

Клиническая значимость молекулярно-генетического тестирования у детей и подростков с болезнями почек и мочевыводящих путей
https://doi.org/10.36485/1561-6274-2024-28-3-19-31
EDN: QPGEQV
Аннотация
Наследственные болезни почек и мочевыводящих путей являются частой причиной развития хронической болезни почек (ХБП) у детей. Прогресс технологий ДНК-анализа привел к значительному повышению эффективности молекулярно-генетических исследований в педиатрической нефрологии. Применение ДНК-диагностики позволяет установить клинико-генетический диагноз заболевания, уточнить патогенез наблюдаемого патологического состояния, определить стратегию персонализированного лечения и наблюдения за пациентом, прогнозировать состояние здоровья ребёнка в будущем, проводить медико-генетическое консультирование родственников больного и т.д. Выявление молекулярных дефектов, лежащих в основе развития наследственных заболеваний почек, открывает пути к разработке новых таргетных препаратов, позволяющих осуществлять коррекцию нефрологических нарушений. Целью обзора является обобщение имеющихся сведений об основных направлениях практического использования ДНК-диагностики в педиатрической нефрологии.
Ключевые слова
Об авторах
Г. А. ЯнусРоссия
Янус Григорий Аркадьевич, канд. мед. наук, научный сотрудник лаборатории молекулярной диагностики с расширенной группой по экогенетике; научный сотрудник лаборатории молекулярной онкологии
194100, Санкт-Петербург, ул. Литовская, д. 2
197785, Санкт-Петербург, пос. Песочный, ул. Ленинградская, д. 68
Тел.: (812)416-52-66, (812) 439-95-55
Е. Н. Суспицын
Россия
Доц. Суспицын Евгений Николаевич, д-р мед. наук, кафедра общей и молекулярной медицинской генетики; старший научный сотрудник лаборатории молекулярной онкологии
194100, Санкт-Петербург, ул. Литовская, д. 2
197785, Санкт-Петербург, пос. Песочный, ул. Ленинградская, д. 68
Тел.: (812)416-52-66, (812)439-95-55
С. А. Лаптиев
Россия
Лаптиев Сергей Александрович, канд. биол. наук, врач-генетик
194100, Санкт-Петербург, ул. Литовская, д. 2
Тел.: (812)416-52-66
Д. Л. Стрекалов
Россия
Доц. Стрекалов Денис Львович, канд. мед. наук, кафедра общей и молекулярной медицинской генетики
194100, Санкт-Петербург, ул. Литовская, д. 2
Тел.: (812)416-52-66
Н. Д. Савенкова
Россия
Проф. Савенкова Надежда Дмитриевна, д-р мед. наук, заведующая кафедрой факультетской педиатрии
194100, Санкт-Петербург, ул. Литовская, д. 2
Тел.: (812)416-52-66
Е. Н. Имянитов
Россия
Проф. Имянитов Евгений Наумович, д-р мед. наук, чл.-кор. РАН, заведующий кафедрой общей и молекулярной медицинской генетики; заведующий научным отделом биологии опухолевого роста
194100, Санкт-Петербург, ул. Литовская, д. 2
197785, Санкт-Петербург, пос. Песочный, ул. Ленинградская, д. 68
Тел.: (812)416-52-66
Список литературы
1. Connaughton DM, Hildebrandt F. Personalized medicine in chronic kidney disease by detection of monogenic mutations. Nephrol Dial Transplant 2020;35(3):390–397. doi: 10.1093/ndt/gfz028.
