Структурно-функциональные нарушения кишечного барьера и хроническая болезнь почек. Обзор литературы. Часть I
https://doi.org/10.36485/1561-6274-2022-26-1-10-26
Аннотация
Кишечная микробиота представляет собой неотъемлемую часть человеческого организма, которая играет важнейшую роль в поддержании его гомеостаза. Мирное сосуществование с триллионами микроорганизмов во многом зависит от нормального функционирования клеточных и внеклеточных компонентов слизистой оболочки кишечника, часто называемых «кишечным барьером». Он не только защищает организм от патогенных инфекций, но и одновременно удовлетворят его потребности в переваривании и усвоении питательных веществ. Неудивительно, что изменения в структуре и функциях кишечного барьера вовлечены в патогенез множества заболеваний, в том числе различных нефропатий. Патогенетическая взаимосвязь между кишечником и почками является двунаправленной. С одной стороны, уремия влияет на состав микробиоты и целостность кишечного эпителия. Качественные и количественные изменения состав кишечной микробиоты оказывают значимое влияние на состояние барьерной функции и проницаемости кишечной стенки за счет регуляции толщины слоя слизи и ее состава, скорости циркуляции энтероцитов, а также модуляции экспрессии белков, формирующих плотные контакты. С другой, уремические токсины, образующиеся в результате аномального микробного метаболизма, способствую прогрессированию почечной дисфункции. Кроме того, дисбактериоз и синдром повышенной эпителиальной проницаемости кишки, по мнению ряда исследователей, рассматривается как одна из ведущих причин анемии, нарушений нутриционного статуса, сердечно-сосудситых и многих других осложнений, нередко выявляемых у больных с хронической болезнью почек. В I части настоящего обзора отражены современные представления относительно нормальной структуры и физиологии кишечного барьера, а также методов исследования проницаемости кишечной стенки. Делается акцент на роли микробиоты в регуляции барьерных свойств слизисто-эпителиального кишечного слоя. Представлены основные отличия микробиоты больных с различными нефропатиями от здоровых людей, обсуждаются возможные причины их возникновения.
Ключевые слова
Об авторах
М. О. ПятченковРоссия
Пятченков Михаил Олегович, канд. мед. наук
194044, Санкт-Петербург, ул. Акад. Лебедева, д. 6
Тел.: +7 (812) 5424314
А. Г. Марков
Россия
Проф. Марков Александр Георгиевич, д-р. биол. наук, каф. общей физиологии
199034, Санкт-Петербург, Университетская наб., д. 7-9
Тел.: +7(812) 3289589
А. Ш. Румянцев
Россия
Проф. Румянцев Александр Шаликович, д-р. мед. наук, кафедра пропедевтики внутренних болезней
199106, Санкт-Петербург, 21-я линия В.О., д. 8а
197022, Санкт-Петербург, ул. Льва Толстого, д. 6–8
Тел.: +7(812)326-03-26, Тел.: +7(812)234-01-65
Список литературы
1. Schoultz I, Keita A. The Intestinal Barrier and Current Techniques for the Assessment of Gut Permeability. Cells 2020;17;9(8):1909. doi: 10.3390/cells9081909
2. Wells J, Brummer R, Derrien M et al. Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol 2017;312(3):171–193. doi: 10.1152/ajpgi.00048.2015
3. Chelakkot C, Ghim J, Ryu S. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med 2018;50(8):1–9. doi: 10.1038/s12276-018-0126-x
4. Groschwitz K, Hogan S. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 2009;124(1):3–22. doi: 10.1016/j.jaci.2009.05.038
5. Chakaroun R, Massier L, Kovacs P. Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders? Nutrients 2020;12(4):1082. doi: 10.3390/nu12041082
6. Kazemian N, Mahmoudi M, Halperin F et al. Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome 2020;8(1):36. doi: 10.1186/s40168-020-00821-0
7. Fukui H. Increased Intestinal Permeability and Decreased Barrier Function: Does It Really Influence the Risk of Inflammation? Inflamm Intest Dis 2016;1(3):135–145. doi: 10.1159/000447252
8. Odenwald M, Turner J. Intestinal permeability defects: is it time to treat? Clin Gastroenterol Hepatol 2013;11(9):1075–1083. doi: 10.1016/j.cgh.2013.07.001
9. Meijers B, Farré R, Dejongh S et al. Intestinal Barrier Function in Chronic Kidney Disease. Toxins (Basel) 2018;10(7):298. doi: 10.3390/toxins10070298
10. March D, Graham-Brown M, Stover C et al. Intestinal Barrier Disturbances in Haemodialysis Patients: Mechanisms, Consequences, and Therapeutic Options. Biomed Res Int 2017;2017:5765417. doi: 10.1155/2017/5765417
11. Dekker J, Rossen J, Büller H, Einerhand A. The MUC family: an obituary. Trends Biochem Sci 2002;27(3):126–131. doi: 10.1016/s0968-0004(01)02052-7.
