

Onconephrology. The main approaches to determining the nephrotoxicity of antitumor drugs
https://doi.org/10.36485/1561-6274-2024-28-4-22-29
EDN: QQUYOL
Abstract
This is a review of the literature on the problem of nephrotoxicity of antitumor drugs. Clinical manifestations of nephrotoxicity are considered, including acute/chronic tubulointerstitial nephritis (due to infection, hyperuricemia, calciuria, drug effects, etc.); thrombotic microangiopathy with kidney damage; acute tubular necrosis; acute cortical necrosis; thrombosis of the renal artery and its branches; thrombosis of the renal vein, its branches, inferior vena cava; glomerulonephritis (nephritic syndrome, nephrotic syndrome, isolated urinary syndrome; morphological patterns of IgA nephropathy, membranous nephropathy, disease of minimal changes, focal segmental glomerulosclerosis, C3 dominant nephropathy, etc.); hempigmental nephropathy (a consequence of acute intravascular hemolysis, less often – rhabdomyolysis); nephrocalcinosis, urolithiasis; pyelonephritis, etc. The classification of antitumor drugs is given. Since different classes of drugs have different mechanisms for the development of nephrotoxicity, the article discusses the main ones with examples. The article also presents well-known and promising approaches to the prevention and treatment of nephrotoxicity of antitumor drugs.
About the Authors
M. M. BatyushinRussian Federation
Prof. Mikhail M. Batyushin, MD, PhD, DMedSci, Department of Internal Diseases No. 2, Professor
344022 Russia, Rostov-on-Don, lane. Nakhichevan, 29
E. S. Levitskaya
Russian Federation
Associate professor Ekaterina Sergeevna Levitskaya, MD, PhD, DMedSci, Department of Medical Rehabilitation, Sports Medicine, Physical Education with a course of medical and social expertise, Head of the Department
344022 Russia, Rostov-on-Don, lane. Nakhichevan, 29
I. M. Kotieva
Russian Federation
Inga Movlievna Kotieva, Professor, MD,, Department of Pathological Physiology, Head of the Department
344022 Russia, Rostov-on-Don, lane. Nakhichevan, 29
A. V. Safronenko
Russian Federation
Andrey Vladimirovich Safronenko, Professor, Department of Pharmacology and Clinical Pharmacology, Head of the Department
344022 Russia, Rostov-on-Don, lane. Nakhichevan, 29
References
1. Burnasheva EV, Shatokhin YV, Snezhko IV, Matsuga AA. Kidney injury in cancer therapy. Nephrology (Saint-Petersburg) 2018;22(5):17–24 (in Russ.).https://doi.org/10.24884/1561-6274-2018-22-5-17-24
2. Zhong L, Li Y, Xiong L et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther 2021;6(1):201. doi: 10.1038/s41392-021-00572-w
3. Tsao LC, Force J, Hartman ZC. Mechanisms of Therapeutic Antitumor Monoclonal Antibodies. Cancer Res 2021;81(18):4641– 4651. doi: 10.1158/0008-5472.CAN-21-1109
4. Feng H, Fabrizi J, Li J, Mayer C. Syntheses of Polypeptides and Their Biomedical Application for Anti-Tumor Drug Delivery. Int J Mol Sci 2022;23(9):5042. doi: 10.3390/ijms23095042
5. Nicolò E, Giugliano F, Ascione L et al. Combining antibody-drug conjugates with immunotherapy in solid tumors: current landscape and future perspectives. Cancer Treat Rev 2022;106:102395. doi: 10.1016/j.ctrv.2022.102395
6. Bonilla M, Gudsoorkar P, Wanchoo R et al. Onconephrology 2022: An Update. Kidney360 2023;4(2):258–271. doi: 10.34067/KID.0001582022
7. Volarevic V, Djokovic B, Jankovic MG et al. Molecular mechanisms of cisplatin-induced nephrotoxicity: a balance on the knife edge between renoprotection and tumor toxicity. J Biomed Sci 2019;26(1):25. doi: 10.1186/s12929-019-0518-9
