1. Praga M., Morales E., Herrero J. C. et al. Absence of hypoalbuminemia despite massive proteinuria in focal segmental glomerulosclerosis secondary to hyperfiltration. Am J Kidney Dis 1999; 33 (1): 52-58. https://doi.org/10.1016/s0272-6386(99)70257-x
2. Rydel J. J., Korbet S. M., Borok R. Z., Schwartz M. M. Focal segmental glomerular sclerosis in adults: presentation, course, and response to treatment. Am J Kidney Dis 1995; 25 (4): 534-542. https://doi.org/10.1016/0272-6386(95)90120-5
3. Korbet S. M., Schwartz M. M., Lewis E. J. Primary focal segmental glomerulosclerosis: clinical course and response to therapy. Am J Kidney Dis 1994; 23 (6): 773-783. https://doi.org/10.1016/s0272-6386(12)80128-4
4. Wehrmann M., Bohle A., Held H. et al. Long-term prognosis of focal sclerosing glomerulonephritis. An analysis of 250 cases with particular regard to tubulointerstitial changes. Clin Nephrol 1990; 33 (3): 115-122
5. Cunningham R., Ma D., Li L. Mass Spectrometry-based Proteomics and Peptidomics for Systems Biology and Biomarker Discovery. Front Biol (Beijing) 2012; 7 (4): 313-335. https://doi.org/10.1007/s11515-012-1218-y
6. Di Meo A., Pasic M. D., Yousef G. M. Proteomics and peptidomics: moving toward precision medicine in urological malignancies. Oncotarget 2016; 7 (32): 52460-52474. https://doi.org/10.18632/oncotarget.8931
7. Feist P., Hummon A. B. Proteomic challenges: sample preparation techniques for microgram-quantity protein analysis from biological samples. Int J Mol Sci 2015; 16 (2): 3537-3563. https://doi.org/10.3390/ijms16023537
8. Filip S., Pontillo C., Peter Schanstra J. et al. Urinary proteomics and molecular determinants of chronic kidney disease: possible link to proteases. Expert Rev Proteomics 2014; 11 (5): 535-548. https://doi.org/10.1586/14789450.2014.926224
9. Mischak H., Delles C., Vlahou A., Vanholder R. Proteomic biomarkers in kidney disease: issues in development and implementation. Nat Rev Nephrol 2015; 11 (4): 221-232. https://doi.org/10.1038/nrneph.2014.247
10. Decramer S., Gonzalez de Peredo A., Breuil B. et al. Urine in clinical proteomics. Mol Cell Proteomics 2008; 7 (10): 1850-1862. https://doi.org/10.1074/mcp.R800001-MCP200
11. Puig-Gay N., Jacobs-Cacha C., Sellarès J. et al. Apolipoprotein A-Ib as a biomarker of focal segmental glomerulosclerosis recurrence after kidney transplantation: diagnostic performance and assessment of its prognostic value - a multi-centre cohort study. Transpl Int 2019; 32 (3): 313-322. https://doi.org/10.1111/tri.13372
12. Gomo Z. A., Henderson L. O., Myrick J. E. High-density lipoprotein apolipoproteins in urine: I. Characterization in normal subjects and in patients with proteinuria. Clin Chem 1988; 34 (9): 1775-1780
13. Jacobs-Cachá C., Puig-Gay N., Helm D. et al. A misprocessed form of Apolipoprotein A-I is specifically associated with recurrent Focal Segmental Glomerulosclerosis. Sci Rep 2020; 10 (1): 1159. https://doi.org/10.1038/s41598-020-58197-y
14. Jacobs-Cachá C., Puig-Gay N., Vergara A et al. A Specific Tubular ApoA-I Distribution Is Associated to FSGS Recurrence after Kidney Transplantation. J Clin Med 2021; 10 (10): 2174. https://doi.org/10.3390/jcm10102174
15. Hashemi M., Sadeghi-Bojd S., Raeisi M., Moazeni-Roodi A. Evaluation of paraoxonase activity in children with nephrotic syndrome. Nephrourol Mon 2013; 5 (5): 978-982. https://doi.org/10.5812/numonthly.12606