12. Paone P, Cani P. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 2020;69(12):2232–2243. doi: 10.1136/gutjnl-2020-322260
13. France M, Turner J. The mucosal barrier at a glance. J Cell Sci 2017;130(2):307–314. doi: 10.1242/jcs.193482
14. Markov A, Aschenbach J, Amasheh S. The epithelial barrier and beyond: claudins as amplifiers of physiological organ functions. IUBMB Life 2017;69(5):290–296. doi: 10.1002/iub.1622.
15. Garcia-Hernandez V, Quiros M, Nusrat A. Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation. Ann N Y Acad Sci 2017;1397(1):66–79. doi: 10.1111/nyas.13360
16. Markov A, Veshnyakova A, Fromm M et al. Segmental expression of claudin proteins correlates with tight junction barrier properties in rat intestine. J Comp Physiol B 2010;180(4):591–598. doi: 10.1007/s00360-009-0440-7
17. Krug S, Amasheh S, Richter J et al. Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol Biol Cell 2009;20(16):3713–3724. doi: 10.1091/mbc.e09-01-0080
18. Fanning A, Van Itallie C, Anderson J. Zonula occludens-1 and -2 regulate apical cell structure and the zonula adherens cytoskeleton in polarized epithelia. Mol Biol Cell 2012;23(4):577–590. doi: 10.1091/mbc.E11-09-0791.
19. Markov A, Aschenbach J, Amasheh S. Claudin clusters as determinants of epithelial barrier function. IUBMB Life 2015;67(1):29–35. doi: 10.1002/iub.1347)
20. Turner J. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 2009;9(11):799–809. doi: 10.1038/nri2653
21. Macpherson A, Yilmaz B, Limenitakis J, Ganal-Vonarburg S. IgA Function in Relation to the Intestinal Microbiota. Annu Rev Immunol 2018;36:359–381. doi: 10.1146/annurev-immunol-042617-053238
22. Sturgeon C, Fasano A. Zonulin, a regulator of epithelial andndothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers 2016;4(4):e1251384. doi: 10.1080/21688370.2016.1251384
23. Hollander D, Kaunitz J. The "Leaky Gut": Tight Junctions but Loose Associations? Dig Dis Sci 2020;65(5):1277–1287. doi: 10.1007/s10620-019-05777-2
24. Garcia-Castillo M, Chinnapen D, Lencer W. Membrane Transport across Polarized Epithelia. Cold Spring Harb Perspect Biol 2017;9(9):a027912. doi: 10.1101/cshperspect.a027912
25. Kucharzik T, Lügering N, Rautenberg K et al. Role of M cells in intestinal barrier function. Ann N Y Acad Sci 2000;915:171–183. doi: 10.1111/j.1749-6632.2000.tb05240.x
26. Bischoff S, Barbara G, Buurman W et al. Intestinal permeability-a new target for disease prevention and therapy. BMC Gastroenterol 2014;14:189. doi: 10.1186/s12876-014-0189-7
27. Muto S. Physiological roles of claudins in kidney tubule paracellular transport. Am J Physiol Renal Physiol 2017;312(1):F9– F24. doi: 10.1152/ajprenal.00204.2016
28. Prot-Bertoye C, Houillier P. Claudins in Renal Physiology and Pathology. Genes (Basel) 2020;11(3):290. doi: 10.3390/genes11030290
29. Man A, Bertelli E, Rentini S et al. Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clin Sci (Lond) 2015;129(7):515–527. doi: 10.1042/CS20150046