2. Klämbt V, Buerger F, Wang C et al. Genetic Variants in ARHGEF6 Cause Congenital Anomalies of the Kidneys and Urinary Tract in Humans, Mice, and Frogs. J Am Soc Nephrol 2023;34(2):273–290. doi: 10.1681/ASN.2022010050
3. Kolvenbach CM, Felger T, Schierbaum L et al. X-linked variations in SHROOM4 are implicated in congenital anomalies of the urinary tract and the anorectal, cardiovascular and central nervous systems. J Med Genet 2023;60(6):587–596. doi: 10.1136/jmg-2022-108738
4. Majmundar AJ, Widmeier E, Heneghan JF et al. OXGR1 is a candidate disease gene for human calcium oxalate nephrolithiasis. Genet Med 2023;25(3):100351. doi: 10.1016/j.gim.2022.11.019
5. Riedhammer KM, Nguyen TT, Koşukcu C et al. Implication of FOXD2 dysfunction in syndromic congenital anomalies of the kidney and urinary tract (CAKUT). medRxiv 2023:2023.03.21.23287206. doi: 10.1101/2023.03.21.23287206. Preprint
6. Schneider S, Schierbaum L, Burger WAC et al. Recessive CHRM5 variant as a potential cause of neurogenic bladder. Am J Med Genet A 2023;191(8):2083–2091. doi: 10.1002/ajmg.a.63241
7. Elhassan EAE, Murray SL, Connaughton DM et al. The utility of a genetic kidney disease clinic employing a broad range of genomic testing platforms: experience of the Irish Kidney Gene Project. J Nephrol 2022;35(6):1655–1665. doi: 10.1007/s40620-021-01236-2
8. Verbitsky M, Westland R, Perez A et al. The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nat Genet 2019;51(1):117–127. doi: 10.1038/s41588-018-0281-y
9. Saei H, Morinière V, Heidet L et al. VNtyper enables accurate alignment-free genotyping of MUC1 coding VNTR using short-read sequencing data in autosomal dominant tubulointerstitial kidney disease. iScience 2023;26(7):107171. doi: 10.1016/j.isci.2023.107171
10. Ven CJ, Newman A, Vivante J et al. ETV4 Mutation in a Patient with Congenital Anomalies of the Kidney and Urinary Tract. International Journal of Pediatrics and Child Health 2016;4:61–71. doi: 10.12974/2311-8687.2016.04.02.1
11. Connaughton DM, Kennedy C, Shril S et al. Monogenic causes of chronic kidney disease in adults. Kidney Int 2019;95(4):914–928. doi: 10.1016/j.kint.2018.10.031
12. Groopman EE, Marasa M, Cameron-Christie S et al. Diagnostic Utility of Exome Sequencing for Kidney Disease. N Engl J Med 2019;380(2):142–151. doi: 10.1056/NEJMoa1806891
13. de Haan A, Eijgelsheim M, Vogt L et al. Diagnostic Yield of Next-Generation Sequencing in Patients with Chronic Kidney Disease of Unknown Etiology. Front Genet 2019;10:1264. doi: 10.3389/fgene.2019.01264
14. Mann N, Braun DA, Amann K et al. Whole-Exome Sequencing Enables a Precision Medicine Approach for Kidney Transplant Recipients. J Am Soc Nephrol 2019;30(2):201–215. doi: 10.1681/ASN.2018060575
15. Tanudisastro HA, Holman K, Ho G et al. Australia and New Zealand renal gene panel testing in routine clinical practice of 542 families. NPJ Genom Med 2021;6(1):20. doi: 10.1038/s41525-021-00184-x
16. Gastoldi S, Aiello S, Galbusera M et al. An ex vivo test to investigate genetic factors conferring susceptibility to atypical haemolytic uremic syndrome. Front Immunol 2023;14:1112257. doi: 10.3389/fimmu.2023.1112257
17. Barakat AJ, Drougas JG. Occurrence of congenital abnormalities of kidney and urinary tract in 13,775 autopsies. Urology 1991;38(4):347–350
18. Talati AN, Webster CM, Vora NL. Prenatal genetic considerations of congenital anomalies of the kidney and urinary tract (CAKUT). Prenat Diagn 2019;39(9):679–692. doi: 10.1002/pd.5536
