Фосфат, почки, кости и сердечно-сосудистая система
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Полный текст:
Аннотация
Об авторе
Владимир Александрович ДобронравовРоссия
Список литературы
1. Kestenbaum B, Sampson JN, Rudser KD et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol 2005; 16: 520-528. https://doi.org/10.1681/ASN.2004070602
2. McGovern AP, De Lusignan S, Van Vlymen J et al. Serum phosphate as a risk factor for cardiovascular events in people with and without chronic kidney disease: a large community based cohort study. PLoS One. 2013; 8(9): 74996. https://doi.org/10.1371/journal.pone.0074996
3. Kendrick J, Kestenbaum В, Chonchol М. Phosphate and Cardiovascular Disease. Adv Chronic Kidney Dis 2011; 18(2): 113-119. https://doi.org/10.1053/j.ackd.2010.12.003
4. Смирнов АВ, Шилов ЕМ, Добронравов ВА. и др. Национальные рекомендации. Хроническая болезнь почек: основные принципы скрининга, диагностики, профилактики и подходы к лечению. Нефрология. 2012; 16(1): 89 -115 [Smirnov AV, Shilov EM, Dobronravov VA i dr. Nacional’nye rekomendacii. Hronicheskaya bolezn’ pochek: osnovnye principy skrininga, diagnostiki, profilaktiki i podhody k lecheniyu Nacional’nye rekomendacii. Nefrologiya 2012; 16(1): 89 -115]
5. Blacher J, Asmar R, Djane S et al. Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension 1999; 33(5): 1111-1117. https://doi.org/10.1161/01.HYP.33.5.1111
6. Hollander M, Hak AE, Koudstaal PJ et al. Comparison between measures of atherosclerosis and risk of stroke: the Rotterdam Study. Stroke 2003; 34(10): 2367-2372. https://doi.org/10.1161/01.STR.0000091393.32060.0E
7. Detrano R, Guerci AD, Carr JJ et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 2008; 358: 1336-1345. https://doi.org/10.1056/NEJMoa072100
8. Olson JC, Edmundowicz D, Becker DJ et al. Coronary calcium in adults with type 1 diabetes: a stronger correlate of clinical coronary artery disease in men than in women. Diabetes 2000; 49: 1571-1578
9. London GM, Guerin AP, Marchais SJ et al. Arterial media calcification in end -stage renal disease: impact on all -cause and cardiovascular mortality. Nephrol Dial Transplant 2003; 18: 1731-1740
10. Klassen PS, Lowrie EG, Reddan DN et al. Association between pulse pressure and mortality in patients undergoing maintenance hemodialysis. JAMA 2002; 287: 1548-1555.
11. Hunt JL, Fairman R, Mitchell ME et al. Bone formation in carotid plaques: a clinicopathological study. Stroke 2002; 33: 1214-1219
12. Edmonds ME, Morrison N, Laws JW et al. Medial arterial calcification and diabetic neuropathy. Br Med J (Clin Res Ed) 1982; 284: 928-930
13. Micheletti RG, Fishbein GA, Currier JS et al. Monckeberg sclerosis revisited: a clarification of the histologic definition of Monckeberg sclerosis. Arch Pathol Lab Med 2008; 132: 43-47. https://doi.org/10.2215/CJN.01930408
14. Goodman WG, Goldin J, Kuizon BD et al. Coronary -artery calcification in young adults with end -stage renal disease who are undergoing dialysis. N Engl J Med 2000; 342: 1478-1483
15. Ix JH, De Boer IH, Peralta CA et al. Serum phosphorus concentrations and arterial stiffness among individuals with normal kidney function to moderate kidney disease in MESA. Clin J Am Soc Nephrol 2009; 4: 609-615. https://doi.org/10.2215/CJN.04100808
16. Foley RN, Collins AJ, Herzog CA et al. Serum phosphorus levels associate with coronary atherosclerosis in young adults. J Am Soc Nephrol. 2009; 20: 397-404. https://doi.org/10.1681/ASN.2008020141
17. Kendrick J, Ix JH, Targher G et al. Relation of serum phosphorus levels to ankle brachial pressure index (from the Third National Health and Nutrition Examination Survey). Am J Cardiol 2010; 106(4): 564-568. https://doi.org/10.1016/j.amjcard.2010.03.070
18. Li JW, Xu C, Fan Y et al. Can serum levels of alkaline phosphatase and phosphate predict cardiovascular diseases and total mortality in individuals with preserved renal function? A systemic review and meta-analysis. PLoS One 2014; 9(7): e102276. https://doi.org/10.1371/journal.pone.0102276
19. Strozecki P, Adamowicz A, Nartowicz E et al. Parathormone, calcium, phosphorus, and left ventricular structure and function in normotensive hemodialysis patients. Ren Fail 2001; 23: 115-126
20. Galetta F, Cupisti A, Franzoni F et al. Changes in heart rate variability in chronic uremic patients during ultrafiltration and hemodialysis. Blood Purif 2001; 19: 395-400
21. Culleton BF, Walsh M, Karenbach SW et al. Effect of frequent nocturnal hemodialysis vs conventional hemodialysis on left ventricular mass and quality of life: a randomized controlled trial. JAMA 2007; 298: 1291-1299. https://doi.org/10.1001/jama.298.11.1291
22. Yamamoto KT, Robinson-Cohen C, De Oliveira MC et al. Dietary phosphorus is associated with greater left ventricular mass. Kidney Int 2013; 83(4): 707-714. https://doi.org/10.1038/ki.2012.303
23. Slinin Y, Foley RN, Collins AJ. Calcium, phosphorus, parathyroid hormone and cardiovascular disease in hemodialysis patients. The USRDS waves 1,3, and 4 study. J Am Soc Nephrol 2005; 16: 1788-1793
24. Block GA, Klassen PS, Lazarus JM et al. Mineral metabolism, mortality, and morbidity in hemodialysis patients. J Am Soc Nephrol. 2004; 15: 2208-2218
25. Chonchol M, Dale R, Schrier RW, Estacio R. Serum phosphorus and cardiovascular mortality in type 2 diabetes. Am J Med. 2009; 122: 380-386. https://doi.org/10.1016/j.amjmed.2008.09.039
26. Tonelli M, Sacks F, Pfeffer M et al. Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation. 2005; 112: 2627-2633
