Preview

Нефрология

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Мелатонин в патогенезе и лечении хронической болезни почек

https://doi.org/10.36485/1561-6274-2025-29-4-22-36

EDN: MUTQZV

Аннотация

Хроническая болезнь почек (ХБП) широко распространена и встречается у 10–13 % населения планеты. К примеру, только в США, по последним данным, заболевание диагностировано у 37 миллионов взрослых пациентов. При такой патологии страдают физиологические и биологические механизмы гомеостаза (баланс электролитов и pH, регуляция артериального давления и эндокринной сферы, выведение токсинов, метаболические нарушения). Заболевание необратимо, на начальных этапах протекает бессимптомно, постепенно прогрессирует, и нарушения гомеостаза становятся клинически значимыми. На начальных этапах проводится консервативная нефропротективная терапия. На поздних этапах появляется потребность в заместительной терапии (гемодиализ, перитонеальный диализ и трансплантация почки). Целью консервативного лечения ХБП является замедление прогрессирования почечной патологии, а также коррекция возникающих осложнений со стороны других органов и систем организма (метаболические состояния, сердечно-сосудистые нарушения, анемии и др.). Разработанные сегодня алгоритмы лечения ХБП, к сожалению, не решают всех вопросов и заставляют искать новые, дополнительные подходы к коррекции определенных патологических процессов при ХБП. Именно с фармакотерапевтических позиций в последние годы привлекает к себе внимание мелатонин (МТ), у которого показана способность ограничивать большинство проявлений ХБП. Цель данного обзора – обобщить информацию о потенциальных возможностях применения МТ при ХБП, учитывая его позитивное влияние на сердечно-сосудистую систему, диабет, гомеостаз и ряд других состояний, сопутствующих почечной патологии.

Об авторах

К. Б. Ованесов
Северо-Западный государственный медицинский университет им. И.И. Мечникова
Россия

Проф. Ованесов Карэн Борисович, д-р мед. наук

195067, Санкт-Петербург, Пискаревский пр., д. 47

Тел.: +7(962)-454-91-88



Ел. В. Колмакова
Северо-Западный государственный медицинский университет им. И.И. Мечникова
Россия

Доц. Колмакова Елена Валерьевна, канд. мед. наук

195067, Санкт-Петербург, Пискаревский пр., д. 47

Тел.: +7(981)-120-13-10



Н. В. Бакулина
Северо-Западный государственный медицинский университет им. И.И. Мечникова
Россия

Проф. Бакулина Наталья Валерьевна, д-р мед. наук

195067, Санкт-Петербург, Пискаревский пр., д. 47

Тел.: +7(906)-240-55-55



Список литературы

1. Арушанян ЭБ, Батурин ВА, Ованесов КБ. Основы хрономедицины и хронофармакологии. Ставрополь: Ставропольский государственный медицинский университет, 2016. ISBN 978-5-89822-436-3

2. Арушанян ЭБ, Бейер ЭВ. Мелатонин: биология, фармакология, клиника. Ставрополь: Ставропольский государственный медицинский университет, 2015. ISBN 978-5-89822-400-4

3. Okamoto HH, Cecon E, Osamu Nureki, Rivara S, Jockers R. Melatonin receptor structure and signaling. Journal of pineal research 2024;76(3). doi:https://doi.org/10.1111/jpi.12952

4. Jaroslav Hrenak, Paulis L, Repova K et al. Melatonin and Renal Protection: Novel Perspectives from Animal Experiments and Human Studies (Review). Current Pharmaceutical Design 2014;21(7):936–949. doi:https://doi.org/10.2174/1381612820666140929092929

5. Арушанян Э, Ованесов К. Значение мелатонина для деятельности почек. Медицинские новости Северного Кавказа 2018;13(1). doi:https://doi.org/10.14300/mnnc.2018.13034

6. Theofilis P, Vordoni A, Kalaitzidis RG. The Role of Melatonin in Chronic Kidney Disease and Its Associated Risk Factors: A New Tool in Our Arsenal? American Journal of Nephrology 2022;53(7):565–574. doi:https://doi.org/10.1159/000525441

7. Acuña-Castroviejo D, Escames G, Venegas C et al. Extrapineal melatonin: sources, regulation, and potential functions. Cellular and Molecular Life Sciences 2014;71(16):2997–3025. doi:https://doi.org/10.1007/s00018-014-1579-2

