Changes in microRNA expression in the urine and endotelium-dependent regulation of vassel tone in Wistar rats received a high-salt diet
https://doi.org/10.36485/1561-6274-2022-26-1-75-87
Abstract
THE AIM: to evaluate the effect of a high-salt diet on the level of miRNA expression in urine and the mechanisms of endothelium-dependent vascular dilatation in rats.
MATERIALS AND METHODS: 20 Wistar rats were divided into two equal groups. The high salt (HS) group received 8 % NaCl in the diet, the control (NS) received the standard diet (0.34 % NaCl). After 4 months, blood pressure (BP), left ventricular mass index (IMLV) were assessed in rats, and relative expression levels of miRNA-21, miRNA-133, and miRNA-203 were determined in urine. The reactivity of the rings of the aorta and the superior mesenteric artery (SMA) to acetylcholine (ACh) was assessed in vitro in isometric mode.
RESULTS: there was no significant difference between the groups in terms of mean blood pressure (p> 0.05). However, in HS-rats an increase in IMLV was noted. The relative levels of expression of miRNA-21, miRNA-133, and miRNA-203 in the urine of rats fed a high-salt diet increased significantly as compared to the values of control animals. A high-salt diet resulted in a decrease in the reactivity of vascular segments precontracted with phenylephrine to ACh. A high-salt diet resulted in a decrease in the reactivity of vascular segments precontracted with phenylephrine to ACh. In the HS-group, the decrease in the amplitude of vasodilation under the action of ACh under conditions of blockade of NO-synthase (with the use of L-NIO) was less compared to the reaction in the absence of the blocker, than the NS-group: in the SMA of the HS group – by 45 %, NS group – by 69.4 %, in the aorta HS-group – by 49.4 %, NS-group – by 80.7 %. In contrast to the aorta, blockade of Ca2+-sensitive K+-channels in SMA (under the conditions of administration of tetraethylammonium, TRAM-34, or apamin) weakened ACh-induced relaxation, and in HS-rats, the decrease in vasodilation was more pronounced.
CONCLUSION: consumption of a high-salt diet, without changing blood pressure, increases IMLV and the level of miRNA expression in the urine, and also reduces endothelium-dependent vascular relaxation, mediated, in particular, by impaired endothelial NO production, which is more pronounced in the aorta than in the SMA.
Keywords
About the Authors
V. I. ZaraiskiRussian Federation
Prof. Mikhail I. Zaraiski, MD, PhD, DMedSci, Department of Clinical Laboratory Diagnostics with a Course of Molecular Medicine
197022, Saint Petersburg, L. Tolstoy st., 17, build 54
G. I. Lobov
Russian Federation
Prof. Gennady I. Lobov, MD, PhD, DMedSci, laboratory of physiology of the cardiovascular and lymphatic systems. Head of Laboratory
199034, Saint-Petersburg, Makarova Emb., 6
Phone: 8 (812) 328-07-01
G. T. Ivanova
Russian Federation
Galina T. Ivanova, PhD, laboratory of physiology of the cardiovascular and lymphatic systems. Senior researcher
199034, Saint-Petersburg, Makarova Emb., 6
Phone: 8 (812) 328-07-01
M. M. Parastaeva
Russian Federation
Marina M. Parastaeva, PhD, Institute of Nephrology Laboratory of Clinical Physiology of the Kidney Senior researcher
197022, St-Petersburg , L.Tolstoy st., 17, build. 54
Phone (812)346-39-26
A. G. Kucher
Russian Federation
Prof. Anatoly G. Kucher, MD, PhD, DMedSci, Research Institute of Nephrology, Research and Сlinical Research Center, Vice-Director