27. Dhingra R, Sullivan LM, Fox CS et al. Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Intern Med. 2007; 167: 879-885
28. Foley RN, Collins AJ, Ishani A, Kalra PA. Calcium-phosphate levels and cardiovascular disease in community-swelling adults: The Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J. 2008; 156: 556-563. https://doi.org/10.1016/j.ahj.2008.05.016
29. Li JW, Xu C, Fan Y, Wang Y et al. Can serum levels of alkaline phosphatase and phosphate predict cardiovascular diseases and total mortality in individuals with preserved renal function? A systemic review and meta-analysis. PLoS One. 2014; 9(7): e102276. https://doi.org/10.1371/journal.pone.0102276
30. Palmer SC, Hayen A, Macaskill P et al. Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta-analysis. J Am Med Assoc. 2011; 305: 1119-1127. https://doi.org/10.1001/jama.2011.308
31. Добронравов ВА. Современный взгляд на патофизиологию вторичного гиперпаратиреоза: роль фактора роста фибробластов 23 и klotho. Нефрология. 2011; 15(4): 11-20 [Dobronravov VA. Sovremennyj vzglyad na patofiziologiyu vtorichnogo giperparatireoza: rol’ faktora rosta fibroblastov 23 i klotho. Nefrologiya. 2011; 15(4): 11-20]
32. Милованова ЛЮ, Козловская ЛВ, Милованов ЮС, и др. Механизмы нарушения фосфорно-кальциевого гомеостаза в развитии сердечно-сосудистых осложнений у больных хронической болезнью почек. Роль фактора роста фибробластов-23 (fgf-23) и klotho. Терапевтический архив. 2010; 82 (6): 66-72 [Milovanova LYu, Kozlovskaya LV, MilovanovYuS, i dr. Mekhanizmy narusheniya fosforno-kal’cievogo gomeostaza v razvitii serdechno-sosudistyh oslozhnenij u bol’nyh hronicheskoj bolezn’yu pochek. rol’ faktora rosta fibroblastov-23 (fgf-23) i klotho. Terapevticheskij arhiv. 2010; 82 (6): 66-72].
33. Kuro -o M. Klotho, phosphate and FGF -23 in ageing and disturbed mineral metabolism. Nat Rev Nephrol 2013; 9: 650-660. https://doi.org/10.1038/nrneph.2013.111
34. Dobronravov V, Kaukov I, Smirnov A. Dietary protein intake i s independently associated with the urinary excretion of phosphate. Kidney Res and Clin Practice. 2012; 31(2): A28-A29. https://doi.org/10.1016/j.krcp.2012.04.374
35. Isakova T, Xie H, Yang W et al. Chronic Renal Insufficiency Cohort (CRIC) Study Group : Fibroblast growth factor 23 and risks of mortality and end - stage renal disease in patients with chronic kidney disease. JAMA 2011; 305: 2432-2439. https://doi.org/10.1001/jama.2011.826
36. Pavik I, Jaeger P, Ebner L. Secreted Klotho and FGF23 in chronic kidney disease Stage 1 to 5: a sequence suggested from a cross-sectional study. Nephrol Dial Transplant 2013; 28(2): 352359. https://doi.org/10.1093/ndt/gfs460
37. Barker SL, Pastor J, Carranza D et al. The demonstration of αKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrol Dial Transplant 2015 ; 30(2): 223-233. https://doi.org/10.1093/ndt/gfu291.
38. Богданова ЕО, Галкина ОВ, Зубина ИМ, Добронравов ВА. Klotho, фактор роста фибробластов 23 и неорганический фосфат на ранних стадиях хронической болезни почек. Нефрология. 2016; 4: 53-60 [Bogdanova EO, Galkina OV, Zubina IM, Dobronravov VA. Klotho, faktor rosta fibroblastov 23 i neorganicheskij fosfat na rannih stadiyah hronicheskoj bolezni pochek. Nefrologiya. 2016; 4: 53-60]
39. Schiavi SC, Tang W, Bracken C et al. Npt2b deletion attenuates hyperphosphatemia associated with CKD. J Am Soc Nephrol. 2012; 23: 1691-1700. https://doi.org/10.1681/ASN.2011121213
40. Takeda E, Yamamoto H, Yamanaka-Okumura H, Taketani Y. Dietary phosphorus in bone health and quality of life. Nutr Rev. 2012; 70: 311-321. https://doi.org/10.1111/j.1753-4887.2012.00473.x
41. Karp HJ, Kemi VE, Lamberg-Allardt CJ, Karkkainen MU. Mono- and polyphosphates have similar effects on calcium and phosphorus metabolism in healthy young women. Eur J Nutr. 2013; 52: 991-996. https://doi.org/10.1007/s00394-012-0406-5
42. London GM et al. Arterial calcifications and bone histomorphometry in end-stage renal disease. J Am Soc Nephrol. 2004; 15: 1943-51. https://doi.org/10.1097/01.ASN.0000129337.50739.48
43. Ferreira JC, Ferrari GO, Neves KR et al. Effects of dietary phosphate on adynamic bone disease in rats with chronic kidney diseaserole of sclerostin? PLoS One. 2013; 8(11): e79721. https://doi.org/10.1371/journal.pone.0079721
44. Pereira RC, Juppner H, Azucena-Serrano CE et al. Patterns of FGF-23, DMP1, and MEPE expression in patients with chronic kidney disease. Bone. 2009; 45: 1161-68. https://doi.org/10.1016/j.bone.2009.08.008
45. Drüeke TB, Massy ZA.Changing bone patterns with progression of chronic kidney disease. Kidney Int. 2016; 89(2): 289-302. https://doi.org/10.1016/j.kint.2015.12.004
46. Rendenbach C, Yorgan TA, Heckt T et al. Effects of extracellular phosphate on gene expression in murine osteoblasts. Calcif Tissue Int. 2014; 94(5): 474-483. https://doi.org/10.1007/s00223-013-9831-6
47. Ito N, Findlay DM, Anderson PH et al. Extracellular phosphate modulates the effect of 1α, 25-dihydroxy vitamin D3 (1,25D) on osteocyte like cells. J Steroid Biochem Mol Biol. 2013; 136: 183. https://doi.org/10.1016/j.jsbmb.2012.09.029
48. Bellido T, Plotkin LI. Novel actions of bisphosphonates in bone: Preservation of osteoblast and osteocyte viability. Bone. 2011; 49: 50-55. https://doi.org/10.1016/j.bone.2010.08.008
49. Prideaux M, Loveridge N, Pitsillides AA, Farquharson C. Extracellular matrix mineralization promotes E11/gp38 glycoprotein expression and drives osteocytic differentiation. PLoS One. 2012; 7(5): e36786. https://doi.org/10.1371/journal.pone.0036786.
