Preview

Нефрология

Расширенный поиск

Фосфат, почки, кости и сердечно-сосудистая система

Полный текст:

Аннотация

Исследования последнего времени позволили установить отчетливую связь между уровнем неорганического фосфата (Pi) сыворотки крови, нарушением баланса эндокринных и паракринных систем, регулирующих обмен Pi, с фатальными и нефатальными сердечно-сосудистыми событиями. Данные связи продемонстрированы как для больных с хронической болезнью почек (ХБП), так и для общей популяции. В рамках концепции обсуждаются клинические и экспериментальные данные в рамках концепции, объединяющей патофизиологию нарушений обмена Pi, типичных для ХБП, и развитие изменений в сердечно-сосудистой системе.

Об авторе

Владимир Александрович Добронравов
Научно-исследовательский институт нефрологии Санкт-Петербургского государственного медицинского университета им. акад. И.П. Павлова
Россия


Список литературы

1. Kestenbaum B, Sampson JN, Rudser KD et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol 2005; 16: 520-528. doi: 10.1681/ASN.2004070602

2. McGovern AP, De Lusignan S, Van Vlymen J et al. Serum phosphate as a risk factor for cardiovascular events in people with and without chronic kidney disease: a large community based cohort study. PLoS One. 2013; 8(9): 74996. doi: 10.1371/journal.pone.0074996

3. Kendrick J, Kestenbaum В, Chonchol М. Phosphate and Cardiovascular Disease. Adv Chronic Kidney Dis 2011; 18(2): 113-119. doi: 10.1053/j.ackd.2010.12.003

4. Смирнов АВ, Шилов ЕМ, Добронравов ВА. и др. Национальные рекомендации. Хроническая болезнь почек: основные принципы скрининга, диагностики, профилактики и подходы к лечению. Нефрология. 2012; 16(1): 89 -115 [Smirnov AV, Shilov EM, Dobronravov VA i dr. Nacional’nye rekomendacii. Hronicheskaya bolezn’ pochek: osnovnye principy skrininga, diagnostiki, profilaktiki i podhody k lecheniyu Nacional’nye rekomendacii. Nefrologiya 2012; 16(1): 89 -115]

5. Blacher J, Asmar R, Djane S et al. Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension 1999; 33(5): 1111-1117. doi: 10.1161/01.HYP.33.5.1111

6. Hollander M, Hak AE, Koudstaal PJ et al. Comparison between measures of atherosclerosis and risk of stroke: the Rotterdam Study. Stroke 2003; 34(10): 2367-2372. doi: 10.1161/01.STR.0000091393.32060.0E

7. Detrano R, Guerci AD, Carr JJ et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 2008; 358: 1336-1345. doi: 10.1056/NEJMoa072100

8. Olson JC, Edmundowicz D, Becker DJ et al. Coronary calcium in adults with type 1 diabetes: a stronger correlate of clinical coronary artery disease in men than in women. Diabetes 2000; 49: 1571-1578

9. London GM, Guerin AP, Marchais SJ et al. Arterial media calcification in end -stage renal disease: impact on all -cause and cardiovascular mortality. Nephrol Dial Transplant 2003; 18: 1731-1740

10. Klassen PS, Lowrie EG, Reddan DN et al. Association between pulse pressure and mortality in patients undergoing maintenance hemodialysis. JAMA 2002; 287: 1548-1555.

11. Hunt JL, Fairman R, Mitchell ME et al. Bone formation in carotid plaques: a clinicopathological study. Stroke 2002; 33: 1214-1219

12. Edmonds ME, Morrison N, Laws JW et al. Medial arterial calcification and diabetic neuropathy. Br Med J (Clin Res Ed) 1982; 284: 928-930

13. Micheletti RG, Fishbein GA, Currier JS et al. Monckeberg sclerosis revisited: a clarification of the histologic definition of Monckeberg sclerosis. Arch Pathol Lab Med 2008; 132: 43-47. doi: 10.2215/CJN.01930408

14. Goodman WG, Goldin J, Kuizon BD et al. Coronary -artery calcification in young adults with end -stage renal disease who are undergoing dialysis. N Engl J Med 2000; 342: 1478-1483

15. Ix JH, De Boer IH, Peralta CA et al. Serum phosphorus concentrations and arterial stiffness among individuals with normal kidney function to moderate kidney disease in MESA. Clin J Am Soc Nephrol 2009; 4: 609-615. doi: 10.2215/CJN.04100808

16. Foley RN, Collins AJ, Herzog CA et al. Serum phosphorus levels associate with coronary atherosclerosis in young adults. J Am Soc Nephrol. 2009; 20: 397-404. doi: 10.1681/ASN.2008020141

17. Kendrick J, Ix JH, Targher G et al. Relation of serum phosphorus levels to ankle brachial pressure index (from the Third National Health and Nutrition Examination Survey). Am J Cardiol 2010; 106(4): 564-568. doi: 10.1016/j.amjcard.2010.03.070

18. Li JW, Xu C, Fan Y et al. Can serum levels of alkaline phosphatase and phosphate predict cardiovascular diseases and total mortality in individuals with preserved renal function? A systemic review and meta-analysis. PLoS One 2014; 9(7): e102276. doi: 10.1371/journal.pone.0102276

19. Strozecki P, Adamowicz A, Nartowicz E et al. Parathormone, calcium, phosphorus, and left ventricular structure and function in normotensive hemodialysis patients. Ren Fail 2001; 23: 115-126

20. Galetta F, Cupisti A, Franzoni F et al. Changes in heart rate variability in chronic uremic patients during ultrafiltration and hemodialysis. Blood Purif 2001; 19: 395-400

21. Culleton BF, Walsh M, Karenbach SW et al. Effect of frequent nocturnal hemodialysis vs conventional hemodialysis on left ventricular mass and quality of life: a randomized controlled trial. JAMA 2007; 298: 1291-1299. doi: 10.1001/jama.298.11.1291

22. Yamamoto KT, Robinson-Cohen C, De Oliveira MC et al. Dietary phosphorus is associated with greater left ventricular mass. Kidney Int 2013; 83(4): 707-714. doi: 10.1038/ki.2012.303

