(11):4393–4408. doi: 10.1172/JCI46122

3. Levin A, Singer J, Thompson CR et al. Prevalent left ventricular hypertrophy in the predialysis population: identifying opportunities for intervention. Am J Kidney Dis 1996;27(3):347–354 doi:10.1016/s0272-6386(96)90357-1

4. London GM, Pannier B, Guerin AP et al. Cardiac hypertrophy, aortic compliance, peripheral resistance and wave reflection in end-stage renal disease. Comparative effects of ACE inhibition and calcium channel blockade. Circulation 1994;90: 2786–2796. doi: 10.1161/01.cir.90.6.2786

5. Xie J, Yoon J, An SW et al. Soluble klotho protects against uremic cardiomyopathy independently of fibroblast growth factor 23 and phosphate. J Am Soc Nephrol 2015;26:1150–1160. doi: 10.1681/ASN.2014040325

6. Nadruz W Myocardial remodeling in hypertension. Journal of Human Hypertension 2015;29:1–6. doi:10.1038/jhh.2014.36

7. Buckalew VM, Berg RL, Wang SR et al. Prevalence of hypertension in 1,795 subjects with chronic renal disease: the modification of diet in renal disease study baseline cohort. Modification of diet in renal disease study group. Am J Kidney Dis 1996;28(6):811–821. doi:10.1016/s0272-6386(96)90380-7

8. Silberberg JS, Barre PE, Prichard SS, Sniderman AD. Impact of left ventricular hypertrophy on survival in end stage renal disease. Kidney Int 1989;36:286–290. doi:10.1038/ki.1989.192

9. London GM, Fabiani F. Left ventricular dysfunction in endstage renal disease: echocardiographic insights. In: Cardiac dysfunction in chronic uremia. Eds. P.S. Parfrey, J.D. Harnett. Basel: Kluwer Acad Publ; 1992, р 117–137

10. Парастаева ММ, Береснева ОН, Кучер АГ и др. Содержание белка в рационе, ремоделирование миокарда и кальций-фосфорный гомеостаз у крыс с нефрэктомией. Вестник Санкт-Петербургского университета. Серия 11. Медицина 2014;4:196–204 Parastaeva MM, Beresneva ON, Kucher AG et al. Protein content in the diet, myocardial remodeling and calcium-phosphorus homeostasis in rats with nephrectomy. Bulletin of St. Petersburg University. Series 11. Medicine 2014;4:196–204 (In Russ.)

11. Добронравов ВА, Богданова ЕО, Семенова НЮ и др. Почечная экспрессия белка αKlotho, фактор роста фибробластов 23 и паратиреоидный гормон при экспериментальном моделировании ранних стадий хронического повреждения почек. Нефрология 2014;18(2):72–78 Dobronravov VA, Bogdanova EO, Semenova NYu et al. Renal expression of αKlotho protein, fibroblast growth factor 23 and parathyroid hormone in experimental modeling of early stages of chronic kidney damage. Nephrology (Saint Petersburg) 2014; 18(2): 72–78 (In Russ.)

12. Yang K, Wang C, Nie L et al. Klotho protects against indoxyl sulphate-induced myocardial hypertrophy. Journal of the American Society of Nephrology 2015;26(10):2434–2446. doi:10.1681/ASN.2014060543

13. Xiang W, Kong J, Chen S et al. Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin-angiotensin systems. Am J Physiol Endocrinol Metab 2005;288(1):125–132. doi: 10.1152/ajpendo.00224.2004

14. Wu-Wong JR Vitamin D therapy in cardiac hypertrophy and heart failure. Curr Pharm Des 2011;17(18):1794–1807. doi: 10.2174/138161211796391038

15. Добронравов ВА. Фосфат, почки, кости и сердечнососудистая система. Нефрология 2016;20(4):10–24 Dobronravov VA. Phosphate, kidneys, bones and cardiovascular system. Nephrology (Saint-Petersburg) 2016;20(4):10–24 (In Russ.)