50. Bonewald LF. The amazing osteocyte. J of Bone and Mineral Res. 2011; 26(2): 229-238. https://doi.org/10.1002/jbmr.320
51. Plotkin LI, Mathov I, Aguirre JI et al. Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins, Src kinases and ERKs. Am J Physiol Cell Physiol. 2005; 289: 633-C643
52. Tsuji K, Bandyopadhyay A, Harfe BD et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet. 2006; 38: 1424-1429
53. Hu H, Hilton MJ, Tu X et al. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development. 2005; 132: 49-60
54. Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation. Annu Rev Cell Dev Biol. 2009; 25: 629-648. https://doi.org/10.1146/annurev.cellbio.042308.113308
55. Satokata I, Ma L, Ohshima H et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet. 2000; 24: 391-395
56. Koga T, Matsui Y, Asagiri M et al. NFAT and Osterix cooperatively regulate bone formation. Nat Med. 2005; 11: 880-885.
57. Canalis E. Update in new anabolic therapies for osteoporosis. J Clin Endocrinol Metab. 2010; 95: 1496-1504. https://doi.org/10.1210/ jc.2009-2677
58. Смирнов АВ, Румянцев АШ. Строение и функции костной ткани в норме и при патологии. Сообщение II. Нефрология. 2015; 19(1): 8-17 [Smirnov AV, Rumyancev ASh. Stroenie i funkcii kostnoj tkani v norme i pri patologii. Soobshchenie II. Nefrologiya. 2015; 19(1): 8-17].
59. Sabbagh Y Graciolli FG, O’Brien S et al. Repression of osteocyte Wnt/S-catenin signaling is an early event in the progression of renal osteodystrophy. J Bone Miner Res. 2012; 27: 1757-1772. https://doi.org/10.1002/jbmr. 1630
60. Rowe PS. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit Rev Eukaryot Gene Expr. 2012; 22(1): 61-86
61. David V, Martin A, Hedge AM. ASARM peptides: PHEX-dependent and -independent regulation of serum phosphate. Am J Physiol Renal Physiol. 2011; 300(3): 783-791
62. Evenepoel P, D’Haese P, Brandenburg V. Sclerostin and DKK1: new players in renal bone and vascular disease. Kidney Int. 2015 Aug; 88(2): 235-240. https://doi.org/10.1038/ki.2015.156
63. Confavreux CB. Bone: from a reservoir of minerals to a regulator of energy metabolism. Kidney International. 2011; 79(121): 14-19. https://doi.org/10.1038/ki.2011.25
64. Kurz P, Monier-Faugere MC, Bognar B et al. Evidence for abnormal calcium homeostasis in patients with adynamic bone disease. Kidney Int. 1994; 46: 855-861
65. Sage AP, Lu J, Tintut Yet al. Hyperphosphatemia -induced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro. Kidney Int. 2011; 79: 414-422. https://doi.org/10.1038/ki.2010.390
66. Villa-Bellosta R, Sorribas V. Phosphonoformic acid prevents vascular smooth muscle cell calcification by inhibiting calcium - phosphate deposition. Arterioscler Thromb Vasc Biol. 2009; 29: 761-766. https://doi.org/10.1161/ATVBAHA.108.183384
67. Ewence AE, Bootman M, Roderick HL et al. Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization. Circ Res. 2008; 103: e28-e34. https://doi.org/10.1161/CIRCRESAHA.108.181305
68. Smith ER, Ford ML, Tomlinson LA et al. Phosphorylated fetuin-A-containing calciprotein particles are associated with aortic stiffness and a procalcific milieu in patients with pre-dialysis CKD. Nephrol Dial Transplant. 2012; 27(5): 1957 -1966. https://doi.org/10.1093/ ndt/gfr609
69. Abbasian N, Burton JO, Herbert KE et al. Hyperphosphatemia, phosphoprotein phosphatases, and microparticle release in vascular endothelial cells. J Am Soc Nephrol. 2015; 26: 2152-2162. https://doi.org/10.1681/ASN.2014070642
70. Chavkin NW, Chia JJ, Crouthamel MH, Giachelli CM. Phosphate uptake-independent signaling functions of the type III sodium-dependent phosphate transporter, PiT-1, in vascular smooth muscle cells. Exp Cell Res. 2015; 333(1): 39-48. https://doi.org/10.1016/j.yexcr.2015.02.00
71. Steitz SA, Speer MY, Curinga G et al. Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res. 2001; 89: 1147-1154
72. Speer MY, Li X, Hiremath PG, Giachelli CM. Runx2 / Cbfa1. but not loss of myocardin, is required for smooth muscle cell lineage reprogramming toward osteochondrogenesis. J Cell Biochem. 2010; 110: 935-947. https://doi.org/10.1002/jcb.22607
73. Shioi ANY, Jono S, Koyama H et al. Glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler Throm Vasc Biol. 1995; 17: 1135-1142
74. Chen NX, O’Neill KD, Duan D, Moe SM. Phosphorus and uremic serum up -regulate osteopontin expression in vascular smooth muscle cells. Kidney Int. 2002; 62: 1724-1731
75. Mathew S, Tustison KS, Sugatani T et al. The mechanism of phosphorus as a cardiovascular risk factor in CKD. J Am Soc Nephrol. 2008; 19: 1092-1105. https://doi.org/10.1681/ASN.2007070760
76. Leopold JA. Vascular calcification: Mechanisms of vascular smooth muscle cell calcification. Trends Cardiovasc Med. 2015; 25(4): 267-274. https://doi.org/10.1016/j.tcm.2014.10.021
