1. Mente A, O'Donnell M, Rangarajan S et al. Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: a community-level prospective epidemiological cohort study. Lancet 2018;392(10146):496-506. https://doi.org/10.1016/S0140-6736(18)31376-X
2. Newberry SJ, Chung M, Anderson CAM et al. Rockville (MD): sodium and potassium intake: effects on chronic disease outcomes and risks [Internet]. Agency for Healthcare Research and Quality (US) 2018; Jun. Report No: 18-EHC009-EF
3. Rust P, Ekmekcioglu C. Impact of Salt Intake on the Pathogenesis and Treatment of Hypertension. Adv Exp Med Biol 2017;956: 61-84. https://doi.org/10.1007/5584_2016_147
4. Marketou ME, Maragkoudakis S, Anastasiou I et al. Saltinduced effects on microvascular function: A critical factor in hypertension mediated organ damage. J Clin Hypertens 2019; 21: 749-757. https://doi.org/10.1111/jch.13535
5. Ritz E, Mehls O. Salt restriction in kidney disease - a missed therapeutic opportunity? Pediatr Nephrol 2009; 24(1): 9-17. https://doi.org/10.1007/s00467-008-0856-4
6. Beresneva ON, Parastaeva MM, Ivanova GT i dr. Izmeneniya serdechno-sosudistoi sistemy u krys, sopryazhennye s vysokim potrebleniem khlorida natriya. Arterial'naya gipertenziya 2014;20(5):384-390. https://doi.org/10.18705/1607-419X-2014-20-5-384-390 Beresneva ON, Parastaeva MM, Ivanova GT et al. Changes of cardiovascular system in rats associated with higt intake of sodium chloride. Arterial’naya Gipertenziya (Arterial Hypertension) 2014;20(5):384-390. (In Russ.) https://doi.org/10.18705/1607-419X-2014-20-5-384-390
7. Kulikov AN, Beresneva ON, Parastaeva MM i dr. Vliyanie dlitel'nogo potrebleniya ratsiona s vysokim soderzhaniem khlorida natriya na kardiovaskulyarnuyu sistemu yavanskikh makak (Macaca fascicularis). Nefrologiya 2020;24(6): 93-99. https://doi.org/10.36485/1561-6274-2020-24-6-93-99 Kulikov AN, Beresneva ON, Parastaeva MM et al. Effects of long-term high dietary sodium chloride intake on the cardiovascular system of cynomolgus macaques (Macaca fascicularis). Nephrology (Saint-Petersburg) 2020;24(6):93-99. (In Russ.) https://doi.org/10.36485/1561-6274-2020-24-6-93-99
8. Kayukov IG, Beresneva ON, Parastaeva MM i dr. Proteiny soi protivodeistvuyut remodelirovaniyu serdtsa u krys Wistar, poluchayushchikh ratsion s vysokim soderzhaniem khlorida natriya. Nefrologiya 2019;23(6):92-99. https://doi.org/10.36485/1561-6274-2019-236-92-99 Kayukov IG, Beresneva ON, Parastaeva MM et al. Soybean proteins counteract heart remodeling in wistar rats fed a high sodium chloride diet. Nephrology (Saint-Petersburg) 2019;23(6):92- 99. (In Russ.) https://doi.org/10.36485/1561-6274-2019-236-92-99
9. Kucher AG, Beresneva ON, Parastaeva MM i dr. Vysokoe potreblenie soli, serdechnoso-sudistaya sistema i pochki u spontanno gipertenzivnykh krys. Regionarnoe krovoobrashchenie i mikrotsirkulyatsiya 2017;16(3):62-69. https://doi.org/10.24884/1682-6655-2017-16-3-62-69 Kucher AG, Beresneva ON, Parastaeva MM et al. High salts intake, cardiovascular system and kidney in spontaneous hypertensive rats. Regional blood circulation and microcirculation 2017;16(3):62-69. (In Russ.)] https://doi.org/10.24884/1682-6655-2017-16-3-62-69
10. Kanbay M, Chen Y, Solak P, Sanders PW. Mechanisms and consequences of salt sensitivity and dietary salt intake. Curr Opin Nephrol Hypertens 2011;20(1):37-43. https://doi.org/10.1097/MNH.0b013e32834122f1
