Preview

Нефрология

Расширенный поиск

Роль ВКСа - и IKСа-каналов в H2S-индуцированной дилатации пиальных артерий крыс после нефрэктомии

https://doi.org/10.36485/1561-6274-2022-26-3-88-94

Аннотация

   ВВЕДЕНИЕ. Хроническая болезнь почек (ХБП) сопровождается развитием эндотелиальной дисфункции, приводящей к снижению реактивности артерий на вазоактивные агенты. Показано, что уремия вызывает изменение дилатации артерий различных сосудистых регионов, в том числе и артерий пиальной оболочки головного мозга. Действие сероводорода (H2S), способного вызывать релаксацию гладкомышечных клеток кровеносных сосудов, в настоящее время рассматривается как возможный путь вазопротекции при различных заболеваниях, в частности, при ХБП.

   ЦЕЛЬ: оценить роль кальций-активируемых калиевых каналов большой (ВКСа) и промежуточной (IKСа) проводимости в H2S-индуцированной дилатации пиальных артерий крыс после нефрэктомии.

   МАТЕРИАЛ И МЕТОДЫ. У крыс линии Wistar нефрэктомию (НЭ) проводили путем резекции 5/6 массы почечной ткани. Контролем служили ложнооперированные (ЛО) животные. На установке для изучения сосудистого русла в пиальной оболочке головного мозга исследовали реакции пиальных артерий сенсомоторной коры НЭ и ЛО крыс на воздействие H2S в физиологических условиях и на фоне применения блокаторов ВКСа-каналов – тетраэтиламмония (ТЕА) и IKСа-каналов – TRAM-34.

   РЕЗУЛЬТАТЫ. Показано, что через 4 мес после НЭ аппликация H2S приводила к дилатации меньшего количества пиальных артерий (в 1,4–1,7 раза) по сравнению с ЛО крысами. Предварительное воздействие ТЕА приводило к уменьшению количества пиальных артерий, отвечавших дилатацией на действие H2S у НЭ и ЛО крыс. На фоне действия TRAM-34 у ЛО крыс количество дилатированных артерий при действии H2S уменьшилось, а у НЭ крыс – практически не изменялось.

   ЗАКЛЮЧЕНИЕ. В физиологических условиях дилатация пиальных артерий крыс при действии H2S реализуется (по крайней мере, частично) посредством активации ВКСа- и IKСа-каналов мембраны эндотелиальных и гладкомышечных клеток. Уремия, вызванная нефрэктомией, приводит к нарушению механизма дилатации пиальных артерий, опосредованного активацией IKСа-каналов, по-видимому, из-за нарушения функций эндотелиальных клеток.

Об авторах

И. Б. Соколова
Институт физиологии им. И. П. Павлова
Россия

Ирина Борисовна Соколова, канд. биол. наук, старший научный сотрудник

лаборатория физиологии сердечно-сосудистой и лимфатической систем

199034

наб. Макарова, д. 6

Санкт-Петербург

тел.: 8 (813) 70-71-553



Г. Т. Иванова
Институт физиологии им. И. П. Павлова
Россия

Галина Тажимовна Иванова, канд. биол. наук, старший научный сотрудник

лаборатория физиологии сердечно-сосудистой и лимфатической систем

199034

наб. Макарова, д. 6

Санкт-Петербург

тел.: 8 (812) 328-07-01



Список литературы

1. Ткачева Н. И. Органические соединения – доноры сероводорода – с кардиопротекторными свойствами (обзор) / Н. И. Ткачева [и др.] // Химико-фармацевтический журнал. – 2017. – 51 (3): 3–12. doi: 10.1007/s11094-017-1576-5 / Tkacheva N. I., Morozov S. V., Lomivorotov B. B., Grigor’ev I. A. Molecular biological problems of drug design and mechanism of drug action: Organic hydrogen sulfide donor compounds with cardioprotective properties (review). Pharmaceutical Chemistry Journal 2017; 51 (3): 165–174 (In Russ.)

2. Whiteman M., Armstrong J., Chu S., Jia-Ling S., et al. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite “scavenger”? J Neurochem 2004; 90 (3): 765–768. doi: 10.1111/j.1471-4159.2004.02617.x

3. Zoccali C., Catalano C., Rastelli S. Blood pressure control: hydrogen sulfide, a new gasotransmitter, takes stage. Nephrol Dial Transplant 2009; 24 (5): 1394–1396. doi: 10.1093/ndt/gfp053

4. Wen J., Wang M., Li Y. et al. Vascular protection of hydrogen sulfide on cerebral ischemia/reperfusion injury in rats. Front Neurol 2018; 9: 779. doi: 10.3389/fneur.2018.00779.