16. Soyoral Yu., Aslan M., Emre H. et al. Serum paraoxonase activity and oxidative stress in patients with adult nephrotic syndrome. Atherosclerosis 2011; 218 (1): 243-246. https://doi.org/10.1016/j.atherosclerosis.2011.05.037
17. Lennon R., Singh A., Welsh G. I. et al. Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes. J Am Soc Nephrol 2008; 19 (11): 2140-2149. https://doi.org/10.1681/ASN.2007080940
18. Pukajło-Marczyk A., Zwolińska D. Involvement of Hemopexin in the Pathogenesis of Proteinuria in Children with Idiopathic Nephrotic Syndrome. J Clin Med 2021; 10 (14): 3160. https://doi.org/10.3390/jcm10143160
19. Kapojos J. J., Poelstra K., Borghuis T. et al. Regulation of plasma hemopexin activity by stimulated endothelial or mesangial cells. Nephron Physiol 2004; 96 (1): P1-10. https://doi.org/10.1159/000075574
20. Shen J., Zhu Y., Zhang S. et al. Vitronectin-activated αvβ3 and αvβ5 integrin signalling specifies haematopoietic fate in human pluripotent stem cells. Cell Prolif 2021; 54 (4): e13012. https://doi.org/10.1111/cpr.13012
21. Huang N., Zhang X., Jiang Y. et al. Increased levels of serum pigment epithelium-derived factor aggravate proteinuria via induction of podocyte actin rearrangement. Int Urol Nephrol 2019; 51 (2): 359-367. https://doi.org/10.1007/s11255-018-2026-3
22. Fujimura T., Yamagishi S., Ueda S. et al. Administration of pigment epithelium-derived factor (PEDF) reduces proteinuria by suppressing decreased nephrin and increased VEGF expression in the glomeruli of adriamycin-injected rats. Nephrol Dial Transplant 2009; 24 (5): 1397-1406. https://doi.org/10.1093/ndt/gfn659
23. Huang J., Cui Z., Gu Q. H. et al. Complement activation profile of patients with primary focal segmental glomerulosclerosis. PLoS One 2020; 15 (6): e0234934. https://doi.org/10.1371/journal.pone.0234934
24. Liu J., Xie J., Zhang X. et al. Serum C3 and Renal Outcome in Patients with Primary Focal Segmental Glomerulosclerosis. Sci Rep 2017; 7 (1): 4095. https://doi.org/10.1038/s41598-017-03344-1
25. Thurman J. M., Wong M., Renner B. et al. Complement Activation in Patients with Focal Segmental Glomerulosclerosis. PLoS One 2015; 10 (9): e0136558. https://doi.org/10.1371/journal.pone.0136558
26. Zoshima T., Hara S., Yamagishi M. et al. Possible role of complement factor H in podocytes in clearing glomerular subendothelial immune complex deposits. Sci Rep 2019; 9 (1): 7857. https://doi.org/10.1038/s41598-019-44380-3
27. Zhang Q., Jiang C., Tang T. et al. Clinical Significance of Urinary Biomarkers in Patients With Primary Focal Segmental Glomerulosclerosis. Am J Med Sci 2018; 355 (4): 314-321. https://doi.org/10.1016/j.amjms.2017.12.019
28. Mastroianni Kirsztajn G., Nishida S. K., Silva M. S. et al. Urinary retinol-binding protein as a prognostic marker in the treatment of nephrotic syndrome. Nephron 2000; 86 (2): 109-114. https://doi.org/10.1159/000045727
29. Bennett M. R., Pordal A., Haffner C. et al. Urinary Vitamin D-Binding Protein as a Biomarker of Steroid-Resistant Nephrotic Syndrome. Biomark Insights 2016; 11: 1-6. https://doi.org/10.4137/BMI.S31633
30. Mirković K., Doorenbos C. R., Dam W. A. et al. Urinary vitamin D binding protein: a potential novel marker of renal interstitial inflammation and fibrosis. PLoS One 2013; 8 (2): e55887. https://doi.org/10.1371/journal.pone.0055887
31. Choudhary A., Mohanraj P. S., Krishnamurthy S., Rajappa M. Association of Urinary Vitamin D Binding Protein and Neutrophil Gelatinase-Associated Lipocalin with Steroid Responsiveness in Idiopathic Nephrotic Syndrome of Childhood. Saudi J Kidney Dis Transpl 2020; 31 (5): 946-956. https://doi.org/10.4103/1319-2442.301201
32. Bukosza E. N., Kornauth C., Hummel K. et al. ECM Characterization Reveals a Massive Activation of Acute Phase Response during FSGS. Int J Mol Sci 2020; 21 (6): 2095. https://doi.org/10.3390/ijms21062095
33. Medjeral-Thomas N. R., Troldborg A. et al. Protease inhibitor plasma concentrations associate with COVID-19 infection. Oxf Open Immunol 2021; 2 (1): iqab014. https://doi.org/10.1093/oxfimm/iqab014
34. Priebatsch K. M., Kvansakul M., Poon I. K., Hulett M. D. Functional Regulation of the Plasma Protein Histidine-Rich Glycoprotein by Zn2+ in Settings of Tissue Injury. Biomolecules 2017; 7 (1): 22. https://doi.org/10.3390/biom7010022
35. Siwy J., Zürbig P., Argiles A et al. Noninvasive diagnosis of chronic kidney diseases using urinary proteome analysis. Nephrol Dial Transplant 2017; 32 (12): 2079-2089. https://doi.org/10.1093/ndt/gfw337
36. Zhao M., Li M., Li X. et al. Dynamic changes of urinary proteins in a focal segmental glomerulosclerosis rat model. Proteome Sci 2014; 12: 42. https://doi.org/10.1186/1477-5956-12-42
37. Catanese L., Siwy J., Mavrogeorgis E. et al. A Novel Urinary Proteomics Classifier for Non-Invasive Evaluation of Interstitial Fibrosis and Tubular Atrophy in Chronic Kidney Disease. Proteomes 2021; 9 (3): 32. https://doi.org/10.3390/proteomes9030032
38. Fischer D. C., Schaible J., Wigger M. et al. Reduced serum fetuin-A in nephrotic children: a consequence of proteinuria? Am J Nephrol 2011; 34 (4): 373-380. https://doi.org/10.1159/000331061
39. Mambetsariev N., Mirzapoiazova T., Mambetsariev B. et al. Hyaluronic Acid binding protein 2 is a novel regulator of vascular integrity. Arterioscler Thromb Vasc Biol 2010; 30 (3): 483-490. https://doi.org/10.1161/ATVBAHA.109.200451
40. Kaul A., Singampalli K. L., Parikh U. M. et al. Hyaluronan, a double-edged sword in kidney diseases. Pediatr Nephrol 2021. Epub ahead of print. https://doi.org/10.1007/s00467-021-05113-9
41. Merchant M. L., Barati M. T., Caster D. J. et al. Proteomic Analysis Identifies Distinct Glomerular Extracellular Matrix in Collapsing Focal Segmental Glomerulosclerosis. J Am Soc Nephrol 2020; 31 (8): 1883-1904. https://doi.org/10.1681/ASN.2019070696
42. Mezzano S. A., Droguett M. A., Burgos M. E. et al. Overexpression of chemokines, fibrogenic cytokines, and myofibroblasts in human membranous nephropathy. Kidney Int 2000; 57 (1): 147-158. https://doi.org/10.1046/j.1523-1755.2000.00830.x
43. Mezzano S. A., Barría M., Droguett M. A. et al. Tubular NF-kappaB and AP-1 activation in human proteinuric renal disease. Kidney Int 2001; 60 (4): 1366-1377. https://doi.org/10.1046/j.1523-1755.2001.00941.x
44. Wu C. C., Chen J. S., Huang C. F. et al. Approaching biomarkers of membranous nephropathy from a murine model to human disease. J Biomed Biotechnol 2011; 2011: 581928. https://doi.org/10.1155/2011/581928