Preview

Nephrology (Saint-Petersburg)

Advanced search

ELECTROLYTES CONCENTRATION REFERENCE LIMITS IN AMNIOTIC FLUID OF RABBITS ON 27-28 DAY OF GESTATION

https://doi.org/10.24884/1561-6274-2017-21-1-68-72

Abstract

THE AIM: to determine reference limits of volume, osmolality and concentration of Na+, K+, Cl, non-organic phosphate (Pi ), and Ca2+ in amniotic fluid (AF) of rabbits on 27-28 day of gestation. MATERIALS AND METHODS: during research on first-pregnant rabbits (n=6), received 37 samples of AF, determined fetal mass, fetal part of placenta mass, volume, osmolality and concentration of Na+, K+, Cl, Pi , and Ca2+. RESULTS: obtained reference limits of volume (0,09–1,63 ml), osmolality (210,0–267,0, mOsmol/kg), concentration of ions Na+ (110,0–146,0 mmol/l), K+ (6,0–12,4 mmol/l), Cl (87,0–117,0 mmol/l), Ca2+ (1,88– 2,89 mmol/l) and Pi (0,56–1,57 mmol/l) in AF. Reverse correlation of AF volume with fetus mass (r = -0,525, p < 0,001) and positive correlation between fetus mass and AF osmolality (r = 0,375, p = 0,022) were determined. Concentrations of Na+, K+, Clare correlated with placenta mass (r = 0,368, p = 0,025; r = 0,353, p = 0,032; r = 0,381, p = 0,020, respectively). AF osmolality correlated with concentrations of Na+ (r = 0,514, p < 0,001) and Cl(r = 0,510, p < 0,001). CONCLUSION: results could be used for developing animal models of medicamental influence on AF volume, osmolality and ion composition on late gestation. 

About the Authors

E. V. Suzopov
Altai State Medical University
Russian Federation

Suzopov Egor Valerievich, student.

Faculty of General Medicine, Department of Biochemistry and Clinical Laboratory Diagnostics.

 



I. A. Lytar
Altai State Medical University
Russian Federation

Lytar Irina Aleksandrovna - assistant

Department of Patophysiology, Clinic Patophysiology. 

656038, Altai Krai, Barnaul, Lenina, 40



A. V. Popovtceva
Altai State Medical University
Russian Federation

Popovceva Anna Valentinovna, PhD, associate professor 

Department of Biochemistry and Clinical Labarotary Diagnostics.

656038, Altai Krai, Barnaul, Lenina, 40



Y. V. Korenovskii
Altai State Medical University
Russian Federation

Korenovsky Yuri Vladimirovich, PhD, associate professor

Department of Biochemistry and Clinical Labarotary Diagnostics. 

656038, Altai Krai, Barnaul, Lenina, 40



References

1. Brace RA, Cheung CY. Regulation of amniotic fluid volume: evolving concepts Adv Exp Med Biol 2014;814:49-68. DOI: 10.1007/978-1-4939-1031-1_5

2. Khan MI. Weinstock RS. (2011) in: Henry’s clinical diagnosis and management by laboratory methods. – 22nd ed. (McPherson R.A., Pincus M.R.) Elsevier Saunders, Philadelfia, p. 224. DOI: 10.1016/b978-1-4377-0974-2.00016-6

3. Brace RA. Physiology of amniotic fluid volume regulation. Clin Obstet Gynecol 1997; 40(2):280–289. DOI: 10.1097/00003081-199706000-00005

4. Кореновский ЮВ, Калитникова ИА, Бурякова СИ и др. Регуляция объема амниотической жидкости. Акуш и гин 2016;(2):44–48. [Korenovsky YV, Kalitnikova IA, Buryakova SI et al. Amniotic fluid volume regulation. Akush Ginekol (Mosk). 2016;(2):44-48] DOI: 10.18565/aig.2016.2.44-48

5. Ross MG, Nijland MJM. Development of ingestive behavior. Am J Physiol 1998;274:879-893

6. Tong X. Amniotic fluid may act as a transporting pathway for signaling molecules and stem cells during the embryonic development of amniotes. J Chin Med Assoc 2013;76:606–610. DOI: 10.1016/j.jcma.2013.07.006

7. Mann SE, Nijland MJ, Ross MG. Ovine adaptations to chronically reduced urine flow: preservation of amniotic fluid volume. J Appl Physiol 1996;81:2588-2594. DOI: 10.1016/10715576(95)94484-c

8. Brace RA, Wlodek ME, Cock ML, Harding R. Swallowing of lung liquid and amniotic fluid by the ovine fetus under normoxic and hypoxic conditions. Am J Obstet Gynecol 1994;171:764-770. DOI: 10.1016/0002-9378(94)90094-9

9. Robertson P, Faber JJ, Brace RA et al. Responses of amniotic fluid volume and its four major flows to lung liquid diversion and amniotic infusion in the ovine fetus. Reprod Sci 2009;16:88-93. DOI: 10.1177/1933719108324888

10. Brace RA, Anderson DF, Cheung CY. Ovine fetal swallowing responses to polyhydramnios. Physiol Rep 2014;2(3):e00279. DOI: 10.1002/phy2.279

11. Gesteland KM, Anderson DF, Davis LE et al. Intramembranous solute and water fluxes during high intramembranous absorption rates in fetal sheep with and without lung liquid diversion. Am J Obstet Gynecol 2009;201:85.e1-6. DOI: 10.1016/j.ajog.2009.02.018

12. Faber JJ, Anderson DF. Absorption of amniotic fluid by amniochorion in sheep. Am J Physiol Heart Circ Physiol 2002;282: 850-854. DOI: 10.1152/ajpheart.00746.2001

13. Daneshmand SS, Cheung CY, Brace RA. Regulation of amniotic fluid volume by intramembranous absorption in sheep: role of passive permeability and vascular endothelial growth factor. Am J Obstet Gynecol 2003;188:786-793. DOI: 10.1016/j.jsgi.2003.09.002

14. Jellyman JK, Anderson DF, Faber JJ et al. Amniotic fluid volume and intramembranous absorption responses to tracheoesophageal shunt or esophageal ligation in fetal sheep. Am J Obstet Gynecol 2009;200:313.e1-6. DOI: 10.1016/j.ajog.2008.10.025

15. Ross MG, Brace RA, National Institute of Child Health and Development Workshop Participants. National Institute of Child Health and Development Conference summary: amniotic fluid biology–basic and clinical aspects. J Matern Fetal Med 2001;10:2-19. DOI: 10.1080/jmf.10.1.2.19

16. Brace RA, Anderson DF, Cheung CY. Fetal swallowing as a protective mechanism against oligohydramnios and polyhydramnios in late gestation sheep. Reprod Sci 2013;20:326-330. DOI: 10.1177/1933719112453510


Review

For citations:


Suzopov E.V., Lytar I.A., Popovtceva A.V., Korenovskii Y.V. ELECTROLYTES CONCENTRATION REFERENCE LIMITS IN AMNIOTIC FLUID OF RABBITS ON 27-28 DAY OF GESTATION. Nephrology (Saint-Petersburg). 2017;21(1):68-72. (In Russ.) https://doi.org/10.24884/1561-6274-2017-21-1-68-72

Views: 763


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)