16. Богданова ЕО, Береснева ОН, Зубина ИМ и др. Ингибиторы канонического сигнального пути Wnt и нарушение обмена неорганического фосфата при экспериментальной дисфункции почек. Нефрология 2019;23(6):83–91. doi: 10.36485/1561-6274-2019-236-83-91 Bogdanova EO, Beresneva OV, Zubina IM et al. Inhibitors of canonical Wnt signaling pathway and inorganic phosphate imbalance in experimental chronic kidney disease. Nephrology (Saint-Petersburg) 2019;23(62):83–91 (In Russ.) doi: 10.36485/1561-6274-2019-236-83-91

17. Kim JH, Xie J, Hwang KH et al. Klotho May Ameliorate Proteinuria by Targeting TRPC6 Channels in Podocytes. J Am Soc Nephrol 2017;28(1):140–151. doi: 10.1681/ASN.2015080888.

18. Mazzotta C, Manetti M, Rosa I et al. Proangiogenic effects of soluble α-Klotho on systemic sclerosis dermal microvascular endothelial cells. Arthritis Res Ther 2017;19(1):27. doi: 10.1186/s13075-017-1233-0.

19. Kusaba T, Okigaki M, Matui A et al. Klotho is associated with VEGF receptor-2 and the transient receptor potential canonical-1 Ca2+ channel to maintain endothelial integrity. Proc Natl Acad Sci U S A 2010;107(45):19308–19313. doi: 10.1073/pnas.1008544107

20. Numaga-Tomita T, Nishida M. TRPC Channels in Cardiac Plasticity. Cells 2020;9(2):E454. doi: 10.3390/cells9020454

21. Takahashi S, Okada K, Nagura Y et al. Three-quarters nephrectomy in rats as a model of early renal failure. Nihon Jinzo Gakkai Shi 1991;33(1):27–31

22. Hu MC. The emerging role of Klotho in clinical nephrology. Nephrol Dial Transplant 2012; 27(7):2650–2657. doi: 10.1093/ndt/gfs160

23. Hu MC, Moe OW. Klotho as a potential biomarker and therapy for acute kidney Injury. Nat Rev Nephrol 2012;8(7):423–429. doi: 10.1038/nrneph.2012.92

24. Hu MC, Kuro-o M, Orson W. Secreted klotho and chronic kidney disease. Adv Exp Med Biol 2012;728:126-–157. doi: 10.1007/978-1-4614-0887-1_9

25. Богданова ЕО, Галкина ОВ, Зубина ИМ и др. Klotho, фактор роста фибробластов 23 и неорганический фосфат на ранних стадиях хронической болезни почек. Нефрология 2016; 20(4):61–67 Bogdanova EO, Galkina OV, Zubina IM et al Klotho, fibroblast growth factor 23 and inorganic phosphate in early stages of chronic kidney disease. Nephrology (Saint Petersburg) 2016;20(4):61–67 (In Russ.)

26. Cerasola G, Nardi E, Palermo A et al. Epidemiology and pathophysiology of left ventricular abnormalities in chronic kidney disease: A review. J Nephrol 2011;24:1–10. doi: 10.5301/jn.2010.2030

27. Богданова ЕО, Береснева ОН, Семенова НЮ и др. Почечная экспрессия белка αKlotho ассоциирована с гипертрофией миокарда (экспериментальное исследование). Артериальная гипертензия 2014;20(6):522–530 Bogdanova EO, Beresneva ON, Semenova NYu et al. Renal expression of αKlotho protein is associated with myocardial hypertrophy (experimental study). Arterial'naya gipertenziya (SaintPetersburg) 2014; 20(6): 522–530 (In Russ.)

28. Xie J, Cha SK, An SW et al. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat Commun 2012;3:1238–1240. doi: 10.1038/ncomms2240

29. Song S, Gao P, Xiao H et al. Klotho suppresses cardiomyocyte apoptosisin mice with stress-induced cardiac injury via downregulation of endoplasmic reticulum stress. PLoS One 2013;8(12): e82968. doi: 10.1371/journal.pone.0082968

30. Saleem N, Prasad A, Goswami Sh K. Apocynin prevents isoproterenol-induced cardiac hypertrophy in rat. Molecular and Cellular Biochemistry 2018;445:79–88. doi: 10.1111/j.1749-6632.2009.05100.x