11. Pase MP, Grima NA, Sarris J. The effects of dietary and nutrient interventions on arterial stiffness: a systematic review. Am J Clin Nutr 2011;93(2):446-454. https://doi.org/10.3945/ajcn.110.002725
12. Chao Chen, Murugavel Ponnusamy, Cuiyun Liu et al. MicroRNA as a Therapeutic Target in Cardiac Remodeling. BioMed Res Int 2017;(3):1-25. https://doi.org/10.1155/2017/1278436
13. Papageorgiou N, Tousoulis D, Charakida M et al. Prognostic role of miRNAs in coronary artery disease. Curr Top Med Chem 2013;13(13):1540-1547. https://doi.org/10.2174/15680266113139990103
14. Mirzaei H, Ferns GA, Avan A, Mobarhan MG. Cytokines and MicroRNA in Coronary Artery Disease. Adv Clin Chem 2017; 82:47-70. https://doi.org/10.1016/bs.acc.2017.06.004
15. He Q, Wang C, Qin J et al. Effect of miR-203 expression on myocardial fibrosis. European Review for Medical and Pharmacological Sciences 2017;21(4):837-842
16. Zheng I, Jian X, Guo F et al. miR-203 inhibits arecolineinduced epithelial-mesenchymal transition by regulating secreted frizzled-related protein 4 and transmembrane-4 L six family member 1 in oral submucous fibrosis. Oncol Rep 2015;33(6):2753- 2760. https://doi.org/10.3892/or.2015.3909
17. Grigorova YN, Wei W, Petrashevskaya N et al. Dietary Sodium Restriction Reduces Arterial Stiffness, Vascular TGF-β- Dependent Fibrosis and Marinobufagenin in Young Normotensive Rats. Int J Mol Sci 2018;19(10):3168. https://doi.org/10.3390/ijms19103168
18. Guers JJ, Farquhar WB, Edwards DG, Lennon SL. Voluntary Wheel Running Attenuates Salt-Induced Vascular Stiffness Independent of Blood Pressure. Am J Hypertens 2019;32(12):1162- 1169. https://doi.org/10.1093/ajh/hpz128. PMID: 31401651
19. Boegehold MA. The effect of high salt intake on endothelial function: reduced vascular nitric oxide in the absence of hypertension. J Vasc Res 2013;50(6):458-467. https://doi.org/10.1159/000355270
20. Zhu J, Mori T, Huang T, Lombard JH. Effect of high-salt diet on NO release and superoxide production in rat aorta. Am J Physiol Heart Circ Physiol 2004;286(2):H575-83. https://doi.org/10.1152/ajpheart.00331.2003
21. Li SC, Wang QH, Chen LF et al. High Sodium Intake Impairs Small Artery Vasoreactivity in vivo in Dahl Salt-Sensitive Rats. J Vasc Res 2019;56(2):65-76. https://doi.org/10.1159/000498895
22. Zhao Y, Vanhoutte PM, Leung SW. Vascular nitric oxide: beyond eNOS. J Pharmacol Sci 2015;129(2): 83-94. https://doi.org/10.1016/j.jphs.2015.09.002
23. Nurkiewicz TR, Boegehold MA.High salt intake reduces endothelium-dependent dilation of mouse arterioles via superoxide anion generated from nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 2007;292(4): R1550-R1556. https://doi.org/10.1152/ajpregu.00703.2006
24. Lenda DM, Sauls BA, Boegehold MA Reactive oxygen species may contribute to reduced endothelium-dependent dilation in rats fed high salt. Amer J Physiol 2000; 279(1): H7-H14. https://doi.org/10.1152/ajpheart.2000.279.1.H7
25. Feletou M, Vanhoutte PM EDHF: an update. Clin Sci (Lond) 2009;117(4):139-155. https://doi.org/10.1042/CS20090096
26. Mohan S, Campbell NR. Salt and high blood pressure. Clin Sci (Lond) 2009;117(1): 1-11. https://doi.org/10.1042/CS20080207
27. Parastaeva MM, Beresneva ON, Ivanova GT i dr. Arterial'naya gipertenziya i potreblenie soli: vklad v remodelirovanie serdtsa. Nefrologiya 2016;20(5):97-105 Parastaeva MM, Beresneva ON, Ivanova GT et al. Arterial hypertension and salt intake: contribution to cardiac remodeling. Nephrology (Saint-Petersburg). 2016;20(5):97-105 (In Russ.)