30. Karhu E, Forsgard R, Alanko L et al. Exercise and gastrointestinal symptoms: running-induced changes in intestinal permeability and markers of gastrointestinal function in asymptomatic and symptomatic runners. Eur J Appl Physiol 2017;117(12):2519– 2526. doi: 10.1007/s00421-017-3739-1
31. Camilleri M, Madsen K, Spiller R et al. Intestinal barrier function in health and gastrointestinal disease [published correction appears in Neurogastroenterol Motil 2012;24(10):976. Van Meerveld, B G [corrected to Greenwood-Van Meerveld, B]]. Neurogastroenterol Motil 2012;24(6):503–512. doi: 10.1111/j.1365-2982.2012.01921.x
32. Markov A, Falchuk E, Kruglova N et al. Claudin expression in follicle-associated epithelium of rat Peyer’s patches defines a major restriction of the paracellular pathway. Acta Physiol (Oxf) 2016;216(1):112–119. doi: 10.1111/apha.12559
33. Radloff J, Falchuk E, Markov A, Amasheh S. Molecular Characterization of Barrier Properties in Follicle-Associated Epithelium of Porcine Peyer’s Patches Reveals Major Sealing Function of Claudin-4. Front. Physiol 2017;14(8):579. doi: 10.3389/fphys.2017.00579
34. Fihn B, Sjöqvist A, Jodal M. Permeability of the rat small intestinal epithelium along the villus-crypt axis: effects of glucose transport. Gastroenterology 2000;119(4):1029–1036. doi: 10.1053/gast.2000.18148
35. Simanenkov V, Maev I, Tkacheva O et al. Syndrome of increased epithelial permeability in clinical practice. Multidisciplinary national Consensus. Cardiovascular Therapy and Prevention 2021;20(1):2758. doi: 10.15829/1728-8800-2021-2758
36. Wyatt J, Vogelsang H, Hübl W et al. Intestinal permeability and the prediction of relapse in Crohn's disease. Lancet 1993;341(8858):1437–1439. doi: 10.1016/0140-6736(93)90882-h
37. Hollander D, Vadheim C, Brettholz E et al. Increased intestinal permeability in patients with Crohn's disease and their relatives. A possible etiologic factor. Ann Intern Med 1986;105(6):883–885. doi: 10.7326/0003-4819-105-6-883
38. Su L, Nalle S, Sullivan E et al. Genetic ablation of myosin light chain kinase limits epithelial barrier dysfunction and attenuates experimental inflammatory bowel disease. Gastroenterology 2009;136(5)A81. doi: 10.1016/S0016-5085(09)60365-6
39. Grootjans J, Thuijls G, Verdam F ea al. Non-invasive assessment of barrier integrity and function of the human gut. World J Gastrointest Surg 2010;2(3):61–69. doi: 10.4240/wjgs.v2.i3.61
40. van Wijck K, Verlinden T, van Eijk H et al. Novel multi-sugar assay for site-specific gastrointestinal permeability analysis: a randomized controlled crossover trial. Clin Nutr 2013;32(2):245–251. doi: 10.1016/j.clnu.2012.06.014
41. Galipeau H, Verdu E. The complex task of measuring intestinal permeability in basic and clinical science. Neurogastroenterol Motil 2016;28(7):957–965. doi: 10.1111/nmo.12871
42. Rusticeanu M, Zimmer V, Lammert F. Visualising and quantifying intestinal permeability -where do we stand. Ann Hepatol 2021;23:100266. doi: 10.1016/j.aohep.2020.09.010.