31. Houser SR, Molkentin JD. Does contractile Ca2+ control calcineurin-NFAT signaling and pathological hypertrophy in cardiac myocytes? Sci Signal 2008;1(25):pe31. doi: 10.1126/scisignal.125pe31

32. Cioffi DL. Redox regulation of endothelial canonical transient receptor potential channels. Antioxid. Redox Signal 2011;15:1567–1582. doi: 10.1089/ars.2010.3740

33. Yamaguchi Y, Iribe G, Nishida M, Naruse K. Role of TRPC3 and TRPC6 channels in the myocardial response to stretch: Linking physiology and pathophysiology. Prog Biophys Mol Biol 2017;130:264–272. doi: 10.1016/j.pbiomolbio.2017.06.010

34. Veit F, Pak O, Brandes RP, Weissmann N. Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: Focus on ion channels. Antioxid Redox Signal 2015;22:537–552. doi: 10.1089/ars.2014.6234

35. Kozai D, Ogawa N, Mori Y. Redox regulation of transient receptor potential channels. Antioxid Redox Signal 2014;21:971– 986. doi: 10.1089/ars.2013.5616.

36. Ding Y, Winters A, Ding M et al. Reactive oxygen speciesmediated TRPC6 protein activation in vascular myocytes, a mechanism for vasoconstrictor-regulated vascular tone. J Biol Chem 2011;286:31799–31809. doi: 10.1074/jbc.M512205200

37. Poteser M, Graziani A, Rosker C et al. TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 2006;281:13588–13595. doi: 10.1074/jbc.M512205200

38. Maroto R, Raso A, Wood TG et al. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 2005;7:179–185. doi: 10.1038/ncb1218

39. Spassova MA, Hewavitharana T, Xu W et al. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci USA 2006;103:16586–16591. DOI: 10.1073/pnas.0606894103.

40. Sabourin J, Boet A, Rucker-Martin C et al. Ca(2+) handling remodeling and STIM1L/Orai1/TRPC1/TRPC4 upregulation in monocrotaline-induced right ventricular hypertrophy. J Mol Cell Cardiol 2018;118:208–224. doi: 10.1016/j.yjmcc.2018.04.003

41. Jiang Y, Huang H, Liu P et al. Expression and localization of TRPC proteins in rat ventricular myocytes at various developmental stages. Cell Tissue Res 2014;355(1):201–212. doi: 10.1007/s00441-013-1733-4

42. Sabourin J, Boet A, Rucker-Martin C et al. Ca(2+) handling remodeling and STIM1L/Orai1/TRPC1/TRPC4 upregulation in monocrotaline-induced right ventricular hypertrophy. J Mol Cell Cardiol 2018;118:208–224. doi: 10.1016/j.yjmcc.2018.04.003

43. Ohba T, Watanabe H, Murakami M et al. Upregulation of TRPC1 in the development of cardiac hypertrophy. J Mol Cell Cardiol 2007;42:498–507. doi: 10.1016/j.yjmcc.2006.10.020

44. Chen MS, Xiao JH, Wang Y et al. Upregulation of TRPC1 contributes to contractile function in isoproterenol-induced hypertrophic myocardium of rat. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 2013;32:951–959. doi: 10.1159/000354498

45. Kuwahara K, Wang Y, McAnally J et al. TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Investig 2006;116:3114–3126. doi: 10.1172/JCI27702

46. Ni YG, Berenji K, Wang N et al. Foxo transcription factors blunt cardiac hypertrophy by inhibiting calcineurin signaling. Circulation 2006;114(11):1159–1168

47. Dalton G, An S-W, Al-Juboori S I et al. Soluble klotho binds monosialoganglioside to regulate membrane microdomains and growth factor signaling. PNAS 2017;114(4):752–757. doi: 10.1073/pnas.1620301114


Review

For citations:


Bogdanova E.O., Semenova N.Yu., Beresneva O.N., Galkina O.V., Zubina I.M., Ivanova G.T., Parastaeva M.M., Dobronravov V.A. Cardiomyocyte TRPC6 overexpression as one of the myocardial hypertrophy mechanisms in chronic kidney dysfunction. Nephrology (Saint-Petersburg). 2020;24(4):93-101. (In Russ.) https://doi.org/10.36485/1561-6274-2020-24-4-93-101

Views: 942


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)