23. Slinin Y, Foley RN, Collins AJ. Calcium, phosphorus, parathyroid hormone and cardiovascular disease in hemodialysis patients. The USRDS waves 1,3, and 4 study. J Am Soc Nephrol 2005; 16: 1788-1793

24. Block GA, Klassen PS, Lazarus JM et al. Mineral metabolism, mortality, and morbidity in hemodialysis patients. J Am Soc Nephrol. 2004; 15: 2208-2218

25. Chonchol M, Dale R, Schrier RW, Estacio R. Serum phosphorus and cardiovascular mortality in type 2 diabetes. Am J Med. 2009; 122: 380-386. doi: 10.1016/j.amjmed.2008.09.039

26. Tonelli M, Sacks F, Pfeffer M et al. Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation. 2005; 112: 2627-2633

27. Dhingra R, Sullivan LM, Fox CS et al. Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Intern Med. 2007; 167: 879-885

28. Foley RN, Collins AJ, Ishani A, Kalra PA. Calcium-phosphate levels and cardiovascular disease in community-swelling adults: The Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J. 2008; 156: 556-563. doi: 10.1016/j.ahj.2008.05.016

29. Li JW, Xu C, Fan Y, Wang Y et al. Can serum levels of alkaline phosphatase and phosphate predict cardiovascular diseases and total mortality in individuals with preserved renal function? A systemic review and meta-analysis. PLoS One. 2014; 9(7): e102276. doi: 10.1371/journal.pone.0102276

30. Palmer SC, Hayen A, Macaskill P et al. Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta-analysis. J Am Med Assoc. 2011; 305: 1119-1127. doi: 10.1001/jama.2011.308

31. Добронравов ВА. Современный взгляд на патофизиологию вторичного гиперпаратиреоза: роль фактора роста фибробластов 23 и klotho. Нефрология. 2011; 15(4): 11-20 [Dobronravov VA. Sovremennyj vzglyad na patofiziologiyu vtorichnogo giperparatireoza: rol’ faktora rosta fibroblastov 23 i klotho. Nefrologiya. 2011; 15(4): 11-20]

32. Милованова ЛЮ, Козловская ЛВ, Милованов ЮС, и др. Механизмы нарушения фосфорно-кальциевого гомеостаза в развитии сердечно-сосудистых осложнений у больных хронической болезнью почек. Роль фактора роста фибробластов-23 (fgf-23) и klotho. Терапевтический архив. 2010; 82 (6): 66-72 [Milovanova LYu, Kozlovskaya LV, MilovanovYuS, i dr. Mekhanizmy narusheniya fosforno-kal’cievogo gomeostaza v razvitii serdechno-sosudistyh oslozhnenij u bol’nyh hronicheskoj bolezn’yu pochek. rol’ faktora rosta fibroblastov-23 (fgf-23) i klotho. Terapevticheskij arhiv. 2010; 82 (6): 66-72].

33. Kuro -o M. Klotho, phosphate and FGF -23 in ageing and disturbed mineral metabolism. Nat Rev Nephrol 2013; 9: 650-660. doi: 10.1038/nrneph.2013.111

34. Dobronravov V, Kaukov I, Smirnov A. Dietary protein intake i s independently associated with the urinary excretion of phosphate. Kidney Res and Clin Practice. 2012; 31(2): A28-A29. doi: 10.1016/j.krcp.2012.04.374

35. Isakova T, Xie H, Yang W et al. Chronic Renal Insufficiency Cohort (CRIC) Study Group : Fibroblast growth factor 23 and risks of mortality and end - stage renal disease in patients with chronic kidney disease. JAMA 2011; 305: 2432-2439. doi: 10.1001/jama.2011.826

36. Pavik I, Jaeger P, Ebner L. Secreted Klotho and FGF23 in chronic kidney disease Stage 1 to 5: a sequence suggested from a cross-sectional study. Nephrol Dial Transplant 2013; 28(2): 352359. doi: 10.1093/ndt/gfs460

37. Barker SL, Pastor J, Carranza D et al. The demonstration of αKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrol Dial Transplant 2015 ; 30(2): 223-233. doi: 10.1093/ndt/gfu291.

38. Богданова ЕО, Галкина ОВ, Зубина ИМ, Добронравов ВА. Klotho, фактор роста фибробластов 23 и неорганический фосфат на ранних стадиях хронической болезни почек. Нефрология. 2016; 4: 53-60 [Bogdanova EO, Galkina OV, Zubina IM, Dobronravov VA. Klotho, faktor rosta fibroblastov 23 i neorganicheskij fosfat na rannih stadiyah hronicheskoj bolezni pochek. Nefrologiya. 2016; 4: 53-60]

39. Schiavi SC, Tang W, Bracken C et al. Npt2b deletion attenuates hyperphosphatemia associated with CKD. J Am Soc Nephrol. 2012; 23: 1691-1700. doi: 10.1681/ASN.2011121213

40. Takeda E, Yamamoto H, Yamanaka-Okumura H, Taketani Y. Dietary phosphorus in bone health and quality of life. Nutr Rev. 2012; 70: 311-321. doi: 10.1111/j.1753-4887.2012.00473.x

41. Karp HJ, Kemi VE, Lamberg-Allardt CJ, Karkkainen MU. Mono- and polyphosphates have similar effects on calcium and phosphorus metabolism in healthy young women. Eur J Nutr. 2013; 52: 991-996. doi: 10.1007/s00394-012-0406-5

42. London GM et al. Arterial calcifications and bone histomorphometry in end-stage renal disease. J Am Soc Nephrol. 2004; 15: 1943-51. doi: 10.1097/01.ASN.0000129337.50739.48

43. Ferreira JC, Ferrari GO, Neves KR et al. Effects of dietary phosphate on adynamic bone disease in rats with chronic kidney diseaserole of sclerostin? PLoS One. 2013; 8(11): e79721. doi: 10.1371/journal.pone.0079721

44. Pereira RC, Juppner H, Azucena-Serrano CE et al. Patterns of FGF-23, DMP1, and MEPE expression in patients with chronic kidney disease. Bone. 2009; 45: 1161-68. doi: 10.1016/j.bone.2009.08.008

