EXPANDING THE FRONTIERS OF SUCCINATE-CONTAINING DIALYSATE’S EFFECTS
https://doi.org/10.24884/1561-6274-2017-21-1-19-24
Abstract
Succinate is hypoxic stress signal metabolite. Entering the patient’s body from the dialysate during hemodialysis, succinate inhibits prolylhydroxylases, leading to stabilization of hypoxia-inducible factor (HIF) and to the deployment of many HIF-mediated effects. Application of succinate-containing dialysis solutions can be considered as pseudohypoxic preconditioning, which provides the beneficial effect on several clinical and biochemical parameters of patients.
About the Authors
R. V. GolubevRussian Federation
Roman V. Golubev, PhD.
Research Institute of Nephrology, Laboratory of Renal Insufficiency, head.
197022, Russia, St-Petersburg, L. Tolstoy st., 17, build. 54
A. V. Smirnov
Russian Federation
Prof. Alexey V. Smirnov MD, PhD, DMedSci.
Research Institute of Nephrology, director
197022, Russia, St-Petersburg, L. Tolstoy st., 17, build. 54
References
1. Cмирнов АВ, Нестерова ОБ, Голубев РВ и др. Кардиопротективные эффекты сукцинатсодержащего диализирующего раствора. Нефрология 2012; 16(2): 69-78 [Smirnov AV, Nesterova OB, Golubev RV i dr. Kardioprotektivnye e’ffekty sukcinatsoderzhashhego dializiruyushhego rastvora. Nefrologiya 2012; 16(2): 69-78]
2. Смирнов АВ, Нестерова ОБ, Суглобова ЕД и др. Клинико-лабораторная оценка эффективности лечения больных с терминальной стадией почечной недостаточности с использованием хронического гемодиализа и ацидосукцината. Тер Арх 2013; 85(1): 69-75 [Smirnov AV, Nesterova OB, Suglobova ED i dr. Kliniko-laboratornaya ocenka e’ffektivnosti lecheniya bol’nyh s terminal’noj stadiej pochechnoj nedostatochnosti s ispol’zovaniem hronicheskogo gemodializa i acidosukcinata. Ter Arh 2013; 85(1): 69-75]
3. Смирнов АВ, Нестерова ОБ, Голубев РВ. Янтарная кислота и её применение в медицине. Часть II. Применение янтарной кислоты в медицине. Нефрология 2014; 18(4): 12-24 [Smirnov AV, Nesterova OB, Golubev RV. Yantarnaya kislota i eyo primenenie v medicine. Chast’ II. Primenenie yantarnoj kisloty v medicine. Nefrologiya 2014; 18(4): 12-24]
4. Смирнов АВ, Голубев РВ, Васильев АН и др. Гемодинамические эффекты содержащего сукцинат диализирующего раствора. Тер Арх 2015; 87(6): 56-61. doi: 10.17116/ terarkh201587656-61 [Smirnov AV, Golubev RV, Vasil’ev AN i dr. Gemodinamicheskie e’ffekty soderzhashhego sukcinat dializiruyushhego rastvora. Ter Arh 2015; 87(6): 56-61. doi: 10.17116/terarkh201587656-61]
5. Смирнов АВ, Нестерова ОБ, Голубев РВ, Лазеба ВА. Сукцинатсодержащие диализирующие растворы в практике гемодиализа. Левша, СПб., 2014; 73-82 [Smirnov AV, Nesterova OB, Golubev RV, Lazeba VA. Sukcinatsoderzhashhie dializiruyushhie rastvory v praktike gemodializa. Levsha, SPb, 2014; 73-82]
6. Benit P, Letouze E, Rak M et al. Unsuspected task for an old team: succinate, fumarate and other Krebs cycle acids in metabolic remodeling. Biochim Biophys Acta 2014; 1837(8): 1330-1337. doi: 10.1016/j.bbabio.2014.03.013
7. Glissen J, Jouret F, Pirotte B, Hanson J. Insight into SUCNR1 (GPR91) structure and function. Pharmacol Ther 2016; doi: 10.1016/j.pharmthera.2016.01.008 [Epub ahead of print]
8. Tretter L, Patocs A, Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. BBA – Bioenergetics 2016; doi: 10.1016/j.bbabio.2016.03.012 [Epub ahead of print]
