Preview

Nephrology (Saint-Petersburg)

Advanced search
Open Access Open Access  Restricted Access Subscription Access

mRNA-therapy: problems and prospects of application in nephrology

https://doi.org/10.36485/1561-6274-2024-28-4-30-38

EDN: QXDFZI

Abstract

The successful application of messenger RNA (mRNA)-based vaccines for the prevention of COVID-19 infection has drawn the attention of the scientific community to the potential clinical applications of these molecules as innovative and alternative therapeutic approaches in various fields of medicine. As therapeutic agents, mRNAs may be advantageous due to their unique biological properties – the ability to target virtually any genetic component of the cell and encode any proteins and peptides without the need to transfer them to the nuclei of target cells. In addition, these molecules can be rapidly designed/produced and clinically tested. Once the RNA chemistry and delivery system are optimized, the cost of developing new variants of these drugs for newly selected clinical diseases is greatly reduced. However, despite their potential value as novel therapeutic weapons against several kidney diseases, the complex kidney architecture and the inability of oligonucleotide-containing nanoparticles to cross the integral glomerular filtration barrier have greatly reduced their potential application in nephrology. Nevertheless, technical improvements in mRNAs that increase translation efficiency, modulate innate and adaptive immunogenicity, and improve their selective delivery to the site of action are expected to overcome these limitations and the potential for kidneytargeted therapies will greatly expand over the next few years. This is all the more important given that chronic kidney disease (CKD) affects just over 10 % of the world's adult population to some degree, and CKD is projected to become the fifth leading cause of death by 2040, with about half of patients dying from cardiovascular disease. The purpose of this mini-review is to provide a summary of the main benefits of RNAi-based therapies and illustrate the potential future directions and challenges of this promising technology for widespread therapeutic use in nephrology.

About the Authors

K. A. Aitbaev
Scientific Research Institute of Molecular Biology and Medicine at the National Center of Cardiology and Therapy named after academician Mirsaid Mirrakhimov
Kyrgyzstan

Prof. Kubanych Avenovich Aitbayev, MD, PhD, DMedSci, Head of the Laboratory of Pathological Physiology

720040, Kyrgyzstan, Bishkek, 3 Togoloka Moldo str. 



I. T. Murkamilov
Kyrgyz State Medical Academy named after I.K. Akhunbayev; Kyrgyz-Russian Slavic University
Kyrgyzstan

Associate Professor Ilkhom Torobekovich Murkamilov, DMedSci

720020, Kyrgyzstan, Bishkek, 92 Akhunbayev str.; 
720000, Kyrgyzstan, Bishkek, 44 Kiev str. 



V. V. Fomin
N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University
Russian Federation

Prof. Viktor Viktorovich Fomin, MD, PhD, DMedSci, Corre sponding Member of the Russian Academy of Sciences

119991,   Russia,   Moscow,   2   Bolshaya   Pirogovskaya   str.



T. F. Yusupova
Osh State University
Kyrgyzstan

Tursunoy Furkatovna Yusupova, Faculty of Medicine, Student

714000, Kyrgyzstan, Osh, 331 Lenin Street. 



Z. F. Yusupova
Osh State University
Kyrgyzstan

Zulkhumor Furkatovna Yusupova, Faculty of Medicine, Student

714000, Kyrgyzstan, Osh, 331 Lenin Street. 



F. A. Yusupov
Osh State University
Kyrgyzstan

Prof. Furkat Abdulakhatovich Yusupov, DMedSci, Head of the Department of Neurology, Neurosurgery and Psychiatry of the Faculty of Medicine 

714000, Kyrgyzstan, Osh, 331 Lenin Street. 



Sh. Sh. Hakimov
Life hospital Medical Center
Kyrgyzstan

Shavkat Shukurbekovich Hakimov, intensive care physician, nephrologist

720040, Kyrgyzstan, Bishkek, Nasirdina Isanova Street, 85



D. S. Ymankulov
Green Clinic Medical Center
Kyrgyzstan

Daniyar Sultanbekovich Ymankulov, plastic surgeon

720020, Kyrgyzstan, Bishkek, 118 Nasirdin Isanov str. 



I. O. Kudaibergenova
Kyrgyz State Medical Academy named after I.K. Akhunbayev
Kyrgyzstan

Prof. Indira Orozobaevna Kudaibergenova, DMedSci, Rector

720020, Kyrgyzstan, Bishkek, 92 Akhunbayeva str.