197022, Saint Petersburg, L. Tolstoy st., 17, build 54
Phone: +7(921)421-18-17
O. N. Beresneva
Russian Federation
Olga N. Beresneva, PhD, Institute of Nephrology Laboratory of Clinical Physiology of the Kidney Senior researcher
197022, St-Petersburg , L.Tolstoy st., 17, build 54
Phone (812)346-39-26
References
1. Mente A, O'Donnell M, Rangarajan S et al. Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: a community-level prospective epidemiological cohort study. Lancet 2018;392(10146):496–506. doi: 10.1016/S0140-6736(18)31376-X
2. Newberry SJ, Chung M, Anderson CAM et al. Rockville (MD): sodium and potassium intake: effects on chronic disease outcomes and risks [Internet]. Agency for Healthcare Research and Quality (US) 2018; Jun. Report No: 18-EHC009-EF
3. Rust P, Ekmekcioglu C. Impact of Salt Intake on the Pathogenesis and Treatment of Hypertension. Adv Exp Med Biol 2017;956: 61–84. doi: 10.1007/5584_2016_147
4. Marketou ME, Maragkoudakis S, Anastasiou I et al. Saltinduced effects on microvascular function: A critical factor in hypertension mediated organ damage. J Clin Hypertens 2019; 21: 749–757. doi:10.1111/jch.13535
5. Ritz E, Mehls O. Salt restriction in kidney disease – a missed therapeutic opportunity? Pediatr Nephrol 2009; 24(1): 9–17. doi: 10.1007/s00467-008-0856-4
6. Береснева ОН, Парастаева ММ, Иванова ГТ и др. Изменения сердечно-сосудистой системы у крыс, сопряженные с высоким потреблением хлорида натрия. Артериальная гипертензия 2014;20(5):384–390. doi: 10.18705/1607-419X-2014-20-5-384-390 Beresneva ON, Parastaeva MM, Ivanova GT et al. Changes of cardiovascular system in rats associated with higt intake of sodium chloride. Arterial’naya Gipertenziya (Arterial Hypertension) 2014;20(5):384–390. (In Russ.) doi: 10.18705/1607-419X-2014-20-5-384-390
7. Куликов АН, Береснева ОН, Парастаева ММ и др. Влияние длительного потребления рациона с высоким содержанием хлорида натрия на кардиоваскулярную систему яванских макак (Macaca fascicularis). Нефрология 2020;24(6): 93–99. doi:10.36485/1561-6274-2020-24-6-93-99 Kulikov AN, Beresneva ON, Parastaeva MM et al. Effects of long-term high dietary sodium chloride intake on the cardiovascular system of cynomolgus macaques (Macaca fascicularis). Nephrology (Saint-Petersburg) 2020;24(6):93-99. (In Russ.) doi:10.36485/1561-6274-2020-24-6-93-99
8. Каюков ИГ, Береснева ОН, Парастаева ММ и др. Протеины сои противодействуют ремоделированию сердца у крыс Wistar, получающих рацион с высоким содержанием хлорида натрия. Нефрология 2019;23(6):92–99. https://doi.org/10.36485/1561-6274-2019-236-92-99 Kayukov IG, Beresneva ON, Parastaeva MM et al. Soybean proteins counteract heart remodeling in wistar rats fed a high sodium chloride diet. Nephrology (Saint-Petersburg) 2019;23(6):92– 99. (In Russ.) doi:10.36485/1561-6274-2019-236-92-99
9. Кучер АГ, Береснева ОН, Парастаева ММ и др. Высокое потребление соли, сердечносо-судистая система и почки у спонтанно гипертензивных крыс. Регионарное кровообращение и микроциркуляция 2017;16(3):62–69. doi: 10.24884/1682-6655-2017-16-3-62-69 Kucher AG, Beresneva ON, Parastaeva MM et al. High salts intake, cardiovascular system and kidney in spontaneous hypertensive rats. Regional blood circulation and microcirculation 2017;16(3):62–69. (In Russ.)] doi:10.24884/1682-6655-2017-16-3-62-69
10. Kanbay M, Chen Y, Solak P, Sanders PW. Mechanisms and consequences of salt sensitivity and dietary salt intake. Curr Opin Nephrol Hypertens 2011;20(1):37–43. doi: 10.1097/MNH.0b013e32834122f1