9. Antonio C, Papke C, Rocha M et al. Regulation of primary metabolism in response to low oxygen availability as revealed by carbon and nitrogen isotope redistribution. Plant Physiol 2016; 170(1): 43-56. doi: 10.1104/pp.15.00266 10. Titov D, Cracan V, Goodman R et al. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio. Science 2016; 352(6282): 231-235. doi: 10.1126/science.aad4017
10. Kiss G, Konrad C, Pour-Ghaz I et al. Mitochondrial diaphorases as NAD+ donors to segments of the citric acid cycle that support substrate-level phosphorylation yielding ATP during respiratory inhibition. FASEB J 2014; 28(4): 1682-1697. doi: 10.1096/fj.13-243030
11. Qutub A, Popel A. Three autocrine feedback loops determine HIF1α expression in chronic hypoxia. Biochim Biophys Acta 2007; 1773(10): 1511-1525. doi: 10.1016/j.bbamcr.2007.07.004
12. Schmid H, Jelkmann W. Investigational therapies for renal disease-induced anemia. Expert Opin Investig Drugs 2016; doi: 10.1080/13543784.2016.1182981 [Epub ahead of print]
13. Schonenberger M, Kovacs W. Hypoxia signaling pathways: modulators of oxygen-related organelles. Front Cell Dev Biol 2015; 3: 42. doi: 10.3389/fcell.2015.00042
14. Semenza G. Hypoxia-inducible factors in physiology and medicine. Cell 2012; 148(3): 399-408. doi: 10.1016/j.cell.2012.01.021
15. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005; 85(3): 1093–1129. doi: 10.1152/physrev.00006.2004
16. Ingwall JS. Energy metabolism in heart failure and remodeling. Cardiovasc Res 2009; 81(3): 412-419. doi: 10.1093/cvr/cvn301
17. Тугушева ФА, Куликова АИ, Коношкова РЛ. О влиянии предуктала-20 на ишемию миокарда и показатели липопероксидации в крови больных с хронической почечной недостаточностью, получающих регулярный гемодиализ. Нефрология 1997; 1(2): 73-78 [Tugusheva FA, Kulikova AI, Konoshkova RL. O vliyanii preduktala-20 na ishemiyu miokarda i pokazateli lipoperoksidacii v krovi bol'nyh s hronicheskoj pochechnoj nedostatochnost’yu, poluchayushhih regulyarnyj gemodializ. Nefrologiya 1997; 1(2): 73-78]
18. Zhou X, Chen J. Is treatment with trimetazidine beneficial in patients with chronic heart failure? PLOS One 2014, 9(5), e94660. doi: 10.1371/journal.pone.0094660
19. Anderson E, Xue X, Shah Y. Intestinal hypoxia-inducible factor-2α (HIF-2 α) is critical for efficient erythropoiesis. J Biol Chem 2011; 286(22): 19533-19540. doi: 10.1074/jbc.M111.238667
20. Barrett TD, Palomino HL, Brondstetter TI et al. Prolyl hydroxylase inhibition corrects functional iron deficiency and inflammation-induced anaemia in rats. Br J Pharmacol 2015; 172(16): 4078-4088. doi: 10.1111/bph.13188
21. Titze J, Machnic A. Sodium sensing in the interstitium and relationship to hypertension. Curr Opin Nephrol Hypertens 2010; 19(4): 385-392. doi: 10.1097/MNH.0b013e32833aeb3b
22. Titze J, Dahlmann A, Lerchl K et al. Spooky sodium balance. Kidney Int 2013; 85(4): 759-767. doi: 10.1038/ki.2013.367
23. Titze J, Muller DN, Luft FC. Taking another “look” at sodium. Can J Cardiol 2014; 30(5): 473-475. doi: 10.1016/j.cjca.2014.02.006
24. Murry C, Jennings R, Reimer K. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74(5): 1124–1136. doi: 10.1161/01.CIR.74.5.1124
25. Kitagawa K, Matsumoto M, Tagaya M. et al. «Ischemic tolerance» phenomenon found in the brain. Brain Res 1990; 528(1): 21–24. doi: 10.1016/0006-8993(90)90189-I
26. Rybnikova E, Samoilov M. Cuttent insights into the molecular mechanisms of hypoxic preand postconditioning using hypobaric hypoxia. Front Neurosci 2015; 9: 388. doi: 10.3389/fnins.2015.00388
27. Calabrese V, Cornelius C, Dinkova-Kostova A et al. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 2010; 13(11): 1763-1811. doi: 10.1089/ars.2009.3074