45. Drüeke TB, Massy ZA.Changing bone patterns with progression of chronic kidney disease. Kidney Int. 2016; 89(2): 289-302. doi: 10.1016/j.kint.2015.12.004

46. Rendenbach C, Yorgan TA, Heckt T et al. Effects of extracellular phosphate on gene expression in murine osteoblasts. Calcif Tissue Int. 2014; 94(5): 474-483. doi: 10.1007/s00223-013-9831-6

47. Ito N, Findlay DM, Anderson PH et al. Extracellular phosphate modulates the effect of 1α, 25-dihydroxy vitamin D3 (1,25D) on osteocyte like cells. J Steroid Biochem Mol Biol. 2013; 136: 183. doi: 10.1016/j.jsbmb.2012.09.029

48. Bellido T, Plotkin LI. Novel actions of bisphosphonates in bone: Preservation of osteoblast and osteocyte viability. Bone. 2011; 49: 50-55. doi: 10.1016/j.bone.2010.08.008

49. Prideaux M, Loveridge N, Pitsillides AA, Farquharson C. Extracellular matrix mineralization promotes E11/gp38 glycoprotein expression and drives osteocytic differentiation. PLoS One. 2012; 7(5): e36786. doi: 10.1371/journal.pone.0036786.

50. Bonewald LF. The amazing osteocyte. J of Bone and Mineral Res. 2011; 26(2): 229-238. doi: 10.1002/jbmr.320

51. Plotkin LI, Mathov I, Aguirre JI et al. Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins, Src kinases and ERKs. Am J Physiol Cell Physiol. 2005; 289: 633-C643

52. Tsuji K, Bandyopadhyay A, Harfe BD et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet. 2006; 38: 1424-1429

53. Hu H, Hilton MJ, Tu X et al. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development. 2005; 132: 49-60

54. Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation. Annu Rev Cell Dev Biol. 2009; 25: 629-648. doi: 10.1146/annurev.cellbio.042308.113308

55. Satokata I, Ma L, Ohshima H et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet. 2000; 24: 391-395

56. Koga T, Matsui Y, Asagiri M et al. NFAT and Osterix cooperatively regulate bone formation. Nat Med. 2005; 11: 880-885.

57. Canalis E. Update in new anabolic therapies for osteoporosis. J Clin Endocrinol Metab. 2010; 95: 1496-1504. doi: 10.1210/ jc.2009-2677

58. Смирнов АВ, Румянцев АШ. Строение и функции костной ткани в норме и при патологии. Сообщение II. Нефрология. 2015; 19(1): 8-17 [Smirnov AV, Rumyancev ASh. Stroenie i funkcii kostnoj tkani v norme i pri patologii. Soobshchenie II. Nefrologiya. 2015; 19(1): 8-17].

59. Sabbagh Y Graciolli FG, O’Brien S et al. Repression of osteocyte Wnt/S-catenin signaling is an early event in the progression of renal osteodystrophy. J Bone Miner Res. 2012; 27: 1757-1772. doi: 10.1002/jbmr. 1630

60. Rowe PS. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit Rev Eukaryot Gene Expr. 2012; 22(1): 61-86

61. David V, Martin A, Hedge AM. ASARM peptides: PHEX-dependent and -independent regulation of serum phosphate. Am J Physiol Renal Physiol. 2011; 300(3): 783-791

62. Evenepoel P, D’Haese P, Brandenburg V. Sclerostin and DKK1: new players in renal bone and vascular disease. Kidney Int. 2015 Aug; 88(2): 235-240. doi: 10.1038/ki.2015.156

63. Confavreux CB. Bone: from a reservoir of minerals to a regulator of energy metabolism. Kidney International. 2011; 79(121): 14-19. doi: 10.1038/ki.2011.25

64. Kurz P, Monier-Faugere MC, Bognar B et al. Evidence for abnormal calcium homeostasis in patients with adynamic bone disease. Kidney Int. 1994; 46: 855-861

65. Sage AP, Lu J, Tintut Yet al. Hyperphosphatemia -induced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro. Kidney Int. 2011; 79: 414-422. doi: 10.1038/ki.2010.390

66. Villa-Bellosta R, Sorribas V. Phosphonoformic acid prevents vascular smooth muscle cell calcification by inhibiting calcium - phosphate deposition. Arterioscler Thromb Vasc Biol. 2009; 29: 761-766. doi: 10.1161/ATVBAHA.108.183384

67. Ewence AE, Bootman M, Roderick HL et al. Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization. Circ Res. 2008; 103: e28-e34. doi: 10.1161/CIRCRESAHA.108.181305

68. Smith ER, Ford ML, Tomlinson LA et al. Phosphorylated fetuin-A-containing calciprotein particles are associated with aortic stiffness and a procalcific milieu in patients with pre-dialysis CKD. Nephrol Dial Transplant. 2012; 27(5): 1957 -1966. doi: 10.1093/ ndt/gfr609

69. Abbasian N, Burton JO, Herbert KE et al. Hyperphosphatemia, phosphoprotein phosphatases, and microparticle release in vascular endothelial cells. J Am Soc Nephrol. 2015; 26: 2152-2162. doi: 10.1681/ASN.2014070642

70. Chavkin NW, Chia JJ, Crouthamel MH, Giachelli CM. Phosphate uptake-independent signaling functions of the type III sodium-dependent phosphate transporter, PiT-1, in vascular smooth muscle cells. Exp Cell Res. 2015; 333(1): 39-48. doi: 10.1016/j.yexcr.2015.02.00

71. Steitz SA, Speer MY, Curinga G et al. Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res. 2001; 89: 1147-1154

72. Speer MY, Li X, Hiremath PG, Giachelli CM. Runx2 / Cbfa1. but not loss of myocardin, is required for smooth muscle cell lineage reprogramming toward osteochondrogenesis. J Cell Biochem. 2010; 110: 935-947. doi: 10.1002/jcb.22607

73. Shioi ANY, Jono S, Koyama H et al. Glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler Throm Vasc Biol. 1995; 17: 1135-1142

74. Chen NX, O’Neill KD, Duan D, Moe SM. Phosphorus and uremic serum up -regulate osteopontin expression in vascular smooth muscle cells. Kidney Int. 2002; 62: 1724-1731