77. Gittenberger-de Groot AC, Winter EM, Bartelings MM et al. The arterial and cardiac epicardium in development, disease and repair. Differentiation. 2012; 84(1): 41-53. https://doi.org/10.1016/j.diff.2012.05.002
78. Von Gise A, Pu WT. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res. 2012; 110(12): 1628-1645. https://doi.org/10.1161/CIRCRE-SAHA.111.259960
79. Mill C, George SJ. Wnt signalling in smooth muscle cells and its role in cardiovascular disorders. Cardiovasc Res. 2012; 95(2): 233-240. https://doi.org/10.1093/cvr/cvs141
80. Liu H, Fergusson MM, Castilho RM et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science. 2007; 317: 803-806
81. Kawakami T, Ren S, Duffield JS. Wnt signalling in kidney diseases: dual roles in renal injury and repair. J Pathol. 2013; 229(2): 221-231. https://doi.org/10.1002/path.4121
82. Sage AP, Lu J, Tintut Y, Demer LL. Hyperphosphatemia-induced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro. Kidney Int. 2011; 79: 414-422. https://doi.org/10.1038/ ki.2010.390
83. Li X, Yang HY, Giachelli CM. BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells. Atherosclerosis. 2008; 199: 271-277. https://doi.org/10.1016/j.atherosclerosis.2007.11.031
84. Ross S, Hill CS. How the Smads regulate transcription. Int J Biochem Cell Biol. 2008; 40: 383-408
85. Zhang YW, Yasui N, Ito K et al. A RUNX2/PEBP2alpha A/ CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc Natl Acad Sci USA. 2000; 97: 10549-10554
86. Vattikuti R, Towler DA. Osteogenic regulation of vascular calcification: an early perspective. Am J Physiol Endocrinol Metab. 2004; 286: E686-E696
87. Hruska KA, Mathew S, Saab G. Bone morphogenetic proteins in vascular calcification. Circ Res. 2005; 97: 105-114
88. Lian JB, Javed A, Zaidi SK et al. Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr. 2004; 14: 1-41
89. Baron R, Rawadi G. Wnt signaling and the regulation of bone mass. Curr Osteoporos Rep. 2007; 5: 73-80
90. Shao JS, Cai J, Towler DA. Molecular mechanisms of vascular calcification: lessons learned from the aorta. Arterioscler Thromb Vasc Biol. 2006; 26: 1423-1430
91. Shao JS, Cheng SL, Pingsterhaus JM et al. Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Invest. 2005; 115: 1210-1220
92. Ермоленко ВМ. Ренальная остеодистрофия - начальные события. Клиническая нефролoгия. 2014; (2): 10-14 [Ermolenko VM. Renal’naya osteodistrofiya - nachal’nye sobytiya. Klinicheskaya nefrolgiya. 2014; (2): 10-14]
93. Weishaar RE, Kim SN, Saunders DE et al. Involvement of vitamin D3 with cardiovascular function. III. Effects on physical and morphological properties. Am J Physiol. 1990; 258: E134-E142
94. Xiang W, Kong J, Chen S et al.Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin -angiotensin systems. Am J Physiol Endocrinol Metab. 2005; 288: E125-132
95. Смирнов АВ, Волков МM, Добронравов ВА. Кардиопротективные эффекты D-гормона у больных с хронической болезнью почек: обзор литературы и собственные данные. Нефрология 2009; 13(1): 30-38 [Smirnov AV, Volkov MM, Dobronravov VA. Kardioprotektivnye ehffekty D-gormona u bol’nyh s hronicheskoj bolezn’yu pochek: obzor literatury i sobstvennye dannye. Nefrologiya. 2009; 13(1): 30-38]
96. Nigwekar SU, Thadhani R. Vitamin D receptor activation: cardiovascular and renal implications. Kidney Int Suppl (2011). 2013; 3(5): 4 27 - 430
97. Li YC. Vitamin D: roles in renal and cardiovascular protection. Curr Opin Nephrol Hypertens. 2012; 21(1): 72-79. https://doi.org/10.1097/MNH.0b013e32834de4ee
98. Mathew S, Lund RJ, Chaudhary LR et al. Vitamin D receptor activators can protect against vascular calcification. J Am Soc Nephrol. 2008; 19: 1509-1519. https://doi.org/10.1681/ASN.2007080902
99. Mizobuchi M, Finch JL, Martin DR et al. Differential effects of vitamin D receptor activators on vascular calcification in uremic rats. Kidney Int. 2007; 72: 709-715
100. Martfnez-Moreno JM, Mufioz-Castafieda JR, Herencia C et al. In vascular smooth muscle cells paricalcitol prevents phosphate-induced Wnt/ß-catenin activation. Am J Physiol Renal Physi ol. 2012; 303(8): F1136-144. https://doi.org/10.1152/ajprenal.00684.2011
101. Kolek OI, Hines ER, Jones MD et al. 1alpha,25-dihy-droxyvitamin D3 upregulates FGF-23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol. 2005; 289: G1036-G1042
102. Barthel TK, Mathern DR, Whitfield GK et al. 1,25-dihydroxyvitamin D(3)/VDR-mediated induction of FGF-23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism. J Steroid Biochem Mol Biol. 2007; 103: 381-388
103. Lomashvili KA, Narisawa S, Millan JL, O’Neill WC. Vascular calcification is dependent on plasma levels of pyrophosphate. Kid Int. 2014; 85: 1351-1356. https://doi.org/10.1038/ki.2013.521