8. Ekmekcioglu C. Melatonin receptors in humans: biological role and clinical relevance. Biomedicine & Pharmacotherapy 2006; 60(3):97–108. doi:https://doi.org/10.1016/j.biopha.2006.01.002

9. Pang SF, Dubocovich ML, Brown GM. Melatonin receptors in peripheral tissues: a new area of melatonin research. Biol Signals 1993;2:177–180

10. Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT. Melatonin Membrane Receptors in Peripheral tissues: Distribution and Functions. Molecular and Cellular Endocrinology 2012;351(2):152–166. doi:https://doi.org/10.1016/j.mce.2012.01.004

11. Ramírez-Rodríguez G, Meza I, María Eugenia Hernández, Castillo A, Benítez-King G. Melatonin induced cyclic modulation of vectorial water transport in kidney-derived MDCK cells. Kidney International 2003;63(4):1356–1364. doi:https://doi.org/10.1046/j.1523-1755.2003.00872.x

12. Song Y, Tam PC, Poon AM, Brown GM, Pang SF. 2-[125I] iodomelatonin-binding sites in the human kidney and the effect of guanosine 5’-O-(3-thiotriphosphate). The Journal of Clinical Endocrinology & Metabolism 1995;80(5):1560–1565. doi:https://doi.org/10.1210/jcem.80.5.7745000

13. Chan CWY, Song Y, Ailenberg M et al. Studies of Melatonin Effects on Epithelia Using the Human Embryonic Kidney-293 (HEK-293) Cell Line*. Endocrinology 1997;138(11):4732–4739. doi: https://doi.org/10.1210/endo.138.11.5524

14. Song Y, Chan, Brown GM, Pang SF, Silverman M. Studies of the renal action of melatonin: evidence that the effects are mediated by 37 kDa receptors of the Meli a subtype localized primarily to the basolateral membrane of the proximal tubule. The FASEB Journal 1997;11(1):93–100. doi: https://doi.org/10.1096/fasebj.11.1.9034171

15. Drew J, Williams L, Hannah L, Barrett P, Abramovich D. Melatonin receptors in the human fetal kidney: 2-[125I]iodomelatonin binding sites correlated with expression of Mel1a and Mel1b receptor genes. Journal of Endocrinology 1998;156(2):261–267. doi: https:// doi.org/10.1677/joe.0.1560261

16. Жукова ОВ, Виноградова ИА, Горанский АИ. Влияние фармакологической стимуляции мелатониновых рецепторов на функцию почек при старении. Успехи геронтологии 2023;36(1):68–75. doi: 10.34922/AE.2023.36.1.009

17. Kvetnoi IM. Extrapineal melatonin: location and role within diffuse neuroendocrine system. Histochem J 1999;31:1–12

18. Derlacz RA, Poplawski P, Napierala M et al. Melatonininduced modulation of glucose metabolism in primary cultures of rabbit kidney-cortex tubules. J Pineal Res 2005;38:164–169

19. Tasdemir S, Tasdemir C, Vardi N et al. Combined usage of estrogen and melatonin restores bladder contractility and reduces kidney and bladder damage in ovariectomized and pinealectomized rats. Bratisl Lek Listy 2014;115:345–351

20. Tsuda T, Ide M, Iigo M. Influences of season and of temperature, photoperiod, and subcutaneous melatonin infusion on the glomerular filtration rate of ewes. J Pineal Res 1995;19:166–172

21. Pishak VP, Kokoshuk NI. Renal effects of melatonin in intact and pinealectomized rats. Fiziol Zh 1995;41(5):23–26

22. Ding S, Lin N, Sheng X et al. Melatonin stabilizes ruptureprone vulnerable plaques via regulating macrophage polarization in a nuclear circadian receptor RORα-dependent manner. 2019;67(2). doi:https://doi.org/10.1111/jpi.12581

23. Markowska M, Niemczyk S, Romejko K. Melatonin Treatment in Kidney Diseases. Cells 2023;12(6):838. doi:https://doi.org/10.3390/cells12060838

24. Busch M, Nadal J, Schmid M et al. Glycaemic control and antidiabetic therapy in patients with diabetes mellitus and chronic kidney disease – cross-sectional data from the German Chronic Kidney Disease (GCKD) cohort. BMC Nephrology 2016;17(1). doi:https:// doi.org/10.1186/s12882-016-0273-z

25. Kashihara N, Haruna Y, Kondeti VK, Kanwar YS. Oxidative stress in diabetic nephropathy. Curr Med Chem 2010;17:4256–4269