19. Maha N. Adolescents with сhronic kidney disease. From Diagnosis to End-Stage Diseas. N. Maha, M.N. Haddad, E. Winnicki, S. Nguye. Springer Nature 2019;1:92. doi: 10.1007/978-3-319-97220-6
20. Kohl S, Habbig S, Weber LT, Liebau MC. Molecular causes of congenital anomalies of the kidney and urinary tract (CAKUT). Mol Cell Pediatr 2021;8(1):2. doi: 10.1186/s40348-021-00112-0
21. Connaughton DM, Hildebrandt F. Personalized medicine in chronic kidney disease by detection of monogenic mutations. Nephrol Dial Transplant 2020;35(3):390–397. doi: 10.1093/ndt/gfz028
22. van der Ven AT, Connaughton DM, Ityel H et al. Whole-Exome Sequencing Identifies Causative Mutations in Families with Congenital Anomalies of the Kidney and Urinary Tract. J Am Soc Nephrol 2018 Sep;29(9):2348–2361. doi: 10.1681/ASN.2017121265
23. Kagan M, Pleniceanu O, Vivante A. The genetic basis of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 2022;37(10):2231–2243. doi: 10.1007/s00467-021-05420-1
24. Fabretti F, Tschernoster N, Erger F et al. Expanding the Spectrum of FAT1 Nephropathies by Novel Mutations That Affect Hippo Signaling. Kidney Int Rep 2021;6(5):1368–1378. doi: 10.1016/j.ekir.2021.01.023
25. Yoshino M, Shimabukuro W, Takeichi M et al. A case of Potter sequence with WT1 mutation. CEN Case Rep 2023;12(2):184–188. doi: 10.1007/s13730-022-00742-x
26. Lee KH, Gee HY, Shin JI. Genetics of vesicoureteral reflux and congenital anomalies of the kidney and urinary tract. Investig Clin Urol 2017;58(Suppl 1):S4-S13. doi: 10.4111/icu.2017.58.S1.S4
27. Vincent KM, Alrajhi A, Lazier J et al. Expanding the clinical spectrum of autosomal-recessive renal tubular dysgenesis: Two siblings with neonatal survival and review of the literature. Mol Genet Genomic Med 2022;10(5):e1920. doi: 10.1002/mgg3.1920
28. Arora V, Khan S, W El-Hattab A et al. Biallelic Pathogenic GFRA1 Variants Cause Autosomal Recessive Bilateral Renal Agenesis. J Am Soc Nephrol 2021;32(1):223–228. doi: 10.1681/ASN.2020040478
29. Schrauwen I, Liaqat K, Schatteman I et al. Autosomal Dominantly Inherited GREB1L Variants in Individuals with Profound Sensorineural Hearing Impairment. Genes (Basel) 2020;11(6):687. doi: 10.3390/genes11060687
30. Riedhammer KM, Ćomić J, Tasic V et al. Exome sequencing in individuals with congenital anomalies of the kidney and urinary tract (CAKUT): a single-center experience. Eur J Hum Genet 2023;31(6):674–680. doi: 10.1038/s41431-023-01331-x
31. Riedhammer KM, Nguyen TT, Koşukcu C et al. Implication of FOXD2 dysfunction in syndromic congenital anomalies of the kidney and urinary tract (CAKUT). medRxiv 2023:2023.03.21.23287206. doi: 10.1101/2023.03.21.23287206. Preprint
32. Савенкова НД. Наследственный нефротический синдром у педиатрических и взрослых пациентов. Нефрология 2020;24 (3):15–27. doi:10.36485/1561-62-74-2020-24-3-1527
33. Trautmann A, Vivarelli M, Samuel S et al. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr Nephrol 2020;35(8):1529–1561. doi: 10.1007/s00467-020-04519-1
34. Trautmann A, Boyer O, Hodson E et al. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-sensitive nephrotic syndrome. Pediatr Nephrol 2023;38(3):877–919. doi: 10.1007/s00467-022-05739-3
35. Kestilla M, Lenkkeri U, Mannikko M. Positionally cloned gene for a novel glomerular protein nephrin-is mutated in congenital nephrotic syndrome. Mol Cell 1998;1(4):575–582
36. Boyer О, Tory K, Machuca E, Antignac С. Idiopathic Nephrotic Syndrome in Children: Genetic Aspects. Eds: Avner ED, Harmon WE, Niaudet P, Yoshikawa N, Emma F, Goldstein SL. Springer, 2016;1:805–837. doi: 10.1007/s00467-007-0633-9
37. Preston R, Stuart HM, Lennon R. Genetic testing in steroid-resistant nephrotic syndrome: why, who, when and how? Pediatr Nephrol 2019;34(2):195–210. doi: 10.1007/s00467-017-3838-6
38. Saleem MA. Molecular stratification of idiopathic nephrotic syndrome. Nat Rev Nephrol 2019;15(12):750–765. doi: 10.1038/s41581-019-0217-5
39. Kopp JB, Anders HJ, Susztak K et al. Podocytopathies. Nat Rev Dis Primers 2020;6(1):68. doi: 10.1038/s41572-020-0196-7
40. Boyer O, Bérody S. Congenital nephrotic syndrome: is early aggressive treatment needed? No. Pediatr Nephrol 2020;35(10):1991–1996. doi: 10.1007/s00467-020-04556-w
41. Hölttä T, Jalanko H. Congenital nephrotic syndrome: is early aggressive treatment needed? Yes. Pediatr Nephrol 2020;35(10):1985–1990. doi: 10.1007/s00467-020-04578-4
42. Boyer O, Schaefer F, Haffner D et al. Management of congenital nephrotic syndrome: consensus recommendations of the ERKNet-ESPN Working Group. Nat Rev Nephrol 2021;17(4):277–289. doi: 10.1038/s41581-020-00384-1
43. Holmberg C, Jalanko H. Congenital nephrotic syndrome and recurrence of proteinuria after renal transplantation. Pediatr Nephrol 2014;29(12):2309–2317. doi: 10.1007/s00467-014-2781-z
44. Connaughton DM, Hildebrandt F. Disease mechanisms of monogenic congenital anomalies of the kidney and urinary tract American Journal of Medical Genetics Part C. Am J Med Genet C Semin Med Genet 2022;190(3):325–343. doi: 10.1002/ajmg.c.32006
45. Drovandi S, Lipska-Ziętkiewicz BS, Ozaltin F et al. Oral Coenzyme Q10 supplementation leads to better preservation of kidney function in steroid-resistant nephrotic syndrome due to primary Coenzyme Q10 deficiency. Kidney Int 2022;102(3):604–612. doi: 10.1016/j.kint.2022.04.029
46. Chen Y, Zhang Y, Huang J et al. New insights from trio whole-exome sequencing in the children with kidney disease: A single-center retrospective cohort study. Mol Genet Genomic Med 2023;11(7):e2163. doi: 10.1002/mgg3.2163
47. Ashraf S, Kudo H, Rao J et al. Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment. Nat Commun 2018;9(1):1960. doi: 10.1038/s41467-018-04193-w
48. Jobst-Schwan T, Hoogstraten CA, Kolvenbach CM et al. Corticosteroid treatment exacerbates nephrotic syndrome in a zebrafish model of magi2a knockout. Kidney Int 2019;95(5):1079–1090. doi: 10.1016/j.kint.2018.12.026
49. Malakasioti G, Iancu D, Milovanova A et al. A multicenter retrospective study of calcineurin inhibitors in nephrotic syndrome secondary to podocyte gene variants. Kidney Int 2023;103(5):962–972. doi: 10.1016/j.kint.2023.02.022
50. Urban N, Neuser S, Hentschel A et al. Pharmacological inhibition of focal segmental glomerulosclerosis-related, gain of function mutants of TRPC6 channels by semi-synthetic derivatives of larixol. Br J Pharmacol 2017;174(22):4099–4122. doi: 10.1111/bph.13977
51. Mikó Á, K Menyhárd D, Kaposi A et al. The mutation-dependent pathogenicity of NPHS2 p.R229Q: A guide for clinical assessment. Hum Mutat 2018;39(12):1854–1860. doi: 10.1002/humu.23660
52. Savige J, Lipska-Zietkiewicz BS, Watson E et al. Guidelines for Genetic Testing and Management of Alport Syndrome. Clin J Am Soc Nephrol 2022;17(1):143–154. doi: 10.2215/CJN.04230321
53. Barua M, Paterson AD. Population-based studies reveal an additive role of type IV collagen variants in hematuria and albuminuria. Pediatr Nephrol 2022;37(2):253–262. doi: 10.1007/s00467-021-04934-y
54. Rheault MN, Kashtan CE. Alport Syndrome and Thin Basement Membrane Nephropathy. Pediatric Kidney Disease. Eds: DF Geary and F Schaefer Springer-Verlag Berlin Heidelberg 2016;18. doi: 10.1007/978-3-662-52972-0_17
55. Savige J, Ariani F, Mari F et al. Expert consensus guidelines for the genetic diagnosis of Alport syndrome. Pediatr Nephrol 2019; 34:1175–1189
56. Żurowska AM, Bielska O, Daca-Roszak P et al. Mild X-linked Alport syndrome due to the COL4A5 G624D variant originating in the Middle Ages is predominant in Central/East Europe and causes kidney failure in midlife. Kidney Int 2021;99(6):1451–1458. doi: 10.1016/j.kint.2020.10.040
57. Mastrangelo A, Brambilla M, Romano G et al. Single, Double and Triple Blockade of RAAS in Alport Syndrome: Different Tools to Freeze the Evolution of the Disease. J Clin Med 2021;10(21):4946. doi: 10.3390/jcm10214946
58. Bedin M, Boyer O, Servais A et al. Human C-terminal CUBN variants associate with chronic proteinuria and normal renal function. J Clin Invest 2020;130(1):335–344. doi: 10.1172/JCI129937
59. Becherucci F, Landini S, Cirillo L et al. Look Alike, Sound Alike: Phenocopies in Steroid-Resistant Nephrotic Syndrome. Int J Environ Res Public Health 2020;17(22):8363. doi: 10.3390/ijerph17228363
60. Silva CAB, Moura-Neto JA, Dos Reis MA et al. Renal Manifestations of Fabry Disease: A Narrative Review. Can J Kidney Health Dis 2021;8:2054358120985627. doi: 10.1177/2054358120985627
61. Bäumner S, Weber LT. Nephropathic Cystinosis: Symptoms, Treatment, and Perspectives of a Systemic Disease. Front Pediatr 2018;6:58. doi: 10.3389/fped.2018.00058
62. Savostyanov KV, Pushkov AA, Shchagina OA et al. Genetic Landscape of Nephropathic Cystinosis in Russian Children. Front Genet 2022;13:863157. doi: 10.3389/fgene.2022.863157
63. Warejko JK, Tan W, Daga A et al. Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol 2018;13(1):53–62. doi: 10.2215/CJN.04120417
64. Boyer O, Niaudet P. Hemolytic-Uremic Syndrome in Children. Pediatr Clin North Am 2022;69(6):1181–1197. doi: 10.1016/j.pcl.2022.07.006
65. Bu F, Zhang Y, Wang K et al. Genetic Analysis of 400 Patients Refines Understanding and Implicates a New Gene in Atypical Hemolytic Uremic Syndrome. J Am Soc Nephrol 2018;29(12):2809–2819. doi: 10.1681/ASN.2018070759
66. Wong EKS, Kavanagh D. Diseases of complement dysregulation-an overview. Semin Immunopathol 2018;40(1):49–64. doi: 10.1007/s00281-017-0663-8
67. Vaisitti T, Bracciamà V, Faini AC et al. The role of genetic testing in the diagnostic workflow of pediatric patients with kidney diseases: the experience of a single institution. Hum Genomics 2023;17:10. doi: 10.1186/s40246-023-00456-w
68. Савенкова НД, Иванов ДО, Любимова ОВ и др. Применение препарата Элизария – биоаналога оригинального экулизумаба при атипичном гемолитико-уремическом синдроме вследствие мутации гена С3 у детей: клиническое наблюдение и обзор литературы. Нефрология 2023;27(1):92–101. doi: 10.36485/1561-6274-2023-27-1-92-101
69. Fakhouri F, Fila M, Hummel A et al. Eculizumab discontinuation in children and adults with atypical hemolytic-uremic syndrome: a prospective multicenter study. Blood 2021;137(18): 2438–2449. doi: 10.1182/blood.2020009280