11. Pase MP, Grima NA, Sarris J. The effects of dietary and nutrient interventions on arterial stiffness: a systematic review. Am J Clin Nutr 2011;93(2):446–454. doi:10.3945/ajcn.110.002725
12. Chao Chen, Murugavel Ponnusamy, Cuiyun Liu et al. MicroRNA as a Therapeutic Target in Cardiac Remodeling. BioMed Res Int 2017;(3):1–25. doi: 10.1155/2017/1278436
13. Papageorgiou N, Tousoulis D, Charakida M et al. Prognostic role of miRNAs in coronary artery disease. Curr Top Med Chem 2013;13(13):1540–1547. doi: 10.2174/15680266113139990103
14. Mirzaei H, Ferns GA, Avan A, Mobarhan MG. Cytokines and MicroRNA in Coronary Artery Disease. Adv Clin Chem 2017; 82:47–70. doi: 10.1016/bs.acc.2017.06.004
15. He Q, Wang C, Qin J et al. Effect of miR-203 expression on myocardial fibrosis. European Review for Medical and Pharmacological Sciences 2017;21(4):837–842
16. Zheng I, Jian X, Guo F et al. miR-203 inhibits arecolineinduced epithelial-mesenchymal transition by regulating secreted frizzled-related protein 4 and transmembrane-4 L six family member 1 in oral submucous fibrosis. Oncol Rep 2015;33(6):2753– 2760. doi: 10.3892/or.2015.3909
17. Grigorova YN, Wei W, Petrashevskaya N et al. Dietary Sodium Restriction Reduces Arterial Stiffness, Vascular TGF-β- Dependent Fibrosis and Marinobufagenin in Young Normotensive Rats. Int J Mol Sci 2018;19(10):3168. doi:10.3390/ijms19103168
18. Guers JJ, Farquhar WB, Edwards DG, Lennon SL. Voluntary Wheel Running Attenuates Salt-Induced Vascular Stiffness Independent of Blood Pressure. Am J Hypertens 2019;32(12):1162– 1169. doi: 10.1093/ajh/hpz128. PMID: 31401651
19. Boegehold MA. The effect of high salt intake on endothelial function: reduced vascular nitric oxide in the absence of hypertension. J Vasc Res 2013;50(6):458–467. doi: 10.1159/000355270
20. Zhu J, Mori T, Huang T, Lombard JH. Effect of high-salt diet on NO release and superoxide production in rat aorta. Am J Physiol Heart Circ Physiol 2004;286(2):H575–83. doi: 10.1152/ajpheart.00331.2003
21. Li SC, Wang QH, Chen LF et al. High Sodium Intake Impairs Small Artery Vasoreactivity in vivo in Dahl Salt-Sensitive Rats. J Vasc Res 2019;56(2):65–76. doi: 10.1159/000498895
22. Zhao Y, Vanhoutte PM, Leung SW. Vascular nitric oxide: beyond eNOS. J Pharmacol Sci 2015;129(2): 83–94. doi: 10.1016/j.jphs.2015.09.002
23. Nurkiewicz TR, Boegehold MA.High salt intake reduces endothelium-dependent dilation of mouse arterioles via superoxide anion generated from nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 2007;292(4): R1550–R1556. doi: 10.1152/ajpregu.00703.2006
24. Lenda DM, Sauls BA, Boegehold MA Reactive oxygen species may contribute to reduced endothelium-dependent dilation in rats fed high salt. Amer J Physiol 2000; 279(1): H7–H14. doi: 10.1152/ajpheart.2000.279.1.H7
25. Feletou M, Vanhoutte PM EDHF: an update. Clin Sci (Lond) 2009;117(4):139–155. doi: 10.1042/CS20090096
26. Mohan S, Campbell NR. Salt and high blood pressure. Clin Sci (Lond) 2009;117(1): 1–11. doi: 10.1042/CS20080207
27. Парастаева ММ, Береснева ОН, Иванова ГТ и др. Артериальная гипертензия и потребление соли: вклад в ремоделирование сердца. Нефрология 2016;20(5):97–105 Parastaeva MM, Beresneva ON, Ivanova GT et al. Arterial hypertension and salt intake: contribution to cardiac remodeling. Nephrology (Saint-Petersburg). 2016;20(5):97–105 (In Russ.)