75. Mathew S, Tustison KS, Sugatani T et al. The mechanism of phosphorus as a cardiovascular risk factor in CKD. J Am Soc Nephrol. 2008; 19: 1092-1105. doi: 10.1681/ASN.2007070760

76. Leopold JA. Vascular calcification: Mechanisms of vascular smooth muscle cell calcification. Trends Cardiovasc Med. 2015; 25(4): 267-274. doi: 10.1016/j.tcm.2014.10.021

77. Gittenberger-de Groot AC, Winter EM, Bartelings MM et al. The arterial and cardiac epicardium in development, disease and repair. Differentiation. 2012; 84(1): 41-53. doi: 10.1016/j.diff.2012.05.002

78. Von Gise A, Pu WT. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res. 2012; 110(12): 1628-1645. doi: 10.1161/CIRCRE-SAHA.111.259960

79. Mill C, George SJ. Wnt signalling in smooth muscle cells and its role in cardiovascular disorders. Cardiovasc Res. 2012; 95(2): 233-240. doi: 10.1093/cvr/cvs141

80. Liu H, Fergusson MM, Castilho RM et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science. 2007; 317: 803-806

81. Kawakami T, Ren S, Duffield JS. Wnt signalling in kidney diseases: dual roles in renal injury and repair. J Pathol. 2013; 229(2): 221-231. doi: 10.1002/path.4121

82. Sage AP, Lu J, Tintut Y, Demer LL. Hyperphosphatemia-induced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro. Kidney Int. 2011; 79: 414-422. doi: 10.1038/ ki.2010.390

83. Li X, Yang HY, Giachelli CM. BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells. Atherosclerosis. 2008; 199: 271-277. doi: 10.1016/j.atherosclerosis.2007.11.031

84. Ross S, Hill CS. How the Smads regulate transcription. Int J Biochem Cell Biol. 2008; 40: 383-408

85. Zhang YW, Yasui N, Ito K et al. A RUNX2/PEBP2alpha A/ CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc Natl Acad Sci USA. 2000; 97: 10549-10554

86. Vattikuti R, Towler DA. Osteogenic regulation of vascular calcification: an early perspective. Am J Physiol Endocrinol Metab. 2004; 286: E686-E696

87. Hruska KA, Mathew S, Saab G. Bone morphogenetic proteins in vascular calcification. Circ Res. 2005; 97: 105-114

88. Lian JB, Javed A, Zaidi SK et al. Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr. 2004; 14: 1-41

89. Baron R, Rawadi G. Wnt signaling and the regulation of bone mass. Curr Osteoporos Rep. 2007; 5: 73-80

90. Shao JS, Cai J, Towler DA. Molecular mechanisms of vascular calcification: lessons learned from the aorta. Arterioscler Thromb Vasc Biol. 2006; 26: 1423-1430

91. Shao JS, Cheng SL, Pingsterhaus JM et al. Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Invest. 2005; 115: 1210-1220

92. Ермоленко ВМ. Ренальная остеодистрофия - начальные события. Клиническая нефролoгия. 2014; (2): 10-14 [Ermolenko VM. Renal’naya osteodistrofiya - nachal’nye sobytiya. Klinicheskaya nefrolgiya. 2014; (2): 10-14]

93. Weishaar RE, Kim SN, Saunders DE et al. Involvement of vitamin D3 with cardiovascular function. III. Effects on physical and morphological properties. Am J Physiol. 1990; 258: E134-E142

94. Xiang W, Kong J, Chen S et al.Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin -angiotensin systems. Am J Physiol Endocrinol Metab. 2005; 288: E125-132

95. Смирнов АВ, Волков МM, Добронравов ВА. Кардиопротективные эффекты D-гормона у больных с хронической болезнью почек: обзор литературы и собственные данные. Нефрология 2009; 13(1): 30-38 [Smirnov AV, Volkov MM, Dobronravov VA. Kardioprotektivnye ehffekty D-gormona u bol’nyh s hronicheskoj bolezn’yu pochek: obzor literatury i sobstvennye dannye. Nefrologiya. 2009; 13(1): 30-38]

96. Nigwekar SU, Thadhani R. Vitamin D receptor activation: cardiovascular and renal implications. Kidney Int Suppl (2011). 2013; 3(5): 4 27 - 430

97. Li YC. Vitamin D: roles in renal and cardiovascular protection. Curr Opin Nephrol Hypertens. 2012; 21(1): 72-79. doi: 10.1097/MNH.0b013e32834de4ee

98. Mathew S, Lund RJ, Chaudhary LR et al. Vitamin D receptor activators can protect against vascular calcification. J Am Soc Nephrol. 2008; 19: 1509-1519. doi: 10.1681/ASN.2007080902

99. Mizobuchi M, Finch JL, Martin DR et al. Differential effects of vitamin D receptor activators on vascular calcification in uremic rats. Kidney Int. 2007; 72: 709-715

100. Martfnez-Moreno JM, Mufioz-Castafieda JR, Herencia C et al. In vascular smooth muscle cells paricalcitol prevents phosphate-induced Wnt/ß-catenin activation. Am J Physiol Renal Physi ol. 2012; 303(8): F1136-144. doi: 10.1152/ajprenal.00684.2011

101. Kolek OI, Hines ER, Jones MD et al. 1alpha,25-dihy-droxyvitamin D3 upregulates FGF-23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol. 2005; 289: G1036-G1042

102. Barthel TK, Mathern DR, Whitfield GK et al. 1,25-dihydroxyvitamin D(3)/VDR-mediated induction of FGF-23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism. J Steroid Biochem Mol Biol. 2007; 103: 381-388

103. Lomashvili KA, Narisawa S, Millan JL, O’Neill WC. Vascular calcification is dependent on plasma levels of pyrophosphate. Kid Int. 2014; 85: 1351-1356. doi: 10.1038/ki.2013.521

104. Hruska KA, Mathew S, Lund RJ et al. The pathogenesis of vascular calcification in the chronic kidney disease mineral bone disorder: the links between bone and the vasculature. Sem Nephrol. 2009; 29: 156-165. doi: 10.1016/j.semnephrol.2009.01.008