5. Kimura Y., Dargusch R., Schubert D., Kimura H. Hydrogen sulfide protects HT22 neuronal cells from oxidative stress. Antioxid Redox Signal 2006; 8 (3-4): 661–670. doi: 10.1089/ars.2006.8.661

6. Dunn W. R., Alexander S. P., Ralevic V., Roberts R. E. Effects of hydrogen sulphide in smooth muscle. Pharmacol Ther 2016; 158: 101–113. doi:10.1016/j.pharmthera.2015.12.007

7. Streeter E., Hart J., Badoer E. An investigation of the mechanisms of hydrogen sulfide-induced vasorelaxation in rat middle cerebral arteries. Naunyn-Schmiedeberg's Arch Pharmacol 2012; 385 (10): 991–1002. doi: 10.1007/s00210-012-0779-2

8. Hart J. L. Vasorelaxation elicited by endogenous and exogenous hydrogen sulfide in mouse mesenteric arteries. Naunyn Schmiedebergs Arch Pharmacol 2020; 393 (4): 551–564. doi: 10.1007/s00210-019-01752-w

9. Patel S., Fedinec A. L., Liu J. et al. H<sub>2</sub>S mediates the vasodilator effect of endothelin-1 in the cerebral circulation. Am J Physiol Heart Circ Physiol 2018; 315 (6): H1759–H1764. doi: 10.1152/ajpheart.00451.2018

10. Черток В. М. Эндотелиальный (интимальный) механизм регуляции мозговой гемодинамики: трансформация взглядов / В. М. Черток, А. Е. Коцюба //Тихоокеанский медицинский журнал. – 2012. – (2): 17–26 / Chertok V. M., Kotsyba A. E. Endothelial (intimal) mechanism of cerebral hemodynamics regulation: changing views. Tikhookeanskiy Meditsinkiy Zhurnal 2012; (2): 17–26 (In Russ.)

11. Tang G., Wu L., Liang W., Wang R. Direct stimulation of K(ATP) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol Pharmacol 2005; 68 (6): 1757–1764. doi: 10.1124/mol.105.017467

12. Hedegaard E. R., Gouliaev A., Winther A. K., et al. Involvement of Potassium Channels and Calcium-Independent Mechanisms in Hydrogen Sulfide-Induced Relaxation of Rat Mesenteric Small Arteries. J Pharmacol Exp Ther 2016; 356 (1): 53–63. doi: 10.1124/jpet.115.227017

13. Assem M., Lando M., Grissi M., et al. The Impact of Uremic Toxins on Cerebrovascular and Cognitive Disorders. Toxins (Basel) 2018; 10 (7): 303. doi: 10.3390/toxins10070303

14. Панина И. Ю. 2007. Особенности функции эндотелия при хронической болезни почек. Обзор литературы и собственные данные / И. Ю. Панина [и др.] // Нефрология. – 2007. – 11 (4): 28–46. URL: https://cyberleninka.ru/article/n/osobennosti-funktsii-endoteliya-pri-hronicheskoy-bolezni-pochek-obzor-literatury-i-sobstvennye-dannye / Panina I. Yu., Rumyantsev A. S., Menshutina M. A., et al. Specific function of the endothelium in chronic disease. Literature reviev and personal data. Nephrology (Saint-Petersburg) 2007; 11 (4): 28–46 (In Russ.)

15. Bugnicourt J., Silveira C., Bengrine A., et al. Chronic renal failure alters endothelial function in cerebral circulation in mice. Am J Physiol Heart Circ Physiol 2010; 301 (3): H1143–H1152. doi: 10.1152/ajpheart.01237.2010

16. Gouroju S., Rao P. V. L. N. S., Bitla A. R., et al. Role of Gut-derived Uremic Toxins on Oxidative Stress and Inflammation in Patients with Chronic Kidney Disease. Indian J Nephrol 2017; 27 (5): 359–364. doi: 10.4103/ijn.IJN_71_17

17. Jono S., Shioi A., Ikari Y., Nishizawa Y. Vascular calcification in chronic kidney disease. J Bone Miner Metab 2006; 24 (2): 176–181. doi: 10.1007/s00774-005-0668-6

18. Monroy M., Fang J., Li S. et al. Chronic kidney disease alters vascular smooth muscle cell phenotype. NIH public access 2015; 20: 784–795. doi: 10.2741/4337

19. Henaut L., Mary A., Chillon J. M. et al. The impact of uremic toxins on vascular smooth muscle cell function. Toxins 2018; 10 (6): 218. doi: 10.3390/toxins10060218

20. Смирнов А. В. Гипергомоцистеимия усугубляет повреждения нефрона при экспериментальной хронической почечной недостаточности / А. В. Смирнов [и др.] //Нефрология. – 2005. – 9 (4): 67–74. URL: https://journal.nephrolog.ru/jour/article/view/724 / Smirnov A. V., Dobronravov V. A., Nevorotin A. I., et al. Hyperhomocysteinemia exacerbates the nephron injuries induced by experimental kidney failure. Nephrology (Saint-Petersburg) 2005; 9 (4): 67–74. (In Russ.)

