Preview

Nephrology (Saint-Petersburg)

Advanced search

Urine proteome profile in primary podocytopathies

https://doi.org/10.36485/1561-6274-2023-27-1-41-47

Abstract

   BACKGROUND. Primary focal segmental glomerulosclerosis (FSGS) and membranous nephropathy (MN) are diseases with primary podocyte damage with high proteinuria and nephrotic syndrome. While the mechanisms in primary MN are well understood, the pathogenesis of primary FSGS is still unknown, and therefore, the search for biomarkers that could expand our
understanding of its pathogenetic mechanisms.

   THE AIM: to determine the urine proteomic profile of patients with primary podocytopathies – FSGS in comparison with MN.

   PATIENTS AND METHODS. The study included 48 patients with a morphologically confirmed diagnosis of CGN occurring with nephrotic syndrome – 32 men and 16 women. In 18 patients, a decrease in glomerular filtration rate < 60 ml/min/1.73 m2 was observed. The histological diagnosis was confirmed by biopsy: 31 patients had FSGS, 17 patients with MN were included as a comparison group. The study of the urinary proteome was carried out by high performance liquid chromatography/mass spectrometry. RESULTS. In patients with FSGS, compared with the MN group, an increased content of 22 different proteins was noted, the most abundant were apolipoprotein A-I, hemopexin, vitronectin, pigment epithelial growth factor, components of the complement system (C3, C4b, factors B and H), retinol – and vitamin D-binding proteins, alpha-2-HS-glycoprotein, histidine-rich glycoprotein, plasma C1 protease inhibitor. In MN, increased urinary excretion of the complement component C2, fibrinogen alpha chain, osteopontin, and the SH3 domain-binding glutamic acid-rich-like protein 3, was detected.

   CONCLUSION. The proteomic profile of urine in FSGS, compared to MN, reflects the activation of variety of pathological processes – podocyte damage, involvement of parietal epithelial cells, tubulo-interstitial damage, accumulation of extracellular matrix, and complement activation process.

About the Authors

A. A. Vinogradov
Lomonosov Moscow State University
Russian Federation

Anatoliy A. Vinogradov, Postgraduate student, MD

Faculty of Fundamental Medicine

Department of Internal Medicine

119991

Lomonosovsky pr-t., 27, bldg. 1

Moscow



N. V. Chebotareva
First Moscow State Medical University named after I. M. Sechenov (Sechenov University)
Russian Federation

Natalia V. Chebotareva, Prof., MD, PhD, DMedSci

Department of Internal, Occupational Diseases and Rheumatology

119048

8 Trubeckaya st.

Moscow



A. E. Bugrova
Institute of Biochemical Physics RAS named after N. M. Emanuel
Russian Federation

Anna E. Bugrova, Senior staff scientist, PhD

Laboratory of Neurochemistry

119334

4 Kosygina st.

Moscow



A. G. Brzhozovskij
Skolkovo Institute of Science and Technology
Russian Federation

Alexander G. Brzhozovskij, Staff scientist, PhD

Center of Life Sciences

Laboratory of Mass Spectrometry and Omix Technologies

121205

Bolshoy Boulevard, 30, p. 1

Moscow



T. N. Krasnova
Lomonosov Moscow State University
Russian Federation

Tatyana N. Krasnova, Associate Professor, MD, PhD

Department of Internal Medicine

119991

27 Lomonosovsky Ave., build. 1

Moscow



S. V. Moiseev
First Moscow State Medical University named after I. M. Sechenov (Sechenov University)
Russian Federation

Sergey V. Moiseev, Prof., MD, PhD, DMedSci

Department of Internal, Occupational Diseases and Rheumatology

119048

8 Trubeckaya st.

Moscow



A. S. Kononikhin
Skolkovo Institute of Science and Technology
Russian Federation

Alexey S. Kononikhin, Senior staff scientist, PhD

Center of Life Sciences

Laboratory of Mass Spectrometry and Omix Technologies

121205

Bolshoy Boulevard, 30, p. 1

Moscow



References

1. Praga M., Morales E., Herrero J. C. et al. Absence of hypoalbuminemia despite massive proteinuria in focal segmental glomerulosclerosis secondary to hyperfiltration. Am J Kidney Dis 1999; 33 (1): 52–58. doi: 10.1016/s0272-6386(99)70257-x