70. McConnachie DJ, Stow JL, Mallett AJ. Ciliopathies and the Kidney: A Review. Am J Kidney Dis 2021;77(3):410–419. doi: 10.1053/j.ajkd.2020.08.012
71. Groopman EE, Marasa M, Cameron-Christie S et al. Diagnostic Utility of Exome Sequencing for Kidney Disease. N Engl J Med 2019;380(2):142–151. doi: 10.1056/NEJMoa1806891
72. Steele C, You Z, Gitomer BY et al. PKD1 Compared with PK D2 Genotype and Cardiac Hospitalizations in the Halt Progression of Polycystic Kidney Disease Studies. Kidney Int Rep 2021;7(1):117–120. doi: 10.1016/j.ekir.2021.09.013
73. Capelli I, Zoli M, Righini M et al. MR Brain Screening in ADPKD Patients: To Screen or not to Screen? Clin Neuroradiol 2022;32(1):69–78. doi: 10.1007/s00062-021-01050-0
74. Андреева ЭФ, Савенкова НД. Течение аутосомно-доминантного и аутосомно-рецессивного поликистоза почек (АДПП и АРПП), выявленных в пренатальном, неонатальном и грудном периодах у детей. Нефрология 2019;23(5):77–87. doi: 10.24884/1561-6274-201923-577-87
75. Al-Hamed MH, Alsahan N, Rice SJ et al. Bialleleic PKD1 mutations underlieearly-onset-autosoma-ldominant polycystic kidney diseasein. Saudi Arabianfamilies Pediatr Nephrol 2019;34(9):1615–1623. doi: 10.1007/s00467-019-04267-x
76. Müller RU, Messchendorp AL, Birn H et al. An update on the use of tolvaptan for autosomal dominant polycystic kidney disease: consensus statement on behalf of the ERA Working Group on Inherited Kidney Disorders, the European Rare Kidney Disease Reference Network and Polycystic Kidney Disease International. Nephrol Dial Transplant 2022;37(5):825–839. doi: 10.1093/ndt/gfab312
77. Mekahli D, Liebau MC, Cadnapaphornchai MA et al. Design of two ongoing clinical trials of tolvaptan in the treatment of pediatric patients with autosomal recessive polycystic kidney disease. BMC Nephrol 2023;24(1):33. doi: 10.1186/s12882-023-03072-x
78. Burgmaier K, Brinker L, Erger F et al. Refining genotype-phenotype correlations in 304 patients with autosomal recessive polycystic kidney disease and PKHD1 gene variants. Kidney Int 2021;100(3):650–659. doi: 10.1016/j.kint.2021.04.019
79. Mekahli D, Guay-Woodford LM, Cadnapaphornchai MA et al. Tolvaptan for Children and Adolescents with Autosomal Dominant Polycystic Kidney Disease: Randomized Controlled Trial. Clin J Am Soc Nephrol 2023;18(1):36–46. doi: 10.2215/CJN.0000000000000022
80. Szabó T, Orosz P, Balogh E et al. Comprehensive genetic testing in children with a clinical diagnosis of ARPKD identifies phenocopies. Pediatr Nephrol 2018;33(10):1713–1721. doi: 10.1007/s00467-018-3992-5
81. Wolf MT. Nephronophthisis and related syndromes. Curr Opin Pediatr 2015;27(2):201–211. doi: 10.1097/MOP.0000000000000194
82. König JC, Karsay R, Gerß J et al. Refining Kidney Survival in 383 Genetically Characterized Patients with Nephronophthisis. Kidney Int Rep 2022;7(9):2016–2028. doi: 10.1016/j.ekir.2022.05.035
83. Petzold F, Billot K, Chen X et al. The genetic landscape and clinical spectrum of nephronophthisis and related ciliopathies. Kidney Int 2023;104(2):378–387. doi: 10.1016/j.kint.2023.05.007
84. Garcia H, Serafin AS, Silbermann F et al. Agonists of prostaglandin E2 receptors as potential first in class treatment for nephronophthisis and related ciliopathies. Proc Natl Acad Sci USA 2022;119(18):e2115960119. doi: 10.1073/pnas.2115960119
85. Iancu D, Ashton E. Inherited Renal Tubulopathies-Challenges and Controversies. Genes (Basel) 2020;11(3):277. doi: 10.3390/genes11030277