References

1. Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics – developing a new class of drugs. Nat Rev Drug Discov 2014;13:759–780. doi: 10.1038/nrd4278

2. Newbury SF. Control of mRNA stability in eukaryotes. Biochem Soc Trans 2006;34:30–34. doi: 10.1042/BST0340030

3. Beckert B, Masquida B. Synthesis of RNA by in vitro transcription. Methods Mol Biol 2011;703:29–41. doi: 10.1007/9781-59745-248-9_3

4. Weng Y, Li C, Yang T et al. The challenge and prospect of mRNA therapeutics landscape. Biotechnol Adv 2020;40:107534. doi: 10.1016/j.biotechadv.2020.107534

5. Dowdy SF. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol 2017;35:222–229. doi: 10.1038/nbt.3802

6. Alexopoulou L, Holt AC, Medzhitov R et al. Recognition of double-stranded RNA and activation of NF-kappaB by toll-like receptor 3. Nature 2001;413:732–738. doi: 10.1038/35099560

7. Diebold SS, Kaisho T, Hemmi H et al. Innate antiviral responses by means of TLR7-mediated recognition of singlestranded RNA. Science 2004;303:1529–1531. doi: 10.1126/science.1093616

8. Heil F, Hemmi H, Hochrein H et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004;303:1526–1529. doi: 10.1126/science.1093620

9. Sergeeva OV, Koteliansky VE, Zatsepin TS. mRNA-based therapeutics–advances and perspectives. Biochemistry (Mosc) 2016;81:709–722. doi: 10.1134/S0006297916070075

10. Burden of kidney diseases: level by country USA: PAHO/ WHO. (2023). Availableat: https://www.paho.org/en/enlace/burden-kidney-diseases.

11. Palmer TC and Hunter RW. Using RNA-based therapies to target the kidney in cardiovascular disease. Front Cardiovasc Med 2023;10:1250073. doi: 10.3389/fcvm.2023.1250073

12. Pichlmair A, Reis e Sousa C. Innate recognition of viruses. Immunity 2007;27:370–383. doi: 10.1016/j.immuni.2007.08.012

13. Hornung V, Ellegast J, Kim S et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science 2006;314:994–997. doi: 10.1126/science.1132505

14. Muttach F, Muthmann N, Rentmeister A. Synthetic mRNA capping. Beilstein J Org Chem 2017;13:2819–2832. doi: 10.3762/bjoc.13.274

15. Ouranidis A, Vavilis T, Mandala E et al. mRNA therapeutic modalities design, formulation and manufacturing under Pharma 4.0 principles. Biomedicines 2021;10:50. doi: 10.3390/biomedicines10010050

16. Kowalski PS, Rudra A, Miao L et al. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol Ther 2019;27:710–728. doi: 10.1016/j.ymthe.2019.02.012

17. Al-Saif M, Khabar KS. UU/UA dinucleotide frequency reduction in coding regions results in increased mRNA stability and protein expression. Mol Ther 2012;20:954–959. doi: 10.1038/mt.2012.29

18. Zhang Z, Ohto U, Shibata T et al. Structural analyses of Toll-like receptor 7 reveal detailed RNA sequence specificity and recognition mechanism of agonistic ligands. Cell Rep 2018;25:3371–3381. doi: 10.1016/j.celrep.2018.11.081

19. Freund I, Eigenbrod T, Helm M et al. RNA modifications modulate activation of innate toll-like receptors. Genes 2019;10:92. doi: 10.3390/genes10020092

20. Martins R, Queiroz JA, Sousa F. Ribonucleic acid purification. J Chromatogr A 2014;1355:1–14. doi: 10.1016/j.chroma.2014.05.075

21. Baiersdörfer M, Boros G, Muramatsu H et al. A facile method for the removal of dsRNA contaminant from In vitro-transcribed mRNA. Mol Ther Nucleic Acids 2019;15:26–35. doi: 10.1016/j.omtn.2019.02.018

22. Reichmuth AM, Oberli MA, Jaklenec A et al. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv 2016;7:319–334. doi: 10.4155/tde-2016-0006

23. Sharova LV, Sharov AA, Nedorezov T et al. Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res 2009;16:45–58. doi: 10.1093/dnares/dsn030

24. Van Meirvenne S, Straetman L, Heirman C et al. Efficient genetic modification of murine dendritic cells by electroporation with mRNA. Cancer Gene Ther 2002;9:787–797. doi: 10.1038/sj.cgt.7700499

25. Guan S, Rosenecker J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther 2017;24:133–143. doi: 10.1038/gt.2017.5

26. Wadhwa A, Aljabbari A, Lokras A et al. Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics 2020;12:102. doi: 10.3390/pharmaceutics12020102

27. Zhang W, Hagedorn C, Schulz E et al. Viral hybrid-vectors for delivery of autonomous replicons. Curr Gene Ther 2014;14:10– 23. doi: 10.2174/1566523213666131223130024

28. Yin J, Luan S. Opportunities and Challenges for the Development of Polymer-Based Biomaterials and Medical Devices. Regen Biomater 2016;3:129–135