43. Knight R, Vrbanac A, Taylor B et al. Best practices for analysing microbiomes. Nat Rev Microbiol 2018;16(7):410–422. doi: 10.1038/s41579-018-0029-9
44. Ranjan R, Rani A, Finn P, Perkins D. Multiomic Strategies Reveal Diversity and Important Functional Aspects of Human Gut Microbiome. Biomed Res Int 2018;2018:6074918. doi: 10.1155/2018/6074918
45. Herrmann J, Turner J. Beyond Ussing's chambers: contemporary thoughts on integration of transepithelial transport. Am J Physiol Cell Physiol 2016;310(6):423–431. doi: 10.1152/ajpcell.00348.2015
46. Dosh R, Jordan-Mahy N, Sammon C, Le Maitre C. Tissue Engineering Laboratory Models of the Small Intestine. Tissue Eng Part B Rev 2018;24(2):98–111. doi: 10.1089/ten.teb.2017.0276
47. Schutgens F, Clevers H. Human Organoids: Tools for Understanding Biology and Treating Diseases. Annu Rev Pathol 2020;15:211–234. doi: 10.1146/annurev-pathmechdis-012419-032611
48. Bertiaux-Vandaële N, Youmba S, Belmonte L et al. The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am J Gastroenterol 2011;106(12):2165–2173. doi: 10.1038/ajg.2011.257
49. Johansson M, Hansson G. Preservation of mucus in histological sections, immunostaining of mucins in fixed tissue, and localization of bacteria with FISH. Methods Mol Biol 2012;842:229– 235. doi: 10.1007/978-1-61779-513-8_13
50. Vancamelbeke M., Vermeire S. The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol 2017;11(9):821–834. doi: 10.1080/17474124.2017.1343143
51. Qin J, Li R, Raes J et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464: 59–65. doi: 10.1038/nature08821
52. Turnbaugh P, Ley R, Hamady M et al. The human microbiome project. Nature 2007;449(7164):804–810. doi: 10.1038/nature06244
53. Hooper L, Midtvedt T, Gordon J. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 2002;22:283–307. doi: 10.1146/annurev.nutr.22.011602.092259
54. Burkholder P, McVeigh I. Synthesis of vitamins by intestinal bacteria. Proc Natl Acad Sci USA 1942;28:285–289. doi: 10.1073/pnas.28.7.285
55. Alam A, Leoni G, Quiros M et al. The microenvironment of injured murine gut elicits a local pro-restitutive microbiota. Nat Microbiol 2016;1:15021. doi: 10.1038/nmicrobiol.2015.21
56. Jones R, Luo L, Ardita C et al. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J 2013;32(23):3017–3028. doi: 10.1038/emboj.2013.224
57. Johansson M, Jakobsson E, Holmén-Larsson J et al. Normalization of Host Intestinal Mucus Layers Requires Long-Term Microbial Colonization. Cell Host Microbe 2015;18(5):582–592. doi: 10.1016/j.chom.2015.10.007
58. Round J, Mazmanian S. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009;9:313–323. doi: 10.1038/nri2515
59. den Besten G, van Eunen K, Groen A et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013;54:2325–2340. doi: 10.1194/jlr.R036012
60. Peng L, Li Z, Green R et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 2009;139(9):1619–1625. doi: 10.3945/jn.109.104638
61. Hamer H, Jonkers D, Venema K et al. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 2008;27(2):104–119. doi: 10.1111/j.1365-2036.2007.03562.x
62. Smith P, Howitt M, Panikov N et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013;341(6145):569–573. doi: 10.1126/science.1241165