2. Rydel J. J., Korbet S. M., Borok R. Z., Schwartz M. M. Focal segmental glomerular sclerosis in adults: presentation, course, and response to treatment. Am J Kidney Dis 1995; 25 (4): 534–542. doi: 10.1016/0272-6386(95)90120-5

3. Korbet S. M., Schwartz M. M., Lewis E. J. Primary focal segmental glomerulosclerosis: clinical course and response to therapy. Am J Kidney Dis 1994; 23 (6): 773–783. doi: 10.1016/s0272-6386(12)80128-4

4. Wehrmann M., Bohle A., Held H. et al. Long-term prognosis of focal sclerosing glomerulonephritis. An analysis of 250 cases with particular regard to tubulointerstitial changes. Clin Nephrol 1990; 33 (3): 115–122

5. Cunningham R., Ma D., Li L. Mass Spectrometry-based Proteomics and Peptidomics for Systems Biology and Biomarker Discovery. Front Biol (Beijing) 2012; 7 (4): 313–335. doi: 10.1007/s11515-012-1218-y

6. Di Meo A., Pasic M. D., Yousef G. M. Proteomics and peptidomics: moving toward precision medicine in urological malignancies. Oncotarget 2016; 7 (32): 52460–52474. doi: 10.18632/oncotarget.8931

7. Feist P., Hummon A. B. Proteomic challenges: sample preparation techniques for microgram-quantity protein analysis from biological samples. Int J Mol Sci 2015; 16 (2): 3537–3563. doi: 10.3390/ijms16023537

8. Filip S., Pontillo C., Peter Schanstra J. et al. Urinary proteomics and molecular determinants of chronic kidney disease: possible link to proteases. Expert Rev Proteomics 2014; 11 (5): 535–548. doi: 10.1586/14789450.2014.926224

9. Mischak H., Delles C., Vlahou A., Vanholder R. Proteomic biomarkers in kidney disease: issues in development and implementation. Nat Rev Nephrol 2015; 11 (4): 221–232. doi: 10.1038/nrneph.2014.247

10. Decramer S., Gonzalez de Peredo A., Breuil B. et al. Urine in clinical proteomics. Mol Cell Proteomics 2008; 7 (10): 1850–1862. doi: 10.1074/mcp.R800001-MCP200

11. Puig-Gay N., Jacobs-Cacha C., Sellarès J. et al. Apolipoprotein A-Ib as a biomarker of focal segmental glomerulosclerosis recurrence after kidney transplantation: diagnostic performance and assessment of its prognostic value – a multi-centre cohort study. Transpl Int 2019; 32 (3): 313–322. doi: 10.1111/tri.13372

12. Gomo Z. A., Henderson L. O., Myrick J. E. High-density lipoprotein apolipoproteins in urine: I. Characterization in normal subjects and in patients with proteinuria. Clin Chem 1988; 34 (9): 1775–1780

13. Jacobs-Cachá C., Puig-Gay N., Helm D. et al. A misprocessed form of Apolipoprotein A-I is specifically associated with recurrent Focal Segmental Glomerulosclerosis. Sci Rep 2020; 10 (1): 1159. doi: 10.1038/s41598-020-58197-y

14. Jacobs-Cachá C., Puig-Gay N., Vergara A et al. A Specific Tubular ApoA-I Distribution Is Associated to FSGS Recurrence after Kidney Transplantation. J Clin Med 2021; 10 (10): 2174. doi: 10.3390/jcm10102174

15. Hashemi M., Sadeghi-Bojd S., Raeisi M., Moazeni-Roodi A. Evaluation of paraoxonase activity in children with nephrotic syndrome. Nephrourol Mon 2013; 5 (5): 978–982. doi: 10.5812/numonthly.12606