105. Kokot F, Pietrek J, Srokowska S et al. 25 -Hydroxyvitamin D in patients with essential hypertension. Clin Nephrol. 1981; 16: 188-192

106. Burgaz A, Orsini N, Larsson SC et al. Blood 25 -hydroxyvi-tamin D concentration and hypertension: a meta-analysis. J Hypertens. 2011; 29: 636-645. doi: 10.1097/HJH.0b013e32834320f9

107. Pilz S, Marz W, Wellnitz B et al. Association of vitamin D deficiency with heart failure and sudden cardiac death in a large cross -sectional study of patients referred for coronary angiography. J Clin Endocrinol Metab. 2008; 93: 3927-3935. doi: 10.1210/ jc.2008-0784

108. Wang TJ, Pencina MJ, Booth SL et al. Vitamin D deficiency and risk of cardiovascular disease. Circulation. 2008; 117: 503-511. doi: 10.1161/CIRCULATIONAHA.107.706127

109. Pilz S, Iodice S, Zittermann A et al. Vitamin D status and mortality risk in CKD: a meta -analysis of prospective studies. Am J Kidney Dis. 2011; 58; 374-382. doi: 10.1053/j.ajkd.2011.03.020

110. Drechsler C, Verduijn M, Pilz S et al. Vitamin D status and clinical outcomes in incident dialysis patients: results from the NECOSAD study. Nephrol Dial Transplant. 2011; 26: 1024-1032. doi: 10.1093/ndt/gfq606

111. Xiang W, Kong J, Chen S et al.Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin -angiotensin systems. Am J Physiol Endocrinol Metab. 2005; 288: E125-132

112. Abu el Maaty MA, Gad MZ. Vitamin D deficiency and cardiovascular disease: potential mechanisms and novel perspectives. J Nutr Sci Vitaminol (Tokyo). 2013; 59(6): 479-488. doi: 10.3177/jnsv.59.479

113. Clemens TL, Cormier S, Eichinger A et al. Parathyroid hormone -related protein and its receptors: nuclear functions and roles in the renal and cardiovascular systems, the placental trophoblasts and the pancreatic islets. Br J Pharmacol. 2001; 134: 1113-1136

114. Goettsch C, Iwata H, Aikawa E. Parathyroid hormone: critical bridge between bone metabolism and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2014; 34(7): 1333-1335. doi: 10.1161/ATVBAHA.114.303637

115. Macfarlane DP, Yu N, Leese GP. Subclinical and asymptomatic parathyroid disease: implications of emerging data. Lancet Diabetes Endocrinol. 2013; 1: 329-340. doi: 10.1016/ S2213-8587(13)70083-4

116. Bosworth C, Sachs MC, Duprez D et al. Parathyroid hormone and arterial dysfunction in the multi-ethnic study of atherosclerosis. Clin Endocrinol(Oxf). 2013; 79(3): 429 -436. doi: 10.1111/cen.12163

117. Hagström E, Hellman P, Larsson TE et al. Plasma parathyroid hormone and the risk of cardiovascular mortality in the community. Circulation. 2009; 119: 2765-2771. doi: 10.1161/CIRCULATIONAHA.108.808733

118. Нagström E, Michaëlsson K, Melhus H et al. Plasma-parathyroid hormone is associated with subclinical and clinical atherosclerotic disease in 2 community -based cohorts. Arterioscler Thromb Vasc Biol. 2014; 34: 1567-1573. doi: 10.1161/ATVBAHA.113.303062

119. Nakayama K, Nakao K, Takatori Y et al. Long -term effect of cinacalcet hydrochloride on abdominal aortic calcification in patients on hemodialysis with secondary hyperparathyroidism. Int J Nephrol Renovasc Dis. 2013; 7: 25-33. doi: 10.2147/IJNRD.S54731

120. Lee M, Partridge NC. Parathyroid hormone signaling in bone and kidney. Curr Opin Nephrol Hypertens. 2009; 18(4): 298-302. doi: 10.1097/MNH.0b013e32832c2264

121. Keller H, Kneissel M. SOST is a target gene for PTH in bone. Bone. 2005; 37(2): 148-158

122. Cheng SL, Shao JS, Halstead LR et al. Activation of vascular smooth muscle parathyroid hormone receptor inhibits Wnt/beta-catenin signaling and aortic fibrosis in diabetic arteriosclerosis. Circ Res. 2010; 107: 271-282. doi: 10.1161/CIRCRESAHA.110.219899

123. Sebastian EM, Suva LJ, Friedman PA. Differential effects of intermittent PTH(1-34) and PTH(7-34) on bone microarchitecture and aortic calcification in experimental renal failure. Bone. 2008; 43: 1022-30. doi: 10.1016/j.bone.2008.07.250

124. Shao JS, Cheng SL, Charlton-Kachigian N et al. Teripa-ratide (human parathyroid hormone (1-34)) inhibits osteogenic vascular calcification in diabetic low density lipoprotein receptor-deficient mice. J Biol Chem. 2003; 278: 50195-50202

125. Suttamanatwong S, Franceschi RT, Carlson AE, Go-palakrishnan R. Regulation of matrix Gla protein by parathyroid hormone in MC3T3-E1 osteoblast-like cells involves protein kinase A and extracellular signal-regulated kinase pathways. J Cell Biochem. 2007; 102: 496-505.

