Preview

Nephrology (Saint-Petersburg)

Advanced search

EXPRESSION miRNA-21 IN RENAL TISSUE AND URINE IN RATS WITH UNILATERAL URETERAL OBSTUCTION

https://doi.org/10.24884/1561-6274-2017-21-1-46-51

Abstract

THE AIM: to estimate the level of expression miRNA-21 inthe urine and renal tissue in rats with unilateral ureteral obstruction (UUO). MATHERIAL AND METHODS. UUO was induced by ligation of the left ureter in male Wistar rats (n=10). Follow-up period was 14 days after UUO modeling. Urine was collected one day before the operation (UmiRNA21C), and one day before the end of experiment (UmiRNA21I ) during 24 hours. Before releasing animal out of experiment collected urine from left kidney pelvis (UmiRNA21O) and tissue of left kidney (KmiRNA21O) and right kidney (KmiRNA21I ). MiRNA-21 expression in kidney tissues and urine was carried out with reaction amplification (RealTime PCR-protocol). Calculation was realized by 2-deltaCt method. Statistical analysis was performed with Wilcoxon test and Spearman correlation coefficient. Results are demonstrated as median [low – upper quartile]. RESULTS. UmiRNA21I (3.78[2.0-5.28]) and UmiRNA21O (3.78[3.25-3.82]) were significantly higher than UmiRNA21C (1.15[0.71-1.74]; P=0.0125 and P=0.0069, respectively). UmiRNA21I and UmiRNA21O values were practically equal. In kidneys with UUO the tissue levels of miRNA21 expression was a higher than in contralateral organ (P=0,0926). Revealed direct correlation between KmiRNAI and KmiRNAO (RS=0,770, P=0,0092). CONCLUSION. UOO can cause specific changes in the expression, distribution and excretion of micro RNA-21 and its role in the development of renal tubulointestitsial fibrosis requires further studies. Key words: miRNA-21, tubulointerstitial fibrosis, unilateral ureteral obstruction

About the Authors

I. G. Kayukov
First Pavlov Saint Petersburg State Medical University
Russian Federation

Prof. Ivan G. Kayukov MD, PhD, DMedSci.

Institute of Nephrology, Laboratory of Clinical Physiology of the
Kidney, head.

197022 Russia, St-Petersburg, L. Tolstoy st. 17, build. 54



A. V. Smirnov
First Pavlov Saint Petersburg State Medical University
Russian Federation

Prof. Alexey V. Smirnov MD, PhD, DMedSci. 

Institute of Nephrology, director

197022, Russia, St-Petersburg, L.Tolstoy st. 17, build. 54



A. G. Kucher
First Pavlov Saint Petersburg State Medical University
Russian Federation

Prof. Anatoly G. Kucher MD, PhD, DMedSci 

Institute of Nephrology, vice-director. 

197022, Russia, St-Petersburg, L.Tolstoy st. 17, build. 54



M. M. Parastaeva
First Pavlov Saint Petersburg State Medical University
Russian Federation

Marina M. Parastaeva, PhD. 

Institute of Nephrology, Laboratory of Clinical Physiology of the Kidney, senior researcher. 

197022, Russia, St-Petersburg, L.Tolstoy st. 17, build. 54



O. N. Beresneva
First Pavlov Saint Petersburg State Medical University
Russian Federation

Olga N. Beresneva, PhD

Laboratory of Clinical Physiology of the Kidney, senior researcher. 

197022, Russia, St-Petersburg, L.Tolstoy st. 17, build. 54



M. I. Zaraiskii
First Pavlov Saint Petersburg State Medical University
Russian Federation

Prof. Mikhail I. Zaraiskii, MD, PhD, DMedSci. 

Scientific and methodological center for molecular medicine, laboratory of molecular diagnostics, head. 

197022, Russia, St-Petersburg, L.Tolstoy st. 6-8, build. 28



C. T. Ivanova
Institute of Physiology named after I. P. Pavlov Russian Academy of Sciences
Russian Federation

Galina T. Ivanova, PhD. 

Laboratory of Experimental and Clinical Cardiology, senior researcher. 

199034, Russia, St-Petersburg, Makarov emb. 6, Institute



References

1. Kataoka M, Wang DZ. Non-Coding RNAs Including miRNAs and lncRNAs in Cardiovascular Biology and Disease. Cells 2014; 3(3): 883-898

2. Condorelli G, Latronico MV, Cavarretta E. microRNAs in cardiovascular diseases: current knowledge and the road ahead. J Am Coll Cardiol 2014; 63(21): 2177-2187

3. Gharipour M, Sadeghi M. Pivotal role of microRNA-33 in metabolic syndrome: A systematic review. ARYA Atheroscler 2013; 9(6): 372-376

4. Смирнов АВ, Кучер АГ, Добронравов ВА и др. Диетарный соевый протеин замедляет развитие интерстициального почечного фиброза у крыс с односторонней обструкцией мочеточника: введение в нутритивную эпигеномику. Нефрология 2012; 16(4):75-83 [Smirnov AV, Kucher AG, Dobronravov VA i dr. Dietarnyi soevyi protein zamedljаet razvitie intersticial’nogo pochechnogo fibroza u krys s odnostoronnei obstrukciei mochetochnika: vvedenie v nutritivnuyu yеpigenomiku. Nefrologijа 2012; 16(4):75-83]

5. Adams BD, Kasinski AL, Slack FJ. Aberrant Regulation and Function of MicroRNAs in Cancer. Curr Biol 2014; 24(16): R762-R776

6. Qingqing W, Qing-Sheng M, Zheng D. The regulation and function of microRNAs in kidney diseases. IUBMB Life 2013; 65(7): 602–614

7. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011; 39: D152-157

8. Landgraf P, Rusu M, Sheridan R et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129(7): 1401-1414

9. Sun Y, Koo S, White N et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 2004; 32(22): e188

10. Chandrasekaran K, Karolina DS, Sepramaniam S et al. Role of microRNAs in kidney homeostasis and disease. Kidney Int 2012; 81(7): 617-627

11. Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol 2011; 8(5): 706–713

12. Lan HY. Diverse Roles of TGF-β/Smads in Renal Fibrosis and Inflammation. Int J Biol Sci 2011; 7(7): 1056–1067

13. Duffield JS, Grafals M, Portilla D. MicroRNAs are potential therapeutic targets in fibrosing kidney disease: lessons from animal models. Drug Discov Today Dis Models 2013; 10(3):e127-e135

14. Patel V, Noureddine L. MicroRNAs and fibrosis. Curr Opin Nephrol Hypertens 2012; 21(4): 410–416

15. Zarjou A, Yang S, Abraham E,Agarwal A et al. Identification of a microRNA signature in renal fibrosis: role of miR-21. Am J Physiol Renal Physiol 2011; 301(4): F793–F801

16. Береснева ОН, Парастаева ММ, Иванова ГТ и др. Влияние метформина на формирование тубулоинтерстициального фиброза у крыс. Нефрология 2014; 19(6): 45-48 [Beresneva ON, Parastaeva MM, Ivanova GT i dr. Vlijаnie metformina na formirovanie tubulointersticial’nogo fibroza u krys. Nefrologijа 2014; 19(6): 45-48]

17. Chung AC, Lan HY. MicroRNAs in renal fibrosis. Front Physiol 2015; 6:50. doi: 10.3389/fphys.2015.00050

18. Cмирнов АВ, Карунная АВ, Зарайский МИ и др. Экспрессия микроРНК-21 в моче у пациентов с нефропатиями. Нефрология 2014; 18(6): 59-63 [Smirnov AV, Karunnaya AV, Zarayskiy MI i dr. Ekspressiya mikroRNK-21 v moche u patsientov s nefropatiyami. Nefrologiya 2014; 18(6): 59-63]

19. D’Alessandra Y, Devanna P, Limana F et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 2010; 31(22): 2765–2773

20. Shi B, Guo Y, Wang J, Gao W. Altered expression of microRNAs in the myocardium of rats with acute myocardial infarction. BMC Cardiovasc Disord 2010; 10:11

21. Godwin JG, Ge X, Stephan K et al. Identification of a microRNA signature of renal ischemia–reperfusion injury. Proc Natl Acad Sci USA 2010; 107: 14339–14344

22. Thum T, Gross C, Fiedler J et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008; 456: 980–984

23. Liu G, Friggeri A, Yang Y et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 2010; 207: 1589–1597

24. Zhong X, Chung AC, Chen HY et al. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol 2011; 22: 1668–1681

25. Bottinger EP. TGF-beta in renal injury and disease. Semin Nephrol 2007; 27: 309-320

26. Wang W, Koka V, Lan HY. Transforming growth factor-beta and Smad signalling in kidney diseases. Nephrology (Carlton) 2005;10(1):48-56

27. Смирнов АВ, Иванова ГТ, Береснева ОН и др. Экспериментальная модель интерстициального почечного фиброза. Нефрология 2009; 13(4): 70-74 [Smirnov AV, Ivanova GT, Beresneva ON i dr. Yeksperimental’najа model’ intersticial’nogo pochechnogo fibroza. Nefrologijа 2009; 13(4): 70-74]

28. Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008;454:56–61


Review

For citations:


Kayukov I.G., Smirnov A.V., Kucher A.G., Parastaeva M.M., Beresneva O.N., Zaraiskii M.I., Ivanova C.T. EXPRESSION miRNA-21 IN RENAL TISSUE AND URINE IN RATS WITH UNILATERAL URETERAL OBSTUCTION. Nephrology (Saint-Petersburg). 2017;21(1):46-51. (In Russ.) https://doi.org/10.24884/1561-6274-2017-21-1-46-51

Views: 742


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)