26. Aluwong T, Sumanu VO, Abdulsalam RA et al. Melatonin and probiotic administration ameliorated hyperglycaemia, oxidative stress, and enhanced cytoprotective effect on beta-cells of diabetic rats. Journal of Diabetes & Metabolic Disorders 2023;22(2): 1537–1549. doi:https://doi.org/10.1007/s40200-023-01284-4

27. Alsharif KF, Elmahallawy EK, Alblihd MA et al. Melatonin ameliorates serobiochemical alterations and restores the cardio-nephro diabetic vascular and cellular alterations in streptozotocin-induced diabetic rats. Frontiers in Veterinary Science 2023;10. doi:https:// doi.org/10.3389/fvets.2023.1089733

28. Motawi TK, Ahmed SA, A Hamed M, El-Maraghy SA, M Aziz W. Melatonin and/or rowatinex attenuate streptozotocininduced diabetic renal injury in rats. Journal of Biomedical Research 2019;33(2):113–121. doi:https://doi.org/10.7555/JBR.31.20160028

29. Luo Q, Cai Y, Zhao Q et al. Renal Protective Effects of Melatonin in Animal Models of Diabetes Mellitus-Related Kidney Damage: A Systematic Review and Meta-Analysis. Journal of Diabetes Research 2022;2022:3770417. doi:https://doi.org/10.1155/2022/3770417

30. Fan Z, Qi X, Yang W, Xia L, Wu Y. Melatonin Ameliorates Renal Fibrosis Through the Inhibition of NF-κB and TGF-β1/ Smad3 Pathways in db/db Diabetic Mice. Archives of Medical Research 2020;51(6):524–534. doi:https://doi.org/10.1016/j.arcmed.2020.05.008

31. Wei J, Wang Y, Qi X, Fan Z, Wu Y. Melatonin ameliorates hyperglycaemia-induced renal inflammation by inhibiting the activation of TLR4 and TGF-β1/Smad3 signalling pathway. Am J Transl Res 2020;12(5):1584–1599. doi: идентификатор DOI, если доступен. PMID: 32509163; PMCID: PMC7270025

32. Hande Yapislar, Ebru Haciosmanoglu, Turkan Sarioglu, Cem Ekmekcioglu. The melatonin MT2 receptor is involved in the anti-apoptotic effects of melatonin in rats with type 2 diabetes mellitus. Tissue and Cell 2022;76:101763–101763. doi:https://doi.org/10.1016/j.tice.2022.101763

33. Luo N, Wang Y, Ma Y, Liu Y, Liu Z. Melatonin alleviates renal injury in diabetic rats by regulating autophagy. Molecular Medicine Reports 2023;28(5). doi:https://doi.org/10.3892/mmr.2023.13101

34. Li J, Li N, Yan S et al. Melatonin attenuates renal fibrosis in diabetic mice by activating the AMPK/PGC1α signaling pathway and rescuing mitochondrial function. Molecular Medicine Reports Published online November 29, 2018. doi:https://doi.org/10.3892/mmr.2018.9708

35. Tang H, Yang M, Liu Y et al. Melatonin alleviates renal injury by activating mitophagy in diabetic nephropathy. Frontiers in Endocrinology 2022;13:889729. doi:https://doi.org/10.3389/fendo.2022.889729

36. Siddhi J, Sherkhane B, Kalavala AK, Arruri V, Velayutham R, Kumar A. Melatonin prevents diabetes-induced nephropathy by modulating the AMPK/SIRT1 axis: Focus on autophagy and mitochondrial dysfunction. Cell Biology International 2022;46(12):2142–2157. doi:https://doi.org/10.1002/cbin.11899

37. Agil A, Meriem Chayah, Visiedo L et al. Melatonin Improves Mitochondrial Dynamics and Function in the Kidney of Zücker Diabetic Fatty Rats. Journal of Clinical Medicine 2020;9(9):2916–2916. doi:https://doi.org/10.3390/jcm9092916

38. Fang X, Huang W, Sun Q et al. Melatonin attenuates cellular senescence and apoptosis in diabetic nephropathy by regulating STAT3 phosphorylation. Life Sciences 2023;332:122108–122108. doi:https://doi.org/10.1016/j.lfs.2023.122108

39. Hajam YA, Rai S, Pandi-Perumal SR, Brown GM, Reiter RJ, Cardinali DP. Co-administration of melatonin and insulin improves diabetic-induced impairment of rat kidney function. Neuroendocrinology Published online October 21, 2021. doi:https://doