Urine proteome profile in primary podocytopathies
https://doi.org/10.36485/1561-6274-2023-27-1-41-47
Abstract
BACKGROUND. Primary focal segmental glomerulosclerosis (FSGS) and membranous nephropathy (MN) are diseases with primary podocyte damage with high proteinuria and nephrotic syndrome. While the mechanisms in primary MN are well understood, the pathogenesis of primary FSGS is still unknown, and therefore, the search for biomarkers that could expand our
understanding of its pathogenetic mechanisms.
THE AIM: to determine the urine proteomic profile of patients with primary podocytopathies – FSGS in comparison with MN.
PATIENTS AND METHODS. The study included 48 patients with a morphologically confirmed diagnosis of CGN occurring with nephrotic syndrome – 32 men and 16 women. In 18 patients, a decrease in glomerular filtration rate < 60 ml/min/1.73 m2 was observed. The histological diagnosis was confirmed by biopsy: 31 patients had FSGS, 17 patients with MN were included as a comparison group. The study of the urinary proteome was carried out by high performance liquid chromatography/mass spectrometry. RESULTS. In patients with FSGS, compared with the MN group, an increased content of 22 different proteins was noted, the most abundant were apolipoprotein A-I, hemopexin, vitronectin, pigment epithelial growth factor, components of the complement system (C3, C4b, factors B and H), retinol – and vitamin D-binding proteins, alpha-2-HS-glycoprotein, histidine-rich glycoprotein, plasma C1 protease inhibitor. In MN, increased urinary excretion of the complement component C2, fibrinogen alpha chain, osteopontin, and the SH3 domain-binding glutamic acid-rich-like protein 3, was detected.
CONCLUSION. The proteomic profile of urine in FSGS, compared to MN, reflects the activation of variety of pathological processes – podocyte damage, involvement of parietal epithelial cells, tubulo-interstitial damage, accumulation of extracellular matrix, and complement activation process.
Keywords
About the Authors
A. A. VinogradovRussian Federation
Anatoliy A. Vinogradov, Postgraduate student, MD
Faculty of Fundamental Medicine
Department of Internal Medicine
119991
Lomonosovsky pr-t., 27, bldg. 1
Moscow
N. V. Chebotareva
Russian Federation
Natalia V. Chebotareva, Prof., MD, PhD, DMedSci
Department of Internal, Occupational Diseases and Rheumatology
119048
8 Trubeckaya st.
Moscow
A. E. Bugrova
Russian Federation
Anna E. Bugrova, Senior staff scientist, PhD
Laboratory of Neurochemistry
119334
4 Kosygina st.
Moscow
A. G. Brzhozovskij
Russian Federation
Alexander G. Brzhozovskij, Staff scientist, PhD
Center of Life Sciences
Laboratory of Mass Spectrometry and Omix Technologies
121205
Bolshoy Boulevard, 30, p. 1
Moscow
T. N. Krasnova
Russian Federation
Tatyana N. Krasnova, Associate Professor, MD, PhD
Department of Internal Medicine
119991
27 Lomonosovsky Ave., build. 1
Moscow
S. V. Moiseev
Russian Federation
Sergey V. Moiseev, Prof., MD, PhD, DMedSci
Department of Internal, Occupational Diseases and Rheumatology
119048
8 Trubeckaya st.
Moscow
A. S. Kononikhin
Russian Federation
Alexey S. Kononikhin, Senior staff scientist, PhD
Center of Life Sciences
Laboratory of Mass Spectrometry and Omix Technologies
121205
Bolshoy Boulevard, 30, p. 1
Moscow
References
1. Praga M., Morales E., Herrero J. C. et al. Absence of hypoalbuminemia despite massive proteinuria in focal segmental glomerulosclerosis secondary to hyperfiltration. Am J Kidney Dis 1999; 33 (1): 52–58. doi: 10.1016/s0272-6386(99)70257-x
2. Rydel J. J., Korbet S. M., Borok R. Z., Schwartz M. M. Focal segmental glomerular sclerosis in adults: presentation, course, and response to treatment. Am J Kidney Dis 1995; 25 (4): 534–542. doi: 10.1016/0272-6386(95)90120-5
3. Korbet S. M., Schwartz M. M., Lewis E. J. Primary focal segmental glomerulosclerosis: clinical course and response to therapy. Am J Kidney Dis 1994; 23 (6): 773–783. doi: 10.1016/s0272-6386(12)80128-4
4. Wehrmann M., Bohle A., Held H. et al. Long-term prognosis of focal sclerosing glomerulonephritis. An analysis of 250 cases with particular regard to tubulointerstitial changes. Clin Nephrol 1990; 33 (3): 115–122
5. Cunningham R., Ma D., Li L. Mass Spectrometry-based Proteomics and Peptidomics for Systems Biology and Biomarker Discovery. Front Biol (Beijing) 2012; 7 (4): 313–335. doi: 10.1007/s11515-012-1218-y
6. Di Meo A., Pasic M. D., Yousef G. M. Proteomics and peptidomics: moving toward precision medicine in urological malignancies. Oncotarget 2016; 7 (32): 52460–52474. doi: 10.18632/oncotarget.8931
7. Feist P., Hummon A. B. Proteomic challenges: sample preparation techniques for microgram-quantity protein analysis from biological samples. Int J Mol Sci 2015; 16 (2): 3537–3563. doi: 10.3390/ijms16023537
8. Filip S., Pontillo C., Peter Schanstra J. et al. Urinary proteomics and molecular determinants of chronic kidney disease: possible link to proteases. Expert Rev Proteomics 2014; 11 (5): 535–548. doi: 10.1586/14789450.2014.926224
9. Mischak H., Delles C., Vlahou A., Vanholder R. Proteomic biomarkers in kidney disease: issues in development and implementation. Nat Rev Nephrol 2015; 11 (4): 221–232. doi: 10.1038/nrneph.2014.247
10. Decramer S., Gonzalez de Peredo A., Breuil B. et al. Urine in clinical proteomics. Mol Cell Proteomics 2008; 7 (10): 1850–1862. doi: 10.1074/mcp.R800001-MCP200
11. Puig-Gay N., Jacobs-Cacha C., Sellarès J. et al. Apolipoprotein A-Ib as a biomarker of focal segmental glomerulosclerosis recurrence after kidney transplantation: diagnostic performance and assessment of its prognostic value – a multi-centre cohort study. Transpl Int 2019; 32 (3): 313–322. doi: 10.1111/tri.13372
12. Gomo Z. A., Henderson L. O., Myrick J. E. High-density lipoprotein apolipoproteins in urine: I. Characterization in normal subjects and in patients with proteinuria. Clin Chem 1988; 34 (9): 1775–1780
13. Jacobs-Cachá C., Puig-Gay N., Helm D. et al. A misprocessed form of Apolipoprotein A-I is specifically associated with recurrent Focal Segmental Glomerulosclerosis. Sci Rep 2020; 10 (1): 1159. doi: 10.1038/s41598-020-58197-y
14. Jacobs-Cachá C., Puig-Gay N., Vergara A et al. A Specific Tubular ApoA-I Distribution Is Associated to FSGS Recurrence after Kidney Transplantation. J Clin Med 2021; 10 (10): 2174. doi: 10.3390/jcm10102174
15. Hashemi M., Sadeghi-Bojd S., Raeisi M., Moazeni-Roodi A. Evaluation of paraoxonase activity in children with nephrotic syndrome. Nephrourol Mon 2013; 5 (5): 978–982. doi: 10.5812/numonthly.12606
16. Soyoral Yu., Aslan M., Emre H. et al. Serum paraoxonase activity and oxidative stress in patients with adult nephrotic syndrome. Atherosclerosis 2011; 218 (1): 243–246. doi: 10.1016/j.atherosclerosis.2011.05.037
17. Lennon R., Singh A., Welsh G. I. et al. Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes. J Am Soc Nephrol 2008; 19 (11): 2140–2149. doi: 10.1681/ASN.2007080940
18. Pukajło-Marczyk A., Zwolińska D. Involvement of Hemopexin in the Pathogenesis of Proteinuria in Children with Idiopathic Nephrotic Syndrome. J Clin Med 2021; 10 (14): 3160. doi: 10.3390/jcm10143160
19. Kapojos J. J., Poelstra K., Borghuis T. et al. Regulation of plasma hemopexin activity by stimulated endothelial or mesangial cells. Nephron Physiol 2004; 96 (1): P1–10. doi: 10.1159/000075574
20. Shen J., Zhu Y., Zhang S. et al. Vitronectin-activated αvβ3 and αvβ5 integrin signalling specifies haematopoietic fate in human pluripotent stem cells. Cell Prolif 2021; 54 (4): e13012. doi: 10.1111/cpr.13012
21. Huang N., Zhang X., Jiang Y. et al. Increased levels of serum pigment epithelium-derived factor aggravate proteinuria via induction of podocyte actin rearrangement. Int Urol Nephrol 2019; 51 (2): 359–367. doi: 10.1007/s11255-018-2026-3
22. Fujimura T., Yamagishi S., Ueda S. et al. Administration of pigment epithelium-derived factor (PEDF) reduces proteinuria by suppressing decreased nephrin and increased VEGF expression in the glomeruli of adriamycin-injected rats. Nephrol Dial Transplant 2009; 24 (5): 1397–1406. doi: 10.1093/ndt/gfn659
23. Huang J., Cui Z., Gu Q. H. et al. Complement activation profile of patients with primary focal segmental glomerulosclerosis. PLoS One 2020; 15 (6): e0234934. doi: 10.1371/journal.pone.0234934
24. Liu J., Xie J., Zhang X. et al. Serum C3 and Renal Outcome in Patients with Primary Focal Segmental Glomerulosclerosis. Sci Rep 2017; 7 (1): 4095. doi: 10.1038/s41598-017-03344-1
25. Thurman J. M., Wong M., Renner B. et al. Complement Activation in Patients with Focal Segmental Glomerulosclerosis. PLoS One 2015; 10 (9): e0136558. doi: 10.1371/journal.pone.0136558
26. Zoshima T., Hara S., Yamagishi M. et al. Possible role of complement factor H in podocytes in clearing glomerular subendothelial immune complex deposits. Sci Rep 2019; 9 (1): 7857. doi: 10.1038/s41598-019-44380-3
27. Zhang Q., Jiang C., Tang T. et al. Clinical Significance of Urinary Biomarkers in Patients With Primary Focal Segmental Glomerulosclerosis. Am J Med Sci 2018; 355 (4): 314–321. doi: 10.1016/j.amjms.2017.12.019
28. Mastroianni Kirsztajn G., Nishida S. K., Silva M. S. et al. Urinary retinol-binding protein as a prognostic marker in the treatment of nephrotic syndrome. Nephron 2000; 86 (2): 109–114. doi: 10.1159/000045727
29. Bennett M. R., Pordal A., Haffner C. et al. Urinary Vitamin D-Binding Protein as a Biomarker of Steroid-Resistant Nephrotic Syndrome. Biomark Insights 2016; 11: 1–6. doi: 10.4137/BMI.S31633
30. Mirković K., Doorenbos C. R., Dam W. A. et al. Urinary vitamin D binding protein: a potential novel marker of renal interstitial inflammation and fibrosis. PLoS One 2013; 8 (2): e55887. doi: 10.1371/journal.pone.0055887
31. Choudhary A., Mohanraj P. S., Krishnamurthy S., Rajappa M. Association of Urinary Vitamin D Binding Protein and Neutrophil Gelatinase-Associated Lipocalin with Steroid Responsiveness in Idiopathic Nephrotic Syndrome of Childhood. Saudi J Kidney Dis Transpl 2020; 31 (5): 946–956. doi: 10.4103/1319-2442.301201
32. Bukosza E. N., Kornauth C., Hummel K. et al. ECM Characterization Reveals a Massive Activation of Acute Phase Response during FSGS. Int J Mol Sci 2020; 21 (6): 2095. doi: 10.3390/ijms21062095
33. Medjeral-Thomas N. R., Troldborg A. et al. Protease inhibitor plasma concentrations associate with COVID-19 infection. Oxf Open Immunol 2021; 2 (1): iqab014. doi: 10.1093/oxfimm/iqab014
34. Priebatsch K. M., Kvansakul M., Poon I. K., Hulett M. D. Functional Regulation of the Plasma Protein Histidine-Rich Glycoprotein by Zn2+ in Settings of Tissue Injury. Biomolecules 2017; 7 (1): 22. doi: 10.3390/biom7010022
35. Siwy J., Zürbig P., Argiles A et al. Noninvasive diagnosis of chronic kidney diseases using urinary proteome analysis. Nephrol Dial Transplant 2017; 32 (12): 2079–2089. doi: 10.1093/ndt/gfw337
36. Zhao M., Li M., Li X. et al. Dynamic changes of urinary proteins in a focal segmental glomerulosclerosis rat model. Proteome Sci 2014; 12: 42. doi: 10.1186/1477-5956-12-42
37. Catanese L., Siwy J., Mavrogeorgis E. et al. A Novel Urinary Proteomics Classifier for Non-Invasive Evaluation of Interstitial Fibrosis and Tubular Atrophy in Chronic Kidney Disease. Proteomes 2021; 9 (3): 32. doi: 10.3390/proteomes9030032
38. Fischer D. C., Schaible J., Wigger M. et al. Reduced serum fetuin-A in nephrotic children: a consequence of proteinuria? Am J Nephrol 2011; 34 (4): 373–380. doi: 10.1159/000331061
39. Mambetsariev N., Mirzapoiazova T., Mambetsariev B. et al. Hyaluronic Acid binding protein 2 is a novel regulator of vascular integrity. Arterioscler Thromb Vasc Biol 2010; 30 (3): 483–490. doi: 10.1161/ATVBAHA.109.200451
40. Kaul A., Singampalli K. L., Parikh U. M. et al. Hyaluronan, a double-edged sword in kidney diseases. Pediatr Nephrol 2021. Epub ahead of print. doi: 10.1007/s00467-021-05113-9
41. Merchant M. L., Barati M. T., Caster D. J. et al. Proteomic Analysis Identifies Distinct Glomerular Extracellular Matrix in Collapsing Focal Segmental Glomerulosclerosis. J Am Soc Nephrol 2020; 31 (8): 1883–1904. doi: 10.1681/ASN.2019070696
42. Mezzano S. A., Droguett M. A., Burgos M. E. et al. Overexpression of chemokines, fibrogenic cytokines, and myofibroblasts in human membranous nephropathy. Kidney Int 2000; 57 (1): 147–158. doi: 10.1046/j.1523-1755.2000.00830.x
43. Mezzano S. A., Barría M., Droguett M. A. et al. Tubular NF-kappaB and AP-1 activation in human proteinuric renal disease. Kidney Int 2001; 60 (4): 1366–1377. doi: 10.1046/j.1523-1755.2001.00941.x
44. Wu C. C., Chen J. S., Huang C. F. et al. Approaching biomarkers of membranous nephropathy from a murine model to human disease. J Biomed Biotechnol 2011; 2011: 581928. doi: 10.1155/2011/581928
Review
For citations:
Vinogradov A.A., Chebotareva N.V., Bugrova A.E., Brzhozovskij A.G., Krasnova T.N., Moiseev S.V., Kononikhin A.S. Urine proteome profile in primary podocytopathies. Nephrology (Saint-Petersburg). 2023;27(1):41-47. (In Russ.) https://doi.org/10.36485/1561-6274-2023-27-1-41-47