86. Besouw MTP, Kleta R, Bockenhauer D. Bartter and Gitelman syndromes: Questions of class. Pediatr Nephrol 2019. doi: 10.1007/s00467-019-04371-y
87. Davida D, Berlingerio SP, Elmonen MA et al. Molecular basis of cystinosis: geographic distribution, functional consequences of mutations in the CTNS gene, and potentialfor repair Nephron 2019;141:133–146. doi: 10.1159/000495270
88. De Rasmo D, Signorile A, De Leo E et al. Mitochondrial Dynamics of Proximal Tubular Epithelial Cells in Nephropathic Cystinosis. Int J Mol Sci 2019;21(1):192. doi: 10.3390/ijms21010192
89. Ravarotto V, Bertoldi G, Stefanelli LF et al. Gitelman's and Bartter's Syndromes: From Genetics to the Molecular Basis of Hypertension and More. Kidney Blood Press Res 2022;47(9):556–564. doi: 10.1159/000526070
90. Ben-David Y, Halevy R, Sakran W et al. The utility of next generation sequencing in the correct diagnosis of congenital hypochloremic hypokalemic metabolic alkalosis. Eur J Med Genet 2019;62(10):103728. doi: 10.1016/j.ejmg.2019.103728
91. Palazzo V, Raglianti V, Landini S et al. Clinical and Genetic Characterization of Patients with Bartter and Gitelman Syndrome. Int J Mol Sci 2022;23(10):5641. doi: 10.3390/ijms23105641
92. Савенкова НД, Левиашвили ЖГ, Андреева ЭФ и др. Наследственные болезни почек у детей. Руководство для врачей. СПб., 2020; 440
93. Méaux MN, Sellier-Leclerc AL, Acquaviva-Bourdain C et al. The effect of lumasiran therapy for primary hyperoxaluria type 1 in small infants. Pediatr Nephrol 2022;37(4):907–911. doi: 10.1007/s00467-021-05393-1
94. Тихонович ЮВ, Колодкина АА, Куликова КС и др. Идиопатическая гиперкальциемия детей грудного возраста. Описание клинических случаев, обзор литературы. Проблемы эндокринологии 2017;63(1):51–57. doi: 10.14341/probl201763151-57
95. Pronicka E, Ciara E, Halat P et al. Biallelic mutations in CYP24A1 or SLC34A1 as a cause of infantile idiopathic hypercalcemia (IIH) with vitamin D hypersensitivity: molecular study of 11 historical IIH cases. J Appl Genet 2017;58:349–353
96. Sinha R, Pradhan S, Banerjee S et al. Whole-exome sequencing and variant spectrum in children with suspected inherited renal tubular disorder: the East India Tubulopathy Gene Study. Pediatr Nephrol 2022;37(8):1811–1836. doi: 10.1007/s00467-021-05388-y
97. Oellerich M, Sherwood K, Keown P et al. Liquid biopsies: donor-derived cell-free DNA for the detection of kidney allograft injury. Nat Rev Nephrol 2021;17(9):591–603. doi: 10.1038/s41581-021-00428-0
98. Tong J, Jin Y, Weng Q et al. Glomerular Transcriptome Profiles in Focal Glomerulosclerosis: New Genes and Pathways for Steroid Resistance. Am J Nephrol 2020;51(6):442–452. doi: 10.1159/000505956
Рецензия
Для цитирования:
Янус Г.А., Суспицын Е.Н., Лаптиев С.А., Стрекалов Д.Л., Савенкова Н.Д., Имянитов Е.Н. Клиническая значимость молекулярно-генетического тестирования у детей и подростков с болезнями почек и мочевыводящих путей. Нефрология. 2024;28(3):19-31. https://doi.org/10.36485/1561-6274-2024-28-3-19-31. EDN: QPGEQV
For citation:
Yanus G.A., Suspitsin E.N., Laptiev S.A., Strekalov D.L., Savenkova N.D., Imyanitov E.N. Clinical significance of molecular genetic testing in children and adolescents with kidney and urinary tract diseases. Nephrology (Saint-Petersburg). 2024;28(3):19-31. (In Russ.) https://doi.org/10.36485/1561-6274-2024-28-3-19-31. EDN: QPGEQV