104. Hruska KA, Mathew S, Lund RJ et al. The pathogenesis of vascular calcification in the chronic kidney disease mineral bone disorder: the links between bone and the vasculature. Sem Nephrol. 2009; 29: 156-165. https://doi.org/10.1016/j.semnephrol.2009.01.008
105. Kokot F, Pietrek J, Srokowska S et al. 25 -Hydroxyvitamin D in patients with essential hypertension. Clin Nephrol. 1981; 16: 188-192
106. Burgaz A, Orsini N, Larsson SC et al. Blood 25 -hydroxyvi-tamin D concentration and hypertension: a meta-analysis. J Hypertens. 2011; 29: 636-645. https://doi.org/10.1097/HJH.0b013e32834320f9
107. Pilz S, Marz W, Wellnitz B et al. Association of vitamin D deficiency with heart failure and sudden cardiac death in a large cross -sectional study of patients referred for coronary angiography. J Clin Endocrinol Metab. 2008; 93: 3927-3935. https://doi.org/10.1210/ jc.2008-0784
108. Wang TJ, Pencina MJ, Booth SL et al. Vitamin D deficiency and risk of cardiovascular disease. Circulation. 2008; 117: 503-511. https://doi.org/10.1161/CIRCULATIONAHA.107.706127
109. Pilz S, Iodice S, Zittermann A et al. Vitamin D status and mortality risk in CKD: a meta -analysis of prospective studies. Am J Kidney Dis. 2011; 58; 374-382. https://doi.org/10.1053/j.ajkd.2011.03.020
110. Drechsler C, Verduijn M, Pilz S et al. Vitamin D status and clinical outcomes in incident dialysis patients: results from the NECOSAD study. Nephrol Dial Transplant. 2011; 26: 1024-1032. https://doi.org/10.1093/ndt/gfq606
111. Xiang W, Kong J, Chen S et al.Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin -angiotensin systems. Am J Physiol Endocrinol Metab. 2005; 288: E125-132
112. Abu el Maaty MA, Gad MZ. Vitamin D deficiency and cardiovascular disease: potential mechanisms and novel perspectives. J Nutr Sci Vitaminol (Tokyo). 2013; 59(6): 479-488. https://doi.org/10.3177/jnsv.59.479
113. Clemens TL, Cormier S, Eichinger A et al. Parathyroid hormone -related protein and its receptors: nuclear functions and roles in the renal and cardiovascular systems, the placental trophoblasts and the pancreatic islets. Br J Pharmacol. 2001; 134: 1113-1136
114. Goettsch C, Iwata H, Aikawa E. Parathyroid hormone: critical bridge between bone metabolism and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2014; 34(7): 1333-1335. https://doi.org/10.1161/ATVBAHA.114.303637
115. Macfarlane DP, Yu N, Leese GP. Subclinical and asymptomatic parathyroid disease: implications of emerging data. Lancet Diabetes Endocrinol. 2013; 1: 329-340. https://doi.org/10.1016/ S2213-8587(13)70083-4
116. Bosworth C, Sachs MC, Duprez D et al. Parathyroid hormone and arterial dysfunction in the multi-ethnic study of atherosclerosis. Clin Endocrinol(Oxf). 2013; 79(3): 429 -436. https://doi.org/10.1111/cen.12163
117. Hagström E, Hellman P, Larsson TE et al. Plasma parathyroid hormone and the risk of cardiovascular mortality in the community. Circulation. 2009; 119: 2765-2771. https://doi.org/10.1161/CIRCULATIONAHA.108.808733
118. Нagström E, Michaëlsson K, Melhus H et al. Plasma-parathyroid hormone is associated with subclinical and clinical atherosclerotic disease in 2 community -based cohorts. Arterioscler Thromb Vasc Biol. 2014; 34: 1567-1573. https://doi.org/10.1161/ATVBAHA.113.303062
119. Nakayama K, Nakao K, Takatori Y et al. Long -term effect of cinacalcet hydrochloride on abdominal aortic calcification in patients on hemodialysis with secondary hyperparathyroidism. Int J Nephrol Renovasc Dis. 2013; 7: 25-33. https://doi.org/10.2147/IJNRD.S54731
120. Lee M, Partridge NC. Parathyroid hormone signaling in bone and kidney. Curr Opin Nephrol Hypertens. 2009; 18(4): 298-302. https://doi.org/10.1097/MNH.0b013e32832c2264
121. Keller H, Kneissel M. SOST is a target gene for PTH in bone. Bone. 2005; 37(2): 148-158
122. Cheng SL, Shao JS, Halstead LR et al. Activation of vascular smooth muscle parathyroid hormone receptor inhibits Wnt/beta-catenin signaling and aortic fibrosis in diabetic arteriosclerosis. Circ Res. 2010; 107: 271-282. https://doi.org/10.1161/CIRCRESAHA.110.219899
123. Sebastian EM, Suva LJ, Friedman PA. Differential effects of intermittent PTH(1-34) and PTH(7-34) on bone microarchitecture and aortic calcification in experimental renal failure. Bone. 2008; 43: 1022-30. https://doi.org/10.1016/j.bone.2008.07.250
124. Shao JS, Cheng SL, Charlton-Kachigian N et al. Teripa-ratide (human parathyroid hormone (1-34)) inhibits osteogenic vascular calcification in diabetic low density lipoprotein receptor-deficient mice. J Biol Chem. 2003; 278: 50195-50202
125. Suttamanatwong S, Franceschi RT, Carlson AE, Go-palakrishnan R. Regulation of matrix Gla protein by parathyroid hormone in MC3T3-E1 osteoblast-like cells involves protein kinase A and extracellular signal-regulated kinase pathways. J Cell Biochem. 2007; 102: 496-505.
126. Gopalakrishnan R, Suttamanatwong S, Carlson AE, Franceschi RT. Role of matrix Gla protein in parathyroid hormone inhibition of osteoblast mineralization. Cells Tissues Organs. 2005; 181: 166-175
127. Yao Y et al. Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification. Circ Res. 2010; 107: 485-494. https://doi.org/10.1161/CIRCRESAHA.110.219071
128. Gutierrez OM, Wolf M, Taylor EN. Fibroblast growth factor 23, cardiovascular disease risk factors, and phosphorus intake in the Health Professionals Follow -up Study. Clin J Am Soc Nephrol. 2011; 6: 2871-2878. https://doi.org/10.2215/CJN.02740311
129. Manghat P, Fraser WD, Wierzbicki AS et al. Fibroblast growth factor -23 is associated with C -reactive protein, serum phosphate and bone mineral density in chronic kidney disease. Osteoporos Int. 2010; 21: 1853-1861. https://doi.org/10.1007/s00198-009-1142-4
130. Isakova T, Xie H, Yang W et al. Chronic Renal Insufficiency Cohort (CRIC) Study Group : Fibroblast growth factor 23 and risks of mortality and end -stage renal disease in patients with chronic kidney disease. JAMA. 2011; 305: 2432-2439. https://doi.org/10.1001/jama.2011.826
131. Fliser D, Kollerits B, Neyer U et al. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: The Mild to Moderate Kidney Disease (MMKD) Study. J Am Soc Nephrol. 2007; 18: 2600-2608
132. Wolf M, Molnar MZ, Amaral AP et al. Elevated fibroblast growth factor 23 is a risk factor for kidney transplant loss and mortality. J Am Soc Nephrol. 2011; 22: 956-966. https://doi.org/10.1681/ ASN.2010080894
133. Gutiérrez OM, Mannstadt M, Isakova T et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008; 359: 584-592. https://doi.org/10.1056/ NEJMoa0706130
134. Lundberg S, Qureshi AR, Olivecrona S et al. FGF23, albuminuria, and disease progression in patients with chronic IgA nephropathy. Clin J Am Soc Nephrol. 2012; 7: 727-734. https://doi.org/10.2215/CJN.10331011
135. Ix JH, Katz R, Kestenbaum BR et al. Fibroblast growth factor - 23 and death, heart failure, and cardiovascular events in community - living individuals: CHS (Cardiovascular Health Study). J Am Coll Cardiol. 2012; 60: 200-207. https://doi.org/10.1016/j.jacc.2012.03.040
136. Ärnlöv J, Carlsson AC, Sundström J et al. Higher fibroblast growth factor - 23 increases the risk of all - cause and cardiovascular mortality in the community. Kidney Int. 2013; 83: 160-166. https://doi.org/10.1038/ki.2012.327
137. Ärnlöv J, Carlsson AC, Sundström J et al. Serum FGF23 and Risk of Cardiovascular Events in Relation to Mineral Metabolism and Cardiovascular Pathology. Clin J Am Soc Nephrol. 2013; 8(5): 781-786. https://doi.org/10.2215/CJN.09570912
138. Jovanovich A, Ix JH, Gottdiener J et al. Fibroblast growth factor 23, left ventricular mass, and left ventricular hypertrophy in community - dwelling older adults. Atherosclerosis. 2013; 231(1): 114-119. https://doi.org/10.1016/j.atherosclerosis.2013.09.002
139. Scialla JJ, Xie H, Rahman M et al.Chronic Renal Insufficiency Cohort (CRIC) Study Investigators. Fibroblast growth factor -23 and cardiovascular events in CKD. J Am Soc Nephrol. 2014; 25(2): 349-360. https://doi.org/10.1681/ASN.2013050465
140. Faul C, Amaral AP, Oskouei B et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011; 121(11): 4393-4408. https://doi.org/10.1172/JCI46122
141. Shibata K, Fujita S, Morita H et al.Association between circulating fibroblast growth factor 23, a-Klotho, and the left ventricular ejection fraction and left ventricular mass in cardiology inpatients. PLoS One. 2013; 8(9): e73184. https://doi.org/10.1371/journal. pone.0073184
142. Seifert ME, De Las Fuentes L, Ginsberg C et al. Left ventricular mass progression despite stable blood pressure and kidney function in stage 3 chronic kidney disease. Am J Nephrol. 2014; 39(5): 392 - 399. https://doi.org/10.1159/000362251
143. Seiler S, Rogacev KS, Roth HJ et al. Associations of FGF-23 and sKlotho with cardiovascular outcomes among patients with CKD stages 2-4. Clin J Am Soc Nephrol. 2014; 9(6): 1049 -1058. https://doi.org/10.2215/CJN.07870713
144. Molkentin JD, Lu J, Antos C et al. A calcineurin -dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998; 93(2): 215-228
145. Komuro I, YazakiY Control of cardiac gene expression by mechanical stress. Annu Rev Physiol. 1993; 55: 55-75
146. Itoh N, Ohta H. Pathophysiological roles of FGF signaling in the heart. Front Physiol. 2013; 4: 247. https://doi.org/10.3389/fphys.2013.0024
147. Kendrick J, Cheung AK, Kaufman JS et al. FGF - 23 associates with death, cardiovascular events, and initiation of chronic dialysis. J Am Soc Nephrol. 2011; 22: 1913-1922. https://doi.org/10.1681/ASN.2010121224
148. Seiler S, Reichart B, Roth D et al. FGF -23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment. Nephrol Dial Transplant. 2010; 25: 3983-3989. https://doi.org/10.1093/ndt/gfq309
149. Mirza MA, Larsson A, Lind L et al. Circulating fibroblast growth factor - 23 is associated with vascular dysfunction in the community. Atherosclerosis. 2009; 205: 385-390. https://doi.org/10.1016/j. atherosclerosis.2009.01.001
150. Parker BD, Schurgers LJ, Brandenburg VM et al. The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study. Ann Intern Med. 2010; 152: 640-648. https://doi.org/10.7326/0003-4819-152-10-201005180-00004
151. Taylor EN, Rimm EB, Stampfer MJ et al. Plasma fibroblast growth factor 23, parathyroid hormone, phosphorus, and risk of coronary heart disease. Am Heart J. 2011; 161: 956-962. https://doi.org/10.1016/j.ahj.2011.02.012
152. Srivaths PR, Goldstein SL, Silverstein DM et al. Elevated FGF 23 and phosphorus are associated with coronary calcification in hemodialysis patients. Pediatr Nephrol. 2011; 26: 945-951. https://doi.org/10.1007/s00467-011-1822-0
153. Roos M, Lutz J, Salmhofer H et al. Relation between plasma fibroblast growth factor-23, serum fetuin-A levels and coronary artery calcification evaluated by multislice computed tomography in patients with normal kidney function. Clin Endocrinol (Oxf). 2008; 68: 660-665. https://doi.org/10.1111/j.1365-2265.2007.03074.x