126. Gopalakrishnan R, Suttamanatwong S, Carlson AE, Franceschi RT. Role of matrix Gla protein in parathyroid hormone inhibition of osteoblast mineralization. Cells Tissues Organs. 2005; 181: 166-175

127. Yao Y et al. Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification. Circ Res. 2010; 107: 485-494. doi: 10.1161/CIRCRESAHA.110.219071

128. Gutierrez OM, Wolf M, Taylor EN. Fibroblast growth factor 23, cardiovascular disease risk factors, and phosphorus intake in the Health Professionals Follow -up Study. Clin J Am Soc Nephrol. 2011; 6: 2871-2878. doi: 10.2215/CJN.02740311

129. Manghat P, Fraser WD, Wierzbicki AS et al. Fibroblast growth factor -23 is associated with C -reactive protein, serum phosphate and bone mineral density in chronic kidney disease. Osteoporos Int. 2010; 21: 1853-1861. doi: 10.1007/s00198-009-1142-4

130. Isakova T, Xie H, Yang W et al. Chronic Renal Insufficiency Cohort (CRIC) Study Group : Fibroblast growth factor 23 and risks of mortality and end -stage renal disease in patients with chronic kidney disease. JAMA. 2011; 305: 2432-2439. doi: 10.1001/jama.2011.826

131. Fliser D, Kollerits B, Neyer U et al. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: The Mild to Moderate Kidney Disease (MMKD) Study. J Am Soc Nephrol. 2007; 18: 2600-2608

132. Wolf M, Molnar MZ, Amaral AP et al. Elevated fibroblast growth factor 23 is a risk factor for kidney transplant loss and mortality. J Am Soc Nephrol. 2011; 22: 956-966. doi: 10.1681/ ASN.2010080894

133. Gutiérrez OM, Mannstadt M, Isakova T et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008; 359: 584-592. doi: 10.1056/ NEJMoa0706130

134. Lundberg S, Qureshi AR, Olivecrona S et al. FGF23, albuminuria, and disease progression in patients with chronic IgA nephropathy. Clin J Am Soc Nephrol. 2012; 7: 727-734. doi: 10.2215/CJN.10331011

135. Ix JH, Katz R, Kestenbaum BR et al. Fibroblast growth factor - 23 and death, heart failure, and cardiovascular events in community - living individuals: CHS (Cardiovascular Health Study). J Am Coll Cardiol. 2012; 60: 200-207. doi: 10.1016/j.jacc.2012.03.040

136. Ärnlöv J, Carlsson AC, Sundström J et al. Higher fibroblast growth factor - 23 increases the risk of all - cause and cardiovascular mortality in the community. Kidney Int. 2013; 83: 160-166. doi: 10.1038/ki.2012.327

137. Ärnlöv J, Carlsson AC, Sundström J et al. Serum FGF23 and Risk of Cardiovascular Events in Relation to Mineral Metabolism and Cardiovascular Pathology. Clin J Am Soc Nephrol. 2013; 8(5): 781-786. doi: 10.2215/CJN.09570912

138. Jovanovich A, Ix JH, Gottdiener J et al. Fibroblast growth factor 23, left ventricular mass, and left ventricular hypertrophy in community - dwelling older adults. Atherosclerosis. 2013; 231(1): 114-119. doi: 10.1016/j.atherosclerosis.2013.09.002

139. Scialla JJ, Xie H, Rahman M et al.Chronic Renal Insufficiency Cohort (CRIC) Study Investigators. Fibroblast growth factor -23 and cardiovascular events in CKD. J Am Soc Nephrol. 2014; 25(2): 349-360. doi: 10.1681/ASN.2013050465

140. Faul C, Amaral AP, Oskouei B et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011; 121(11): 4393-4408. doi: 10.1172/JCI46122

141. Shibata K, Fujita S, Morita H et al.Association between circulating fibroblast growth factor 23, a-Klotho, and the left ventricular ejection fraction and left ventricular mass in cardiology inpatients. PLoS One. 2013; 8(9): e73184. doi: 10.1371/journal. pone.0073184

142. Seifert ME, De Las Fuentes L, Ginsberg C et al. Left ventricular mass progression despite stable blood pressure and kidney function in stage 3 chronic kidney disease. Am J Nephrol. 2014; 39(5): 392 - 399. doi: 10.1159/000362251

143. Seiler S, Rogacev KS, Roth HJ et al. Associations of FGF-23 and sKlotho with cardiovascular outcomes among patients with CKD stages 2-4. Clin J Am Soc Nephrol. 2014; 9(6): 1049 -1058. doi: 10.2215/CJN.07870713

144. Molkentin JD, Lu J, Antos C et al. A calcineurin -dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998; 93(2): 215-228

145. Komuro I, YazakiY Control of cardiac gene expression by mechanical stress. Annu Rev Physiol. 1993; 55: 55-75

146. Itoh N, Ohta H. Pathophysiological roles of FGF signaling in the heart. Front Physiol. 2013; 4: 247. doi: 10.3389/fphys.2013.0024

147. Kendrick J, Cheung AK, Kaufman JS et al. FGF - 23 associates with death, cardiovascular events, and initiation of chronic dialysis. J Am Soc Nephrol. 2011; 22: 1913-1922. doi: 10.1681/ASN.2010121224

148. Seiler S, Reichart B, Roth D et al. FGF -23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment. Nephrol Dial Transplant. 2010; 25: 3983-3989. doi: 10.1093/ndt/gfq309

149. Mirza MA, Larsson A, Lind L et al. Circulating fibroblast growth factor - 23 is associated with vascular dysfunction in the community. Atherosclerosis. 2009; 205: 385-390. doi: 10.1016/j. atherosclerosis.2009.01.001

150. Parker BD, Schurgers LJ, Brandenburg VM et al. The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study. Ann Intern Med. 2010; 152: 640-648. doi: 10.7326/0003-4819-152-10-201005180-00004

151. Taylor EN, Rimm EB, Stampfer MJ et al. Plasma fibroblast growth factor 23, parathyroid hormone, phosphorus, and risk of coronary heart disease. Am Heart J. 2011; 161: 956-962. doi: 10.1016/j.ahj.2011.02.012

152. Srivaths PR, Goldstein SL, Silverstein DM et al. Elevated FGF 23 and phosphorus are associated with coronary calcification in hemodialysis patients. Pediatr Nephrol. 2011; 26: 945-951. doi: 10.1007/s00467-011-1822-0

153. Roos M, Lutz J, Salmhofer H et al. Relation between plasma fibroblast growth factor-23, serum fetuin-A levels and coronary artery calcification evaluated by multislice computed tomography in patients with normal kidney function. Clin Endocrinol (Oxf). 2008; 68: 660-665. doi: 10.1111/j.1365-2265.2007.03074.x

154. Kuro -o M, Matsumura Y, Aizawa H et al. Mutation of the mouse Klotho gene leads to a syndrome resembling ageing. Nature. 1997; 390: 45-51

155. Kuro - o М. Phosphate and Klotho. Kidney Intl. 2011; 79(121): S20-S23. doi: 10.1038/ki.2011.26

156. Dai B, David V, Martin A et al. A comparative transcrip-tome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model. PLoS One. 2012; 7: e44161. doi: 10.1371/journal.pone.0044161

157. Hu MC, Kuro -o M, Moe OW. Secreted klotho and chronic kidney disease. Adv Exp Med Biol. 2012; 728: 126-157. doi: 10.1007/978-1-4614-0887-1_9

158. Lim K, Lu TS, Molostvov G et al. Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation. 2012; 125: 2243-2255. doi: 10.1007/978-1-4614-0887-1_9

159. Van Venrooij NA, Pereira RC, Tintut Y et al. FGF23 protein expression in coronary arteries is associated with impaired kidney function. Nephrol Dial Transplant. 2014; 29(8): 1525 -1532. doi: 10.1093/ndt/gft523

160. Mencke R, Harms G, Mirkovic K et al. Membrane-bound Klotho is not expressed endogenously in healthy or uraemic human vascular tissue. Cardiovasc Res. 2015; 108(2): 220-231. doi: 10.1093/cvr/cvv187

161. Hu MC, Shi M, Zhang J et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2011; 22: 124-136. doi: 10.1681/ASN.2009121311

162. Zhao Y, Banerjee S, Dey N et al. Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine)536 phosphorylation. Diabetes. 2011; 60; 1907-1916. doi: 10.2337/db10-1262

163. Xu Y1, Sun Z. Molecular basis of Klotho: from gene to function in aging. Endocr Rev. 2015; 36(2): 174-193. doi: 10.1210/er.2013-1079

164. Hu MC, Shi M, Zhang J et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2011; 22: 124-136. doi: 10.1681/ASN.2009121311

165. Dermaku-Sopjani M, Sopjani M, Saxena A et al. Downregulation of NaPi-IIa and NaPi-IIb Na-coupled phosphate transporters by coexpression of Klotho. Cell Physiol Biochem. 2011; 28: 251-258. doi: 10.1159/000331737

166. De Oliveira RM. Klotho RNAi induces premature senescence of human cells via a p53/p21 dependent pathway. FEBS Lett. 2006; 580: 5753-5758

167. Nakano-Kurimoto R, Ikeda K et al. Replicative senescence of vascular smooth muscle cells enhances the calcification through initiating the osteoblastic transition. Am J Physiol. Heart Circ Physiol. 2009; 297: 1673-1684. doi: 10.1152/ajpheart.00455.2009

168. Kuro -o M. Klotho as a regulator of oxidative stress and senescence. Biol Chem. 2008; 389(3): 233-241. doi: 10.1515/BC.2008.028

169. Kusaba T, Okigawa M, Matui A et al. Klotho is associated with VEGF receptor -2 and the transient receptor potential canonical -1 Ca2+ channel to maintain endothelial integrity. Proc Natl Acad Sci USA. 2010; 107(45): 19308-19313. doi: 10.1073/pnas.1008544107

170. Nagai R, Saito Y, Ohyama Y et al. Endothelial dysfunction in the klotho mouse and downregulation of klotho gene expression in various animal models of vascular and metabolic diseases. Cell Mol Life Sci. 2000; 57(5): 738-746

171. Kurosu H, Yamamoto M, Clark JD et al. Suppression of aging in mice by the hormone Klotho. Science. 2005; 309: 1829-1833

172. Doi S, Zou Y, Togao O et al. Klotho inhibits transforming growth factor -beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem. 2011; 286(10): 8655-8665. doi: 10.1074/jbc.M110.174037

173. Takeshita K, Fujimori T, Kurotaki Y et al. Sinoatrial node dysfunction and early unexpected death of mice with a defect of klotho gene expression. Circulation. 2004; 109(14): 1776-1782

174. Nowak A, Friedrich B, Artunc F et al. Prognostic value and link to atrial fibrillation of soluble Klotho and FGF23 in hemodialysis patients. PLoS One. 2014; 9(7): e100688. doi: 10.1371/journal.pone.0100688

175. Six I, Okazaki H, Gross P et al. Direct, acute effects of Klotho and FGF23 on vascular smooth muscle and endothelium. PLoS One. 2014; 9(4): e93423. doi: 10.1371/journal.pone.0093423

176. Богданова ЕО, Береснева ОН, Семенова НЮ и др. Почечная экспрессия белка αklotho ассоциирована с гипертрофией миокарда (экспериментальное исследование). Артериальная гипертензия. 2014; 20(6): 522-530 [Bogdanova EO, Beresneva ON, Semenova NYU i dr. Pochechnaya ehkspressiya belka aklotho associirovana s gipertrofiej miokarda (ehksperimental’noe issledovanie). Arterial'naya gipertenziya. 2014; 20(6): 522-530]

177. Xie J, Cha SK, An SW et al. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat Commun. 2012; 3: 1238. doi: 10.1038/ncomms2240

178. Hu MC, Shi M, Cho HJ. et al. Klotho and Phosphate Are Modulators of Pathologic Uremic Cardiac Remodeling. J Am Soc Nephrol. 2014. [Epub ahead of print] doi: 10.1681/ASN.2014050465

179. Song S, Gao P, Xiao H et al. Klotho suppresses cardiomyocyte apoptosis in mice with stress -induced cardiac injury via downregulation of endoplasmic reticulum stress. PLoS One. 2013; 8(12): e82968. doi: 10.1371/journal.pone.0082968

180. Maekawa Y, Ohishi M, Ikushima M et al. Klotho protein diminishes endothelial apoptosis and senescence via a mitogen -activated kinase pathway. Geriatr Gerontol Int. 2011; 11: 510-516. doi: 10.1111/j.1447-0594.2011.00699.x

181. De Oliveira RM. Klotho RNAi induces premature senescence of human cells via a p53/p21 dependent pathway. FEBS Lett. 2006; 580: 5753-5758

182. Liu F, Wu S, Ren H, Gu J. Klotho suppresses RIG-I-mediated senescence-associated inflammation. Nat Cell Biol. 2011; 13: 254-262. doi: 10.1038/ncb2167

183. Moe SM, Radcliff JS, White KE et al. The pathophysiology of early stage chronic kidney disease-mineral bone disorder (CKD-MBD) and response to phosphate binders. J Bone Miner Res. 2011; 26: 2672- 2681. doi: 10.1002/jbmr.485.