28. Samaja M, Milano G. Editorial – Hypoxia and reoxygenation: from basic science to bedside. Front Pediatr 2015; 3: 86. doi:10.3389/fped.2015.00086
29. Besarab A, Provenzano R, Hertel J et al. Randomised placebo-controlled dose-ranging and pharmacodynamics study of roxadustat (FG-4592) to treat anemia in nondialysis-dependent chronic kidney disease (NDD-CKD) patients. Neprol Dial Transplant 2015; 30(10): 1665-1673. doi: 10.1093/ndt/gfv302
30. Provenzano R, Besarab A, Wright S et al. Roxadustat (FG-4592) versus epoetin alfa for anemia in patients receiving maintenance hemodialysis: a phase 2, randomized, 6to 19-week, open-label, active-comparator, dose-ranging, safety and exploratory efficacy study. AJKD 2016; doi: 10.1053/j.ajkd.2015.12.020 [Epub ahead of print]
31. Lee K, Kim HM. A novel approach to cancer therapy using PX-478 as a HIF-1α inhibitor. Arch Pharm Res 2011; 34(10): 1583-1585. doi: 10.1007/s12272-011-1021-3
32. Hu Y, Liu J, Huang H. Recent agents targeting HIF-1α for cancer therapy. J Cell Biochem 2013; 114(3): 498-509. doi: 10.1002/jcb.24390
33. Ali S, Oni E, Waraich H et al. Systematic review on noninvasive assessment of subclinical cardiovascular disease in obstructive sleep apnea: new kid on the block! Sleep Med Rev 2014; 18(5): 379-381. doi: 10.1016/j.smrv.2014.01.004
34. Chouchani E, Pell V, Gaude E et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014; 515(7527): 431-435. doi:10.1038/nature13909
35. Schmidt H, Stocker R, Vollbracht C et al. Antioxidants in translational medicine. Antioxid Redox Signal 2015; 23(14): 11301143. doi: 10.1089/ars.2015.6393
36. Zhang H, Limphong P, Pieper J et al. Glutathione-dependent reductive stress triggers mitochondrial oxidation and cytotoxicity. FASEB J 2012; 26(4): 1442-1451. doi: 10.1096/fj.11-199869
37. Veal E, Day A, Morgan B. Hydrogen peroxide sensing and signaling. Mol Cell Rev 2007; 26(1): 1-14. doi: 10.1016/j.molcel.2007.03.016
38. Al-Mehdi A-B, Pastukh V, Swiger B et al. Perinuclear mitochondrial clustering creates an oxidant-reach nuclear domain required for hypoxia-induced transcription. Sci Signal 2012; 5(231): ra47. doi: 10.1126/scisignal.2002712
39. Powers S, Smuder A, Kavazis A, Quindry J. Mechanisms of exercise-induced cardioprotection. Physiology(Bethesda) 2014; 29(1):27-38. doi: 10.1152/physiol.00030.2013
40. Ristow M, Zarse K, Oberbach A et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci USA 2009; 106(21): 8665–8670. doi: 10.1073/pnas.0903485106
41. Merkley E, Metz T, Smith R. The succinated proteome. Mass Spectrom Rev 2014; 33(2): 98-109. doi: 10.1002/mas.21382
42. Kuo C-Y, Cheng C-T, Hou P et al. HIF-1-alpha links mitochondrial perturbation to the dynamic acquisition of breаst cancer tumorigenicity. Oncotarget 2016; doi: 10.18632/oncotarget.8570 [Epub ahead of print]
43. Gibson G, Xu H, Chen H-L et al. Alpha-ketoglutarate dehydrogenase complex-dependent succinilation of proteins in neurons and neuronal cell lines. J Neurochem 2015; 134(1): 8696. doi: 10.1111/jnc.13096
44. McKenna M, Rae C. A new role for α-ketoglutarate dehydrogenase complex: regulating metabolism through posttranslational modification of other enzymes. J Neurochem 2015; 134(1): 3-6. doi: 10.1111/jnc.13150
Review
For citations:
Golubev R.V., Smirnov A.V. EXPANDING THE FRONTIERS OF SUCCINATE-CONTAINING DIALYSATE’S EFFECTS. Nephrology (Saint-Petersburg). 2017;21(1):19-24. (In Russ.) https://doi.org/10.24884/1561-6274-2017-21-1-19-24