63. Hudcovic T, Kolinska J, Klepetar J et al. Protective effect of Clostridium tyrobutyricum in acute dextran sodium sulphate-induced colitis: differential regulation of tumour necrosis factor-α and interleukin-18 in BALB/c and severe combined immunodeficiency mice. Clin Exp Immunol 2012;167(2):356–365. doi: 10.1111/j.1365-2249.2011.04498.x
64. Willemsen L, Koetsier M, van Deventer S, van Tol E. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut 2003;52(10):1442–1447. doi: 10.1136/gut.52.10.1442
65. Salvadori M, Tsalouchos A. Microbiota, renal disease and renal transplantation. World J Transplant 2021;11(3):16–36. doi: 10.5500/wjt.v11.i3.16
66. Sekirov I, Russell S, Antunes L, Finlay B. Gut microbiota in health and disease. Physiol Rev 2010;90(3):859–904. doi: 10.1152/physrev.00045.2009
67. Yu L, Wang J, Wei S, Ni Y. Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology. World J Gastrointest Pathophysiol 2012;3(1):27–43. doi: 10.4291/wjgp.v3.i1.27
68. Ge X, Ding C, Zhao W et al. Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J Transl Med. 2017;15(1):13. doi: 10.1186/s12967-016-1105-4
69. Husebye E, Hellstrom P, Sundler F et al. Influence of microbial species on small intestinal myoelectric activity and transit in germ-free rats. Am J Physiol Gastrointest Liver Physiol 2001;280(3):G368–380. doi: 10.1152/ajpgi.2001.280.3.G368
70. McNamara N, Basbaum C. Signaling networks controlling mucin production in response to Gram-positive and Gram-negative bacteria. Glycoconj J 2001;18(9):715–722. doi: 10.1023/a:1020875423678
71. Cosola C, Rocchetti M, Sabatino A et al. Microbiota issue in CKD: how promising are gut-targeted approaches? J Nephrol 2019;32(1):27–37. doi: 10.1007/s40620-018-0516-0
72. Scanlan P, Shanahan F, O'Mahony C, Marchesi J. Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn's disease [published correction appears in J Clin Microbiol 2007;45(5):1671]. J Clin Microbiol 2006;44(11):3980–3988. doi: 10.1128/JCM.00312-06
73. Chakaroun R, Massier L, Kovacs P. Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders? Nutrients 2020;12(4):1082. doi: 10.3390/nu12041082
74. Xie Y, Bowe B, Mokdad A et al. Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney Int 2018;94(3):567–581. doi: 10.1016/j.kint.2018.04.011
75. Lee Y, Hung S, Wang H et al. Different Risk of Common Gastrointestinal Disease Between Groups Undergoing Hemodialysis or Peritoneal Dialysis or With Non-End Stage Renal Disease: A Nationwide Population-Based Cohort Study. Medicine (Baltimore) 2015;94(36):e1482. doi: 10.1097/MD.0000000000001482
76. Costa-Moreira P, Vilas-Boas F, Teixeira Fraga A, Macedo G. Particular aspects of gastroenterological disorders in chronic kidney disease and end-stage renal disease patients: a clinically focused review. Scand J Gastroenterol 2020;55(2):129–138. doi: 10.1080/00365521.2020.1722217
77. Vaziri N, Dure-Smith B, Miller R, Mirahmadi M. Pathology of gastrointestinal tract in chronic hemodialysis patients: an autopsy study of 78 cases. Am J Gastroenterol 1985;80(8):608–611
78. Лукичев БГ, Румянцев АШ, Акименко В. Микробиота кишечника и хроническая болезнь почек. Сообщение первое. Нефрология 2018;22(4):57–73. doi: 10.24884/1561-6274-2018-22-4-57-73 LukichevBG, RumyantsevAS, AkimenkoV. Colonic microbiota and chronic kidney disease. Message one. Nephrology (SaintPetersburg) 2018;22(4):57–73. (In Russ.)] doi: 10.24884/1561-6274-2018-22-4-57-73