154. Kuro -o M, Matsumura Y, Aizawa H et al. Mutation of the mouse Klotho gene leads to a syndrome resembling ageing. Nature. 1997; 390: 45-51
155. Kuro - o М. Phosphate and Klotho. Kidney Intl. 2011; 79(121): S20-S23. https://doi.org/10.1038/ki.2011.26
156. Dai B, David V, Martin A et al. A comparative transcrip-tome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model. PLoS One. 2012; 7: e44161. https://doi.org/10.1371/journal.pone.0044161
157. Hu MC, Kuro -o M, Moe OW. Secreted klotho and chronic kidney disease. Adv Exp Med Biol. 2012; 728: 126-157. https://doi.org/10.1007/978-1-4614-0887-1_9
158. Lim K, Lu TS, Molostvov G et al. Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation. 2012; 125: 2243-2255. https://doi.org/10.1007/978-1-4614-0887-1_9
159. Van Venrooij NA, Pereira RC, Tintut Y et al. FGF23 protein expression in coronary arteries is associated with impaired kidney function. Nephrol Dial Transplant. 2014; 29(8): 1525 -1532. https://doi.org/10.1093/ndt/gft523
160. Mencke R, Harms G, Mirkovic K et al. Membrane-bound Klotho is not expressed endogenously in healthy or uraemic human vascular tissue. Cardiovasc Res. 2015; 108(2): 220-231. https://doi.org/10.1093/cvr/cvv187
161. Hu MC, Shi M, Zhang J et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2011; 22: 124-136. https://doi.org/10.1681/ASN.2009121311
162. Zhao Y, Banerjee S, Dey N et al. Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine)536 phosphorylation. Diabetes. 2011; 60; 1907-1916. https://doi.org/10.2337/db10-1262
163. Xu Y1, Sun Z. Molecular basis of Klotho: from gene to function in aging. Endocr Rev. 2015; 36(2): 174-193. https://doi.org/10.1210/er.2013-1079
164. Hu MC, Shi M, Zhang J et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2011; 22: 124-136. https://doi.org/10.1681/ASN.2009121311
165. Dermaku-Sopjani M, Sopjani M, Saxena A et al. Downregulation of NaPi-IIa and NaPi-IIb Na-coupled phosphate transporters by coexpression of Klotho. Cell Physiol Biochem. 2011; 28: 251-258. https://doi.org/10.1159/000331737
166. De Oliveira RM. Klotho RNAi induces premature senescence of human cells via a p53/p21 dependent pathway. FEBS Lett. 2006; 580: 5753-5758
167. Nakano-Kurimoto R, Ikeda K et al. Replicative senescence of vascular smooth muscle cells enhances the calcification through initiating the osteoblastic transition. Am J Physiol. Heart Circ Physiol. 2009; 297: 1673-1684. https://doi.org/10.1152/ajpheart.00455.2009
168. Kuro -o M. Klotho as a regulator of oxidative stress and senescence. Biol Chem. 2008; 389(3): 233-241. https://doi.org/10.1515/BC.2008.028
169. Kusaba T, Okigawa M, Matui A et al. Klotho is associated with VEGF receptor -2 and the transient receptor potential canonical -1 Ca2+ channel to maintain endothelial integrity. Proc Natl Acad Sci USA. 2010; 107(45): 19308-19313. https://doi.org/10.1073/pnas.1008544107
170. Nagai R, Saito Y, Ohyama Y et al. Endothelial dysfunction in the klotho mouse and downregulation of klotho gene expression in various animal models of vascular and metabolic diseases. Cell Mol Life Sci. 2000; 57(5): 738-746
171. Kurosu H, Yamamoto M, Clark JD et al. Suppression of aging in mice by the hormone Klotho. Science. 2005; 309: 1829-1833
172. https://doi.org/S, Zou Y, Togao O et al. Klotho inhibits transforming growth factor -beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem. 2011; 286(10): 8655-8665. https://doi.org/10.1074/jbc.M110.174037
173. Takeshita K, Fujimori T, Kurotaki Y et al. Sinoatrial node dysfunction and early unexpected death of mice with a defect of klotho gene expression. Circulation. 2004; 109(14): 1776-1782
174. Nowak A, Friedrich B, Artunc F et al. Prognostic value and link to atrial fibrillation of soluble Klotho and FGF23 in hemodialysis patients. PLoS One. 2014; 9(7): e100688. https://doi.org/10.1371/journal.pone.0100688
175. Six I, Okazaki H, Gross P et al. Direct, acute effects of Klotho and FGF23 on vascular smooth muscle and endothelium. PLoS One. 2014; 9(4): e93423. https://doi.org/10.1371/journal.pone.0093423
176. Богданова ЕО, Береснева ОН, Семенова НЮ и др. Почечная экспрессия белка αklotho ассоциирована с гипертрофией миокарда (экспериментальное исследование). Артериальная гипертензия. 2014; 20(6): 522-530 [Bogdanova EO, Beresneva ON, Semenova NYU i dr. Pochechnaya ehkspressiya belka aklotho associirovana s gipertrofiej miokarda (ehksperimental’noe issledovanie). Arterial'naya gipertenziya. 2014; 20(6): 522-530]
177. Xie J, Cha SK, An SW et al. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat Commun. 2012; 3: 1238. https://doi.org/10.1038/ncomms2240
178. Hu MC, Shi M, Cho HJ. et al. Klotho and Phosphate Are Modulators of Pathologic Uremic Cardiac Remodeling. J Am Soc Nephrol. 2014. [Epub ahead of print] https://doi.org/10.1681/ASN.2014050465
179. Song S, Gao P, Xiao H et al. Klotho suppresses cardiomyocyte apoptosis in mice with stress -induced cardiac injury via downregulation of endoplasmic reticulum stress. PLoS One. 2013; 8(12): e82968. https://doi.org/10.1371/journal.pone.0082968
180. Maekawa Y, Ohishi M, Ikushima M et al. Klotho protein diminishes endothelial apoptosis and senescence via a mitogen -activated kinase pathway. Geriatr Gerontol Int. 2011; 11: 510-516. https://doi.org/10.1111/j.1447-0594.2011.00699.x
181. De Oliveira RM. Klotho RNAi induces premature senescence of human cells via a p53/p21 dependent pathway. FEBS Lett. 2006; 580: 5753-5758
182. Liu F, Wu S, Ren H, Gu J. Klotho suppresses RIG-I-mediated senescence-associated inflammation. Nat Cell Biol. 2011; 13: 254-262. https://doi.org/10.1038/ncb2167
183. Moe SM, Radcliff JS, White KE et al. The pathophysiology of early stage chronic kidney disease-mineral bone disorder (CKD-MBD) and response to phosphate binders. J Bone Miner Res. 2011; 26: 2672- 2681. https://doi.org/10.1002/jbmr.485.