8. Sears SM, Siskind LJ. Potential Therapeutic Targets for Cisplatin-Induced Kidney Injury: Lessons from Other Models of AKI and Fibrosis. J Am Soc Nephrol 2021;32(7):1559–1567. doi: 10.1681/ASN.2020101455
9. Hajian S, Rafieian-Kopaei M, Nasri H. Renoprotective effects of antioxidants against cisplatin nephrotoxicity. J Nephropharmacol 2014 Jul 1;3(2):39–42
10. Zhang D, Luo G, Jin K et al. The underlying mechanisms of cisplatin-induced nephrotoxicity and its therapeutic intervention using natural compounds. Naunyn Schmiedebergs Arch Pharmacol 2023;396(11):2925–2941. doi: 10.1007/s00210-023-02559-6
11. Qi Z, Li W, Tan J et al. Effect of ginsenoside Rh2 on renal apoptosis in cisplatin-induced nephrotoxicity in vivo. Phytomedicine 2019;61:152862. https://doi.org/10.1016/j.phymed.2019.152862
12. Wang YM, Wang Y, Harris DC et al. Adriamycin nephropathy in BALB/c mice. Curr Protoc Im 2015;15(28):11–16
13. Yi M, Zhang L, Liu Y, et al. Autophagy is activated to protect against podocyte injury in adriamycin-induced nephropathy. Am J Physiol Ren Physiol 2017;313(1):F74–F84. doi: 10.1152/ajprenal.00114.2017
14. Lee VW, Harris DC. Adriamycin nephropathy: a model of focal segmental glomerulosclerosis. Nephrology (Carlton) 2011;16(1):30–38. doi: 10.1111/j.1440-1797.2010.01383.x
15. Sánchez-González PD, López-Hernández FJ, LópezNovoa JM, Morales AI. An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Crit Rev Toxicol 2011;41(10):803–821. doi: 10.3109/10408444.2011.602662
16. Tan RZ, Wang C, Deng C et al. Quercetin protects against cisplatin-induced acute kidney injury by inhibiting Mincle/Syk/NFkappaB signaling maintained macrophage inflammation. Phytother Res 2020;34:139–152. https://doi.org/10.1002/ptr.6507
17. Domitrovic R, Cvijanovic O, Pernjak-Pugel E et al. Berberine exerts nephroprotective effect against cisplatin-induced kidney damage through inhibition of oxidative/nitrosative stress, inflammation, autophagy and apoptosis. Food Chem Toxicol 2013;62:397–406. https://doi.org/10.1016/j.fct.2013.09.003
18. Kumar P, Barua CC, Sulakhiya K et al. Curcumin ameliorates cisplatin-induced nephrotoxicity and potentiates its anticancer activity in SD rats: potential role of curcumin in breast cancer chemotherapy. Front Pharmacol 2017; 8:132. https://doi.org/10.3389/fphar.2017.00132
19. Ali N, AlAsmari AF, Imam F et al. Protective effect of diosmin against doxorubicin-induced nephrotoxicity. Saudi J Biol Sci 2021;28(8):4375–4383. doi: 10.1016/j.sjbs.2021.04.030
20. Xiang C, Yan Y, Zhang D. Alleviation of the doxorubicininduced nephrotoxicity by fasudil in vivo and in vitro. J Pharmacol Sci 2021;145(1):6–15. doi: 10.1016/j.jphs.2020.10.002
21. Ibrahim Fouad G, Ahmed KA. The protective impact of berberine against doxorubicin-induced nephrotoxicity in rats. Tissue Cell 2021;73:101612. doi: 10.1016/j.tice.2021.101612
22. da Silva Faria MC, Santos NA, Carvalho Rodrigues MA et al. Effect of diabetes on biodistribution, nephrotoxicity and antitumor activity of cisplatin in mice. Chem Biol Interact 2015 Mar 5;229:119–131. doi: 10.1016/j.cbi.2015.01.027
23. Attieh RM, Nunez B, Copeland-Halperin RS, Jhaveri KD. Cardiorenal Impact of Anti-Cancer Agents: The Intersection of Onco-Nephrology and Cardio-Oncology. Cardiorenal Med 2024;14(1):281–293. doi: 10.1159/000539075
Review
For citations:
Batyushin M.M., Levitskaya E.S., Kotieva I.M., Safronenko A.V. Onconephrology. The main approaches to determining the nephrotoxicity of antitumor drugs. Nephrology (Saint-Petersburg). 2024;28(4):22-29. (In Russ.) https://doi.org/10.36485/1561-6274-2024-28-4-22-29. EDN: QQUYOL