16. Soyoral Yu., Aslan M., Emre H. et al. Serum paraoxonase activity and oxidative stress in patients with adult nephrotic syndrome. Atherosclerosis 2011; 218 (1): 243–246. doi: 10.1016/j.atherosclerosis.2011.05.037

17. Lennon R., Singh A., Welsh G. I. et al. Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes. J Am Soc Nephrol 2008; 19 (11): 2140–2149. doi: 10.1681/ASN.2007080940

18. Pukajło-Marczyk A., Zwolińska D. Involvement of Hemopexin in the Pathogenesis of Proteinuria in Children with Idiopathic Nephrotic Syndrome. J Clin Med 2021; 10 (14): 3160. doi: 10.3390/jcm10143160

19. Kapojos J. J., Poelstra K., Borghuis T. et al. Regulation of plasma hemopexin activity by stimulated endothelial or mesangial cells. Nephron Physiol 2004; 96 (1): P1–10. doi: 10.1159/000075574

20. Shen J., Zhu Y., Zhang S. et al. Vitronectin-activated αvβ3 and αvβ5 integrin signalling specifies haematopoietic fate in human pluripotent stem cells. Cell Prolif 2021; 54 (4): e13012. doi: 10.1111/cpr.13012

21. Huang N., Zhang X., Jiang Y. et al. Increased levels of serum pigment epithelium-derived factor aggravate proteinuria via induction of podocyte actin rearrangement. Int Urol Nephrol 2019; 51 (2): 359–367. doi: 10.1007/s11255-018-2026-3

22. Fujimura T., Yamagishi S., Ueda S. et al. Administration of pigment epithelium-derived factor (PEDF) reduces proteinuria by suppressing decreased nephrin and increased VEGF expression in the glomeruli of adriamycin-injected rats. Nephrol Dial Transplant 2009; 24 (5): 1397–1406. doi: 10.1093/ndt/gfn659

23. Huang J., Cui Z., Gu Q. H. et al. Complement activation profile of patients with primary focal segmental glomerulosclerosis. PLoS One 2020; 15 (6): e0234934. doi: 10.1371/journal.pone.0234934

24. Liu J., Xie J., Zhang X. et al. Serum C3 and Renal Outcome in Patients with Primary Focal Segmental Glomerulosclerosis. Sci Rep 2017; 7 (1): 4095. doi: 10.1038/s41598-017-03344-1

25. Thurman J. M., Wong M., Renner B. et al. Complement Activation in Patients with Focal Segmental Glomerulosclerosis. PLoS One 2015; 10 (9): e0136558. doi: 10.1371/journal.pone.0136558

26. Zoshima T., Hara S., Yamagishi M. et al. Possible role of complement factor H in podocytes in clearing glomerular subendothelial immune complex deposits. Sci Rep 2019; 9 (1): 7857. doi: 10.1038/s41598-019-44380-3

27. Zhang Q., Jiang C., Tang T. et al. Clinical Significance of Urinary Biomarkers in Patients With Primary Focal Segmental Glomerulosclerosis. Am J Med Sci 2018; 355 (4): 314–321. doi: 10.1016/j.amjms.2017.12.019

28. Mastroianni Kirsztajn G., Nishida S. K., Silva M. S. et al. Urinary retinol-binding protein as a prognostic marker in the treatment of nephrotic syndrome. Nephron 2000; 86 (2): 109–114. doi: 10.1159/000045727

29. Bennett M. R., Pordal A., Haffner C. et al. Urinary Vitamin D-Binding Protein as a Biomarker of Steroid-Resistant Nephrotic Syndrome. Biomark Insights 2016; 11: 1–6. doi: 10.4137/BMI.S31633

30. Mirković K., Doorenbos C. R., Dam W. A. et al. Urinary vitamin D binding protein: a potential novel marker of renal interstitial inflammation and fibrosis. PLoS One 2013; 8 (2): e55887. doi: 10.1371/journal.pone.0055887

31. Choudhary A., Mohanraj P. S., Krishnamurthy S., Rajappa M. Association of Urinary Vitamin D Binding Protein and Neutrophil Gelatinase-Associated Lipocalin with Steroid Responsiveness in Idiopathic Nephrotic Syndrome of Childhood. Saudi J Kidney Dis Transpl 2020; 31 (5): 946–956. doi: 10.4103/1319-2442.301201

32. Bukosza E. N., Kornauth C., Hummel K. et al. ECM Characterization Reveals a Massive Activation of Acute Phase Response during FSGS. Int J Mol Sci 2020; 21 (6): 2095. doi: 10.3390/ijms21062095

33. Medjeral-Thomas N. R., Troldborg A. et al. Protease inhibitor plasma concentrations associate with COVID-19 infection. Oxf Open Immunol 2021; 2 (1): iqab014. doi: 10.1093/oxfimm/iqab014

34. Priebatsch K. M., Kvansakul M., Poon I. K., Hulett M. D. Functional Regulation of the Plasma Protein Histidine-Rich Glycoprotein by Zn2+ in Settings of Tissue Injury. Biomolecules 2017; 7 (1): 22. doi: 10.3390/biom7010022

35. Siwy J., Zürbig P., Argiles A et al. Noninvasive diagnosis of chronic kidney diseases using urinary proteome analysis. Nephrol Dial Transplant 2017; 32 (12): 2079–2089. doi: 10.1093/ndt/gfw337

36. Zhao M., Li M., Li X. et al. Dynamic changes of urinary proteins in a focal segmental glomerulosclerosis rat model. Proteome Sci 2014; 12: 42. doi: 10.1186/1477-5956-12-42

37. Catanese L., Siwy J., Mavrogeorgis E. et al. A Novel Urinary Proteomics Classifier for Non-Invasive Evaluation of Interstitial Fibrosis and Tubular Atrophy in Chronic Kidney Disease. Proteomes 2021; 9 (3): 32. doi: 10.3390/proteomes9030032

38. Fischer D. C., Schaible J., Wigger M. et al. Reduced serum fetuin-A in nephrotic children: a consequence of proteinuria? Am J Nephrol 2011; 34 (4): 373–380. doi: 10.1159/000331061

39. Mambetsariev N., Mirzapoiazova T., Mambetsariev B. et al. Hyaluronic Acid binding protein 2 is a novel regulator of vascular integrity. Arterioscler Thromb Vasc Biol 2010; 30 (3): 483–490. doi: 10.1161/ATVBAHA.109.200451

40. Kaul A., Singampalli K. L., Parikh U. M. et al. Hyaluronan, a double-edged sword in kidney diseases. Pediatr Nephrol 2021. Epub ahead of print. doi: 10.1007/s00467-021-05113-9

41. Merchant M. L., Barati M. T., Caster D. J. et al. Proteomic Analysis Identifies Distinct Glomerular Extracellular Matrix in Collapsing Focal Segmental Glomerulosclerosis. J Am Soc Nephrol 2020; 31 (8): 1883–1904. doi: 10.1681/ASN.2019070696

42. Mezzano S. A., Droguett M. A., Burgos M. E. et al. Overexpression of chemokines, fibrogenic cytokines, and myofibroblasts in human membranous nephropathy. Kidney Int 2000; 57 (1): 147–158. doi: 10.1046/j.1523-1755.2000.00830.x

43. Mezzano S. A., Barría M., Droguett M. A. et al. Tubular NF-kappaB and AP-1 activation in human proteinuric renal disease. Kidney Int 2001; 60 (4): 1366–1377. doi: 10.1046/j.1523-1755.2001.00941.x

44. Wu C. C., Chen J. S., Huang C. F. et al. Approaching biomarkers of membranous nephropathy from a murine model to human disease. J Biomed Biotechnol 2011; 2011: 581928. doi: 10.1155/2011/581928


Review

For citations:


Vinogradov A.A., Chebotareva N.V., Bugrova A.E., Brzhozovskij A.G., Krasnova T.N., Moiseev S.V., Kononikhin A.S. Urine proteome profile in primary podocytopathies. Nephrology (Saint-Petersburg). 2023;27(1):41-47. (In Russ.) https://doi.org/10.36485/1561-6274-2023-27-1-41-47

Views: 520


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)