29. Li W, Szoka FC. Lipid-Based Nanoparticles for Nucleic Acid Delivery. Pharm Res 2007;24:438–449. doi: 10.1007/s11095006-9180-5

30. Reichmuth AM, Oberli MA, Jaklenec A et al. MRNA Vaccine Delivery Using Lipid Nanoparticles. Ther Deliv 2016;7:319–334. doi: 10.4155/tde-2016-0006

31. Ryals RC, Patel S, Acosta C et al. The Effects of PEGylation on LNP Based MRNA Delivery to the Eye. PLoS ONE 2020;15:e0241006. doi: 10.1371/journal.pone.0241006

32. Kulkarni JA, Cullis PR, van der Meel R. Lipid Nanoparticles Enabling Gene Therapies: From Concepts to Clinical Utility. Nucleic Acid Ther 2018;28:146–157. doi: 10.1089/nat.2018.0721

33. Zhao W, Zhang C, Li B et al. Lipid Polymer Hybrid Nanomaterials for MRNA Delivery. Cell Mol Bioeng 2018;11:397–406. doi: 10.1007/s12195-018-0536-9

34. Bondue T, van den Heuvel L, Levtchenko E et al. The potential of RNA-based therapy for kidney diseases. Pediatr Nephrol 2023;38:327–344. doi: 10.1007/s00467-021-05352-w

35. Rubin JD, Barry MA. Improving molecular therapy in the kidney. Mol Diagn Ther 2020;24:375–396. doi: 10.1007/s40291020-00467-6

36. Davis L, Park F. Gene therapy research for kidney diseases. Physiol Genomics 2019;51:449 –461. doi: 10.1152/physiolgenomics.00052.2019

37. Morishita Y, Yoshizawa H, Watanabe M et al. siRNAs targeted to Smad4 prevent renal fibrosis in vivo. Sci Rep 2014;4:6424. doi: 10.1038/srep06424

38. Hamar P, Song E, Kökény G et al. Small interfering RNA targeting Fas protects mice against renal ischemia-reperfusion injury. Proc Natl Acad Sci USA 2004;101:14883–14888. doi: 10.1073/pnas.0406421101

39. Takabatake Y, Isaka Y, Imai E. In vivo transfer of small interfering RNA or small hairpin RNA targeting glomeruli. Methods Mol Biol 2009;466:251–263. doi: 10.1007/978-1-59745-352-3_18

40. Prijic S, Sersa G. Magnetic nanoparticles as targeted delivery systems in oncology. Radiol Oncol 2011;45:1–16. doi: 10.2478/v10019-011-0001-z

41. Yavlovich A, Smith B, Gupta K et al. Light-sensitive lipidbased nanoparticles for drug delivery: design principles and future considerations for biological applications. Mol Membr Biol 2010;27:364–381. doi: 10.3109/09687688.2010.507788

42. Zhao D, Yang G, Liu Q et al. A photo-triggerable aptamer nanoswitch for spatiotemporal controllable siRNA delivery. Nanoscale 2020;12:10939–10943. doi: 10.1039/D0NR00301H

43. Damon Wang F, Zuroske T, Watts JK. RNA therapeutics on the rise. Nat Rev Drug Discov 2020;19:441–442. doi: 10.1038/d41573-020-00078-0

44. Zhang MM, Bahal R, Rasmussen TP et al. The growth of siRNA-based therapeutics: Updated clinical studies. Biochem Pharmacol 2021;189:114432. doi: 10.1016/j.bcp.2021.114432

45. Jackson LA, Anderson EJ, Rouphael NG et al. An mRNA Vaccine against SARS-CoV-2 – Preliminary Report. N Engl J Med 2020;383:1920–1931. doi: 10.1056/NEJMoa2022483

46. Liebow A, Li X, Racie T et al. An investigational RNAi therapeutic targeting glycolate oxidase reduces oxalate production in models of primary hyperoxaluria. J Am Soc Nephrol 2017;28: 494–503. doi: 10.1681/ASN.2016030338

47. Morishita Y, Yoshizawa H, Watanabe M et al. SiRNAs targeted to Smad4 prevent renal fibrosis in vivo. Sci Rep 2014;4:6424. doi: 10.1038/srep06424

48. Zisman A, Pantuck AJ, Belldegrun A. Immune and genetic therapies for advanced renal cell carcinoma. Rev Urol 2000;2: 54–60

49. Kreidberg JA. SiRNA therapy for glomerulonephritis. J Am Soc Nephrol 2010;21:549–551. doi: 10.1681/ASN.2010020177

50. Shimizu H, Hori Y, Kaname S et al. SiRNA-based therapy ameliorates glomerulonephritis. J Am Soc Nephrol 2010;21:622– 633. doi: 10.1681/ASN.2009030295