79. Simenhoff M, Saukkonen J, Burke J et al. Bacterial populations of the small intestine in uremia. Nephron 1978;22(1–3):63– 68. doi: 10.1159/000181424
80. Simenhoff M, Saukkonen J, Burke J et al. Amine metabolism and the small bowel in uraemia. Lancet 1976;2(7990):818– 821. doi: 10.1016/s0140-6736(76)91207-1
81. Meinardi S, Jin K, Barletta B et al. Exhaled breath and fecal volatile organic biomarkers of chronic kidney disease. Biochim Biophys Acta 2013;1830(3):2531–2537. doi: 10.1016/j.bbagen.2012.12.006
82. Lee H, Pahl M, Vaziri N, Blake D. Effect of hemodialysis and diet on the exhaled breath methanol concentration in patients with ESRD. J Ren Nutr 2012;22(3):357–364. doi: 10.1053/j.jrn.2011.07.003
83. Vaziri N, Wong J, Pahl M et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int 2013;83(2):308–315. doi: 10.1038/ki.2012.345
84. Wong J, Piceno Y, DeSantis T et al. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol 2014;39(3):230–237. doi: 10.1159/000360010
85. Wang X, Yang S, Li S et al. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut 2020;69(12):2131–2142. doi: 10.1136/gutjnl-2019-319766
86. Moco S, Martin F, Rezzi S. Metabolomics view on gut microbiome modulation by polyphenol-rich foods. J Proteome Res 2012;11(10):4781–4790. doi: 10.1021/pr300581s
87. Zhao J, Ning X, Liu B et al. Specific alterations in gut microbiota in patients with chronic kidney disease: an updated systematic review. Ren Fail 2021;43(1):102–112. doi: 10.1080/0886022X.2020.1864404
88. Ермоленко ВМ, Михайлова НА, Батэрдэнэ С. Уремический синдром и уремические токсины (Обзор литературы). Нефрология и диализ 2008;10(3,4):182–272 Ermolenko V, Mikhailova N, Baterdene S. Uremic syndrome and uremic toxins (Review). Nephrology and dialysis 2008;10(3,4):182–272. (In Russ.)
89. Fryc J, Naumnik B. Thrombolome and Its Emerging Role in Chronic Kidney Diseases. Toxins (Basel) 2021;13(3):223. doi: 10.3390/toxins13030223
90. Chao C, Lin S. Uremic Toxins and Frailty in Patients with Chronic Kidney Disease: A Molecular Insight. Int J Mol Sci 2021;22(12):6270. doi: 10.3390/ijms22126270
91. Rysz J, Franczyk B, Ławiński J et al. The Impact of CKD on Uremic Toxins and Gut Microbiota. Toxins (Basel) 2021;13(4):252. doi: 10.3390/toxins13040252
92. Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and Clinical Impact of Organic Uremic Retention Solutes: A Comprehensive Update. Toxins (Basel) 2018;10(1):33. doi: 10.3390/toxins10010033
93. Kim S, Song I. The clinical impact of gut microbiota in chronic kidney disease. Korean J Intern Med 2020;35(6):1305– 1316. doi: 10.3904/kjim.2020.411
94. Bain M, Faull R, Fornasini G et al. Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrol Dial Transplant 2006;21:1300–1304. doi: 10.1093/ndt/gfk056
95. Ichii O, Otsuka-Kanazawa S, Nakamura T et al. Podocyte injury caused by indoxyl sulfate, a uremic toxin and aryl-hydrocarbon receptor ligand. PLoS One 2014;9(9):e108448. doi: 10.1371/journal.pone.0108448
96. Barreto F, Barreto D, Liabeuf S et al. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol 2009;4:1551–1558. doi: 10.2215/CJN.03980609
97. Лукичёв БГ, Подгаецкая ОЮ, Карунная АВ, Румянцев АШ. Индоксил сульфат при хронической болезни почек. Нефрология 2014;18(1):25–32. doi: 10.24884/1561-6274-2014-18-1-20-24 Lukichev BG, Karunnaya AV, Rumyantsev AS. Indoxyl sulphate at chronic kidney disease. Nephrology (Saint-Petersburg) 2014;18(1):25–32. (In Russ.) doi: 10.24884/1561-6274-2014-18-1-20-24
98. Mozar A, Louvet L, Godin C et al. Indoxyl sulphate inhibits osteoclast differentiation and function. Nephrol Dial Transplant 2012;27(6):2176–2181. doi: 10.1093/ndt/gfr647
99. Chiang C, Tanaka T, Inagi R et al. Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. Lab Invest 2011;91(11):1564–1571. doi: 10.1038/labinvest.2011.114
100. Ahmed M, Abed M, Voelkl J, Lang F. Triggering of suicidal erythrocyte death by uremic toxin indoxyl sulfate. BMC Nephrol 2013;14:244. doi: 10.1186/1471-2369-14-244
101. Sun C, Chang S, Wu M. Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition. PLoS One 2012;7(3):e34026. doi: 10.1371/journal.pone.0034026
102. Watanabe H, Miyamoto Y, Honda D et al. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase. Kidney Int 2013;83(4):582–592. doi: 10.1038/ki.2012.448
103. Lin C, Pan C, Liu H et al. The role of protein-bound uremic toxins on peripheral artery disease and vascular access failure in patients on hemodialysis. Atherosclerosis 2012;225(1):173–179. doi: 10.1016/j.atherosclerosis.2012.07.012
104. Tang W, Wang Z, Kennedy D et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 2015;116(3):448–455. doi: 10.1161/CIRCRESAHA.116.305360
105. Stubbs J, House J, Ocque A et al. Serum Trimethylamine-N-Oxide is Elevated in CKD and Correlates with Coronary Atherosclerosis Burden. J Am Soc Nephrol 2016;27(1):305–313. doi: 10.1681/ASN.2014111063
106. Koeth R, Wang Z, Levison B et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013;19(5):576–585. doi: 10.1038/nm.3145
107. Layden B, Angueira A, Brodsky M et al. Short chain fatty acids and their receptors: new metabolic targets. Transl Res 2013;161(3):131–140. doi: 10.1016/j.trsl.2012.10.007
108. Vaziri N, Yuan J, Norris K. Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. Am J Nephrol 2013;37(1):1–6. doi: 10.1159/000345969
109. Lau W, Chang Y, Vaziri N. The consequences of altered microbiota in immune-related chronic kidney disease. Nephrol Dial Transplant 2021;36(10):1791–1798. doi: 10.1093/ndt/gfaa087
110. Evenepoel P, Poesen R, Meijers B. The gut-kidney axis. Pediatr Nephrol 2017;32(11):2005–2014. doi: 10.1007/s00467-016-3527-x
111. Lee T, Clavel T, Smirnov K et al. Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut 2017;66(5):863–871. doi: 10.1136/gutjnl-2015-309940
112. Vaziri N, Zhao Y, Pahl M. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: the nature, mechanisms, consequences and potential treatment. Nephrol Dial Transplant 2016;31(5):737–746. doi: 10.1093/ndt/gfv095
Рецензия
Для цитирования:
Пятченков М.О., Марков А.Г., Румянцев А.Ш. Структурно-функциональные нарушения кишечного барьера и хроническая болезнь почек. Обзор литературы. Часть I. Нефрология. 2022;26(1):10-26. https://doi.org/10.36485/1561-6274-2022-26-1-10-26
For citation:
Pyatchenkov M.O., Markov A.G., Rumyantsev A.Sh. Structural and functional intestinal barrier abnormalities and chronic kidney disease. Literature review. Part I. Nephrology (Saint-Petersburg). 2022;26(1):10-26. (In Russ.) https://doi.org/10.36485/1561-6274-2022-26-1-10-26