184. Moe SM. Klotho: a master regulator of cardiovascular disease? Circulation. 2012; 125(18): 2181-2183. https://doi.org/10.1161/CIRCULATIONAHA.112.104828
185. Lim K, Lu TS, Molostvov G et al. Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation. 2012; 125(18): 2243-2255. https://doi.org/10.1161/CIRCULATIO-NAHA.111.053405
186. Gorriz JL, Molina P, Cerveron MJ et al. Vascular calcification in patients with nondialysis CKD over 3 years. Clin J Am Soc Nephrol. 2015; 10(4): 654-666. https://doi.org/10.2215/CJN.07450714
187. Semba RD, Cappola AR, Sun K et al. Plasma klotho and mortality risk in older community-dwelling adults. J Gerontol A Biol Sci Med Sci. 2011; 66(7): 794-800. https://doi.org/10.1093/gerona/glr058
188. Sabbagh Y, Graciolli FG, O’Brien S et al. Repression of osteocyte Wnt/ß -catenin signaling is an early event in the progression of renal osteodystrophy. J Bone Miner Res. 2012; 27: 1757-1772. https://doi.org/10.1002/jbmr.1630
189. Fang Y, Ginsberg C, Sugatani T et al. Early chronic kidney disease - mineral bone disorder stimulates vascular calcification. Kidney Int. 2014; 85(1): 142 -150. https://doi.org/10.1038/ki.2013.271
190. De Oliveira RB, Graciolli FG, dos Reis LM et al. Disturbances of Wnt/ß-catenin pathway and energy metabolism in early CKD: effect of phosphate binders. Nephrol Dial Transplant. 2013; 28(10): 2510-2517. https://doi.org/10.1093/ndt/gft234
191. Ueland T, Otterdal K, Lekva T et al. Dickkopf-1 enhances inflammatory interaction between platelets and endothelial cells and shows increased expression in atherosclerosis. Arterioscler Thromb Vasc Biol. 2009; 29(8): 1228-1234. https://doi.org/10.1161/AT-VBAHA.109.189761
192. Chen W, Melamed ML. Vascular calcification in predialysis CKD: common and deadly. Clin J Am Soc Nephrol. 2015; 10(4): 551-553. https://doi.org/10.2215/CJN.01940215
193. Cheng SL, Shao JS, Behrmann A et al. Dkk1 and MSX2-Wnt7b signaling reciprocally regulate the endothelial-mesenchymal transition in aortic endothelial cells. Arterioscler Thromb Vasc Biol. 2013; 33: 1679-1689. https://doi.org/10.1161/ATVBAHA.113.300647
194. Buendia P, Montes de Oca A, Madueno JA et al. Endothelial microparticles mediate inflammation-induced vascular calcification. FASEB J. 2015; 29(1): 173-181. https://doi.org/10.1096/fj.14-249706
195. Li M, Liu X, Zhang Y et al. Upregulation of Dickkopf1 by oscillatory shear stress accelerates atherogenesis. J Mol Med (Berl). 2016; 94(4): 431-441. https://doi.org/10.1007/s00109-015-1369-9
196. Morena M, Jaussent I, Dupuy AM et al.Osteoprotegerin and sclerostin in chronic kidney disease prior to dialysis: potential partners in vascular calcifications. Nephrol Dial Transplant. 2015; 30(8): 1345-1356. https://doi.org/10.1093/ndt/gfv081
197. Kuipers AL, Miljkovic I, Carr JJ et al. Association of circulating sclerostin with vascular calcification in Afro-Caribbean men. Atherosclerosis. 2015; 239(1): 218-223. https://doi.org/10.1016/j.atherosclerosis.2015.01.010
198. Pelletier S, Confavreux CB, Haesebaert J et al. Serum sclerostin: the missing link in the bone-vessel cross-talk in hemodialysis patients? Osteoporos Int. 2015 Aug; 26(8): 2165-2174. https://doi.org/10.1007/s00198-015-3127-3129
199. Claes KJ, Viaene L, Heye S et al. Sclerostin: Another vascular calcification inhibitor? J Clin Endocrinol Metab. 2013; 98(8): 3221-3228. https://doi.org/10.1210/jc.2013-1521
200. Evenepoel P, Goffin E, Meijers B et al. Sclerostin Serum Levels and Vascular Calcification Progression in Prevalent Renal Transplant Recipients. J Clin Endocrinol Metab. 2015; 100(12): 4669-4676. https://doi.org/10.1210/jc.2015-3056
201. Hampson G, Edwards S, Conroy S et al. The relationship between inhibitors of the Wnt signalling pathway (Dick-kopf-1(DKK1) and sclerostin), bone mineral density, vascular calcification and arterial stiffness in post-menopausal women. Bone. 2013; 56(1): 42-47. https://doi.org/10.1016/j.bone.2013.05.010
202. Askevold ET, Gullestad L, Nymo S et al. Secreted Frizzled Related Protein 3 in Chronic Heart Failure: Analysis from the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). PLoS One. 2015; 10(8): e0133970. https://doi.org/10.1371/journal. pone.0133970
203. McClung MR, Grauer A, Boonen S et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014; 370: 412-420. https://doi.org/10.1056/NEJMoa1305224
204. Lanzer P, Boehm M, Sorribas V et al. Medial vascular calcification revisited: review and perspectives. Eur Heart J. 2014; 35(23): 1515-1525. https://doi.org/10.1093/eurheartj/ehu163
205. Meiting WM, Cameron RC, Cecilia M, Giachelli CM. Vascular Calcification: an Update on Mechanisms and Challenges in Treatment. Calcif Tissue Int. 2013; 93(4): 365-373. https://doi.org/10.1007/ s00223-013-9712-z
Рецензия
Для цитирования:
Добронравов В.А. Фосфат, почки, кости и сердечно-сосудистая система. Нефрология. 2016;20(4):10-24.
For citation:
Dobronravov V.A. Phosphate, kidneys, bones and cardiovascular system. Nephrology (Saint-Petersburg). 2016;20(4):10-24. (In Russ.)
ISSN 2541-9439 (Online)