21. Jin X., Satoh-Otonashi Y., Zamami Y. et al. New molecular mechanisms for cardiovascular disease: contribution of endothelium-derived hyperpolarizing factor in the regulation of vasoconstriction in peripheral resistance arteries. J Phamacol 2011; 116 (4): 839–852. doi: 10.1254/jphs.10r30fm

22. Vanhoutte P., Shimokawa H., Feletou M., Tang E. Endotelial dysfunctionand vascular disease – a 30th anniversary update. Acta physiol (Oxf) 2017; 219 (1): 22–96. doi: 10.1111/apha.12646

23. Tang G., Yang G., Jiang B. et al. H2S is an endothelium-derived hyperpolarizing factor. Antioxid Redox Signal 2013; 19 (14): 1634–1646. doi: 10.1089/ars.2012.4805

24. Goto K., Ohtsubo T., Kitazono T. Endotelium-dependent hyperpolarization (EDH) in hypertension: the role of endothelial ion channels. Int j mol sci 2018; 19 (1): 315–335. doi: 10.3390/ijms19010315

25. Garland C., Dora K. Endothelium-dependent hyperpolarization and microvascular signaling. Acta physiol (Oxf) 2017; 219 (1): 152–161. doi: 10.1111/apha.12649

26. Beltowski J., Jamroz-Wisniewska A. Hydrogen sulfide and endothelium-dependent vasorelaxation. Molecules 2014; 19: 21183–21199. doi: 10.3390/molecules191221183

27. Lowicka E., Beltowski J. Hydrogen sulfide – the third gas of interest for pharmacologists. Pharmacol reports 2007; 59 (1): 4–24

28. Testai L., D'Antongiovanni V., Piano I., et al. Different patterns of H<sub>2</sub>S/NO activity and cross-talk in the control of the coronary vascular bed under normotensive or hypertensive conditions. Nitric Oxide 2015; 47: 25–33. doi: 10.1016/j.niox.2015.03.003

29. Ghatta S., Nimmagadda D., Xu X., O,Rourke S. Large-conductance, calcium-activated potassium channels: Structural and functional implications. Phamac Therap 2006; 110 (1): 103–106. doi: 10.1016/j.pharmthera.2005.10.007

30. Соколова И. Б. Эффективность применения мезенхимных стволовых клеток для улучшения микроциркуляции в коре головного мозга нефрэктомированных крыс / И. Б. Соколова, Н. Н. Павличенко // Цитология. – 2020. – 62 (6): 410–417. doi: 10.31857/S0041377120060103 / Sokolova I. B., Pavlichenko N. N. The efficacy of mesenchymal stem cells transplantation for improvement of microcirculation in the cerebral cortex of nephrectomized rats. Tsitologiya 2020; 62 (6): 410–417 (In Russ.)

31. Иванова Г. Т. Изменение реактивности сосудов крыс с экспериментальным уменьшением массы функционирующих нефронов / Г. Т. Иванова [и др.] // Нефрология. – 2019. – 23 (4): 88–95. doi: 10.24884/1561-6274-2019-23-4-88-95 / Ivanova G. T., Lobov G. I., Beresneva O. N., Parastaeva M. M. Changes in the reactivity of vessels of rats with an experimental decrease in the mass of functioning nephrons. Nephrology (Saint-Petersburg) 2019; 23 (4): 88–95 (In Russ.)

32. Соколова И. Б. NO-зависимый механизм вазодилатации в пиальных артериях нефрэктомированных крыс / И. Б. Соколова, Г. Т. Иванова, Г. И. Лобов // Нефрология. – 2019. – 23 (5): 96–101. doi: 10.24884/1561-6274-2019-23-5-96-101 / Sokolova I. B., Ivanova G. T., Lobov G. I. NO-dependent mechanism of vasodilation in pial arteries of nefrectomized rats. Nephrology (Saint-Petersburg) 2019; 23 (5): 96–101 (In Russ.)

33. Соколова И. Б.. Влияние мезенхимных стволовых клеток на реактивность гладкомышечных клеток пиальных артерий у нефрэктомированных крыс / И. Б. Соколова, Н. Н. Павличенко // Цитология. – 2020. – 62 (10): 745–752. doi: 10.31857/S0041377120100077 / Sokolova I. B., Pavlichenko N. N. Effect of mesenchymal stem cell transplantation on the reactivity of smooth muscle cells of pial arteries of nephrectomized rats. Tsitologiya 2020; 62 (10): 745–752 (In Russ.)


Рецензия

Для цитирования:


Соколова И.Б., Иванова Г.Т. Роль ВКСа - и IKСа-каналов в H2S-индуцированной дилатации пиальных артерий крыс после нефрэктомии. Нефрология. 2022;26(3):88-94. https://doi.org/10.36485/1561-6274-2022-26-3-88-94

For citation:


Sokolova I.B., Ivanova G.T. The role of ВKСа and IKСа channels in H2S-induced dilatation of pial arteries in rats after nephrectomy. Nephrology (Saint-Petersburg). 2022;26(3):88-94. (In Russ.) https://doi.org/10.36485/1561-6274-2022-26-3-88-94

Просмотров: 335


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)