28. Opлов СВ, Береснева ОН, Зарайский МИ и др. Изменения экспрессии микроРНК в моче яванских макак (Macaca fascicularis) при высоком потреблении поваренной соли. Вопросы питания 2021;90(4):94–102. doi:10.33029/0042-8833-2021-90-4-94-102 Orlov SV, Beresneva ON, Zaraisky MI et al. Urinary miRNA expression in cynomolgus macaques (Macaca fascicularis) fed high salt ration. Voprosy pitaniia [Problem of Nutrition] 2021;90(4):94– 102. (In Russ.) doi:10.33029/0042-8833-2021-90-4-94-102
29. Wang JY, Gao YB, Zhang N et al. MicroRNA-21 overexpression enhances TGF-β1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy. Mol Cell Endocrinol 2014;392(1–2):163–172. doi:10.1016/j.mce.2014.05.018
30. Смирнов АВ, Карунная АВ, Зарайский МИ и др. Экспрессия микроРНК-21 в моче у пациентов с нефропатиями. Нефрология 2014;18(6):59–63 Smirnov AV, Karunnaya AV, Zarayski MI.Urinary microRNA-21 expression in nephropaties. Nephrology (Saint-Petersburg) 2014;18(6):59–63 (In Russ.)
31. Abdelghaffar S, Shora H, Abdelatty S et al. MicroRNAs and risk factors for diabetic nephropathy in egyptian children and adolescents with type 1 diabetes. Diabetes Metab Syndr Obes 2020;13:2485–2494. doi: 10.2147/DMSO.S247062
32. Deng B, Wang B, Fang J et al. MiRNA-203 suppresses cell proliferation, migration and invasion in colorectal cancer via targeting of EIF5A2. Sci Rep 2016;6:28301. doi: 10.1038/srep28301
33. Zong L, Wang W. MiRNA-203 suppresses cell proliferation, migration and invasion in colorectal cancer via targeting of EIF5A2. Biomed Res Int 2020; 2020:8590861. doi: 10.1155/2020/8590861
34. Sun B, Liu S, Hao R et al. RGD-PEG-PLA delivers MiR- 133 to infarct lesions of acute myocardial infarction model rats for cardiac protection. Pharmaceutics 2020;12(6):575. doi: 10.3390/pharmaceutics12060575
35. Zhang XG, Wang LQ, Guan HL. Investigating the expression of miRNA-133 in animal models of myocardial infarction and its effect on cardiac function. Eur Rev Med Pharmacol Sci 2019;23(13):5934–5940. doi: 10.26355/eurrev_201907_18338
36. Иванова ГТ, Лобов ГИ. Эндотелийзависимая регуляция тонуса артерий у нефрэктомированных крыс. Журнал фундаментальной медицины и биологии 2018;(3):9–17 Ivanova GT, Lobov GI. Endothelium-dependent regulation of artery tonus in nephrectomized rats. Fundamental medicine and biology 2018; (3):9–17 (in Russ.)
37. Sandoo A, van Zanten JJ, Metsios GS et al. The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J 2010;4:302–312. doi: 10.2174/1874192401004010302
38. Vallance P, Collier J, Moncada S. Effects of endotheliumderived nitric oxide on peripheral arteriolar tone in man. Lancet 1989;2(8670):997–1000. doi: 10.1016/s0140-6736(89)91013-1
39. Kido M, Ando K, Onozato ML et al. Protective effect of dietary potassium against vascular injury in salt-sensitive hypertension. Hypertension 2008;51(2): 225–231. doi:10.1161/HYPERTENSIONAHA.107.098251
40. Feletou M. Endothelium-Dependent Hyperpolarization and Endothelial Dysfunction. J Cardiovasc Pharmacol 2016;67(5): 73–87. doi:10.1097/FJC.0000000000000346
41. Ando M, Matsumoto T, Kobayashi S et al. Differential participation of calcium-activated potassium channel in endotheliumdependent hyperpolarizationtype relaxation in superior mesenteric arteries of spontaneously hypertensive rats. Can J Physiol Pharmacol 2018;96(8):839–844. doi:10.1139/cjpp-2017-0557
42. Stankevicius E, Lopez-Valverde V, Rivera L et al. Combination of Ca2+ -activated K+ channel blockers inhibits acetylcholine-evoked nitric oxide release in rat superior mesenteric artery. Br J Pharmacol 2006;149(5): 60–572. doi:10.1038/sj.bjp.0706886
Review
For citations:
Zaraiski V.I., Lobov G.I., Ivanova G.T., Parastaeva M.M., Kucher A.G., Beresneva O.N. Changes in microRNA expression in the urine and endotelium-dependent regulation of vassel tone in Wistar rats received a high-salt diet. Nephrology (Saint-Petersburg). 2022;26(1):75-87. (In Russ.) https://doi.org/10.36485/1561-6274-2022-26-1-75-87