184. Moe SM. Klotho: a master regulator of cardiovascular disease? Circulation. 2012; 125(18): 2181-2183. doi: 10.1161/CIRCULATIONAHA.112.104828

185. Lim K, Lu TS, Molostvov G et al. Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation. 2012; 125(18): 2243-2255. doi: 10.1161/CIRCULATIO-NAHA.111.053405

186. Gorriz JL, Molina P, Cerveron MJ et al. Vascular calcification in patients with nondialysis CKD over 3 years. Clin J Am Soc Nephrol. 2015; 10(4): 654-666. doi: 10.2215/CJN.07450714

187. Semba RD, Cappola AR, Sun K et al. Plasma klotho and mortality risk in older community-dwelling adults. J Gerontol A Biol Sci Med Sci. 2011; 66(7): 794-800. doi: 10.1093/gerona/glr058

188. Sabbagh Y, Graciolli FG, O’Brien S et al. Repression of osteocyte Wnt/ß -catenin signaling is an early event in the progression of renal osteodystrophy. J Bone Miner Res. 2012; 27: 1757-1772. doi: 10.1002/jbmr.1630

189. Fang Y, Ginsberg C, Sugatani T et al. Early chronic kidney disease - mineral bone disorder stimulates vascular calcification. Kidney Int. 2014; 85(1): 142 -150. doi: 10.1038/ki.2013.271

190. De Oliveira RB, Graciolli FG, dos Reis LM et al. Disturbances of Wnt/ß-catenin pathway and energy metabolism in early CKD: effect of phosphate binders. Nephrol Dial Transplant. 2013; 28(10): 2510-2517. doi: 10.1093/ndt/gft234

191. Ueland T, Otterdal K, Lekva T et al. Dickkopf-1 enhances inflammatory interaction between platelets and endothelial cells and shows increased expression in atherosclerosis. Arterioscler Thromb Vasc Biol. 2009; 29(8): 1228-1234. doi: 10.1161/AT-VBAHA.109.189761

192. Chen W, Melamed ML. Vascular calcification in predialysis CKD: common and deadly. Clin J Am Soc Nephrol. 2015; 10(4): 551-553. doi: 10.2215/CJN.01940215

193. Cheng SL, Shao JS, Behrmann A et al. Dkk1 and MSX2-Wnt7b signaling reciprocally regulate the endothelial-mesenchymal transition in aortic endothelial cells. Arterioscler Thromb Vasc Biol. 2013; 33: 1679-1689. doi: 10.1161/ATVBAHA.113.300647

194. Buendia P, Montes de Oca A, Madueno JA et al. Endothelial microparticles mediate inflammation-induced vascular calcification. FASEB J. 2015; 29(1): 173-181. doi: 10.1096/fj.14-249706

195. Li M, Liu X, Zhang Y et al. Upregulation of Dickkopf1 by oscillatory shear stress accelerates atherogenesis. J Mol Med (Berl). 2016; 94(4): 431-441. doi: 10.1007/s00109-015-1369-9

196. Morena M, Jaussent I, Dupuy AM et al.Osteoprotegerin and sclerostin in chronic kidney disease prior to dialysis: potential partners in vascular calcifications. Nephrol Dial Transplant. 2015; 30(8): 1345-1356. doi: 10.1093/ndt/gfv081

197. Kuipers AL, Miljkovic I, Carr JJ et al. Association of circulating sclerostin with vascular calcification in Afro-Caribbean men. Atherosclerosis. 2015; 239(1): 218-223. doi: 10.1016/j.atherosclerosis.2015.01.010

198. Pelletier S, Confavreux CB, Haesebaert J et al. Serum sclerostin: the missing link in the bone-vessel cross-talk in hemodialysis patients? Osteoporos Int. 2015 Aug; 26(8): 2165-2174. doi: 10.1007/s00198-015-3127-3129

199. Claes KJ, Viaene L, Heye S et al. Sclerostin: Another vascular calcification inhibitor? J Clin Endocrinol Metab. 2013; 98(8): 3221-3228. doi: 10.1210/jc.2013-1521

200. Evenepoel P, Goffin E, Meijers B et al. Sclerostin Serum Levels and Vascular Calcification Progression in Prevalent Renal Transplant Recipients. J Clin Endocrinol Metab. 2015; 100(12): 4669-4676. doi: 10.1210/jc.2015-3056

201. Hampson G, Edwards S, Conroy S et al. The relationship between inhibitors of the Wnt signalling pathway (Dick-kopf-1(DKK1) and sclerostin), bone mineral density, vascular calcification and arterial stiffness in post-menopausal women. Bone. 2013; 56(1): 42-47. doi: 10.1016/j.bone.2013.05.010

202. Askevold ET, Gullestad L, Nymo S et al. Secreted Frizzled Related Protein 3 in Chronic Heart Failure: Analysis from the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). PLoS One. 2015; 10(8): e0133970. doi: 10.1371/journal. pone.0133970

203. McClung MR, Grauer A, Boonen S et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014; 370: 412-420. doi: 10.1056/NEJMoa1305224

204. Lanzer P, Boehm M, Sorribas V et al. Medial vascular calcification revisited: review and perspectives. Eur Heart J. 2014; 35(23): 1515-1525. doi: 10.1093/eurheartj/ehu163

205. Meiting WM, Cameron RC, Cecilia M, Giachelli CM. Vascular Calcification: an Update on Mechanisms and Challenges in Treatment. Calcif Tissue Int. 2013; 93(4): 365-373. doi: 10.1007/ s00223-013-9712-z


Для цитирования:


Добронравов В.А. Фосфат, почки, кости и сердечно-сосудистая система. Нефрология. 2016;20(4):10-24.

For citation:


Dobronravov V.A. Phosphate, kidneys, bones and cardiovascular system. Nephrology (Saint-Petersburg). 2016;20(4):10-24. (In Russ.)

Просмотров: 290


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)