51. Lai C, Pursell N, Gierut J et al. Specific Inhibition of Hepatic Lactate Dehydrogenase Reduces Oxalate Production in Mouse Models of Primary Hyperoxaluria. Mol Ther 2018;26:1983–1995. doi: 10.1016/j.ymthe.2018.05.016

52. Zhu X, Yin L, Theisen M et al. Systemic mRNA therapy for the treatment of Fabry disease: preclinical studies in wild-type mice, Fabry mouse model, and wild-type non-human primates. Am Hum Genet 2019;104:625–637. doi: 10.1016/j.ajhg.2019.02.003

53. Yuasa T, Takenaka T, Higuchi K et al. Fabry disease. J Echocardiogr 2017;15:151–157. doi: 10.1007/s12574-017-0340-x

54. Ivanova EA, De Leo MG, Van Den Heuvel L et al. Endolysosomal dysfunction in human proximal tubular epithelial cells deficient for lysosomal cystine transporter cystinosin. PLoS One 2015;10:e0120998. doi: 10.1371/journal.pone.0120998

55. Ivanova EA, Arcolino FO, Elmonem MA et al. Cystinosin deficiency causes podocyte damage and loss associated with increased cell motility. Kidney Int 2016;89:1037–1048. doi: 10.1016/j.kint.2016.01.013

56. Bondue T, Berlingerio SP, van den Heuvel L et al. The Zebrafish Embryo as a Model Organism for Testing mRNABased Therapeutics. Int J Mol Sci 2023;24:11224. doi: 10.3390/ijms241311224

57. An D, Schneller JL, Frassetto A et al. Systemic messenger RNA therapy as a treatment for methylmalonic acidemia. Cell Rep 2017;21:3548–3558. doi: 10.1016/j.celrep.2017.11.081

58. Desai AS, Webb DJ, Taubel J et al. Zilebesiran, an RNA interference therapeutic agent for hypertension. N Engl J Med 2023;389:228–238. doi: 10.1056/NEJMoa2208391

59. Pardi N, Hogan MJ, Porter FW et al. mRNA vaccines – a new era in vaccinology. Nat Rev Drug Discov 2018;17:261–279. doi: 10.1038/nrd.2017.243

60. Rittig SM, Haentschel M, Weimer KJ et al. Long-term survival correlates with immunological responses in renal cell carcinoma patients treated with mRNA-based immunotherapy. Oncoimmunology 2016;5:e1108511. doi: 10.1080/2162402X.2015.1108511

61. Rittig SM, Haentschel M, Weimer KJ et al. Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther 2011;19:990–999. doi: 10.1038/mt.2010.289

62. Xu H, Zheng X, Zhang S et al. Tumor antigens and immune subtypes guided mRNA vaccine development for kidney renal clear cell carcinoma. Mol Cancer 2021;20:159. doi: 10.1186/s12943-021-01465-w

63. Calderhead DM, DeBenedette MA, Ketteringham H et al. Cytokine maturation followed by CD40L mRNA electroporation results in a clinically relevant dendritic cell product capable of inducing a potent proinflammatory CTL response. J Immunother 2008;31:731–741. doi: 10.1097/CJI.0b013e318183db02

64. DeBenedette MA, Calderhead DM, Tcherepanova IY et al. Potency of mature CD40L RNA electroporated dendritic cells correlates with IL-12 secretion by tracking multifunctional CD8(+)/CD28(+) cytotoxic T-cell responses in vitro. J Immunother 2011;34:45–57. doi: 10.1097/CJI.0b013e3181fb651a

65. Amin A, Dudek AZ, Logan TF et al. Survival with AGS-003, an autologous dendritic cell-based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): phase 2 study results. J Immunother Cancer 2015;3:14. doi: 10.1186/s40425-015-0055-3

66. Czerlau C, Bocchi F, Saganas C et al. Acute interstitial nephritis after messenger RNA-based vaccination. Clin Kidney J 2022;15:174–176. doi: 10.1093/ckj/sfab180

67. Anderegg MA, Liu M, Saganas C et al. De novo vasculitis after mRNA-1273 (Moderna) vaccination. Kidney Int 2021;100:474–476. doi: 10.1016/j.kint.2021.05.016


Review

For citations:


Aitbaev K.A., Murkamilov I.T., Fomin V.V., Yusupova T.F., Yusupova Z.F., Yusupov F.A., Hakimov Sh.Sh., Ymankulov D.S., Kudaibergenova I.O. mRNA-therapy: problems and prospects of application in nephrology. Nephrology (Saint-Petersburg). 2024;28(4):30-38. (In Russ.) https://doi.org/10.36485/1561-6274-2024-28-4-30-38. EDN: QXDFZI

Views: 173


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)