28. Oplov SV, Beresneva ON, Zaraiskii MI i dr. Izmeneniya ekspressii mikroRNK v moche yavanskikh makak (Macaca fascicularis) pri vysokom potreblenii povarennoi soli. Voprosy pitaniya 2021;90(4):94-102. https://doi.org/10.33029/0042-8833-2021-90-4-94-102 Orlov SV, Beresneva ON, Zaraisky MI et al. Urinary miRNA expression in cynomolgus macaques (Macaca fascicularis) fed high salt ration. Voprosy pitaniia [Problem of Nutrition] 2021;90(4):94- 102. (In Russ.) https://doi.org/10.33029/0042-8833-2021-90-4-94-102
29. Wang JY, Gao YB, Zhang N et al. MicroRNA-21 overexpression enhances TGF-β1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy. Mol Cell Endocrinol 2014;392(1-2):163-172. https://doi.org/10.1016/j.mce.2014.05.018
30. Smirnov AV, Karunnaya AV, Zaraiskii MI i dr. Ekspressiya mikroRNK-21 v moche u patsientov s nefropatiyami. Nefrologiya 2014;18(6):59-63 Smirnov AV, Karunnaya AV, Zarayski MI.Urinary microRNA-21 expression in nephropaties. Nephrology (Saint-Petersburg) 2014;18(6):59-63 (In Russ.)
31. Abdelghaffar S, Shora H, Abdelatty S et al. MicroRNAs and risk factors for diabetic nephropathy in egyptian children and adolescents with type 1 diabetes. Diabetes Metab Syndr Obes 2020;13:2485-2494. https://doi.org/10.2147/DMSO.S247062
32. Deng B, Wang B, Fang J et al. MiRNA-203 suppresses cell proliferation, migration and invasion in colorectal cancer via targeting of EIF5A2. Sci Rep 2016;6:28301. https://doi.org/10.1038/srep28301
33. Zong L, Wang W. MiRNA-203 suppresses cell proliferation, migration and invasion in colorectal cancer via targeting of EIF5A2. Biomed Res Int 2020; 2020:8590861. https://doi.org/10.1155/2020/8590861
34. Sun B, Liu S, Hao R et al. RGD-PEG-PLA delivers MiR- 133 to infarct lesions of acute myocardial infarction model rats for cardiac protection. Pharmaceutics 2020;12(6):575. https://doi.org/10.3390/pharmaceutics12060575
35. Zhang XG, Wang LQ, Guan HL. Investigating the expression of miRNA-133 in animal models of myocardial infarction and its effect on cardiac function. Eur Rev Med Pharmacol Sci 2019;23(13):5934-5940. https://doi.org/10.26355/eurrev_201907_18338
36. Ivanova GT, Lobov GI. Endoteliizavisimaya regulyatsiya tonusa arterii u nefrektomirovannykh krys. Zhurnal fundamental'noi meditsiny i biologii 2018;(3):9-17 Ivanova GT, Lobov GI. Endothelium-dependent regulation of artery tonus in nephrectomized rats. Fundamental medicine and biology 2018; (3):9-17 (in Russ.)
37. Sandoo A, van Zanten JJ, Metsios GS et al. The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J 2010;4:302-312. https://doi.org/10.2174/1874192401004010302
38. Vallance P, Collier J, Moncada S. Effects of endotheliumderived nitric oxide on peripheral arteriolar tone in man. Lancet 1989;2(8670):997-1000. https://doi.org/10.1016/s0140-6736(89)91013-1
39. Kido M, Ando K, Onozato ML et al. Protective effect of dietary potassium against vascular injury in salt-sensitive hypertension. Hypertension 2008;51(2): 225-231. https://doi.org/10.1161/HYPERTENSIONAHA.107.098251
40. Feletou M. Endothelium-Dependent Hyperpolarization and Endothelial Dysfunction. J Cardiovasc Pharmacol 2016;67(5): 73-87. https://doi.org/10.1097/FJC.0000000000000346
41. Ando M, Matsumoto T, Kobayashi S et al. Differential participation of calcium-activated potassium channel in endotheliumdependent hyperpolarizationtype relaxation in superior mesenteric arteries of spontaneously hypertensive rats. Can J Physiol Pharmacol 2018;96(8):839-844. https://doi.org/10.1139/cjpp-2017-0557
42. Stankevicius E, Lopez-Valverde V, Rivera L et al. Combination of Ca2+ -activated K+ channel blockers inhibits acetylcholine-evoked nitric oxide release in rat superior mesenteric artery. Br J Pharmacol 2006;149(5): 60-572. https://doi.org/10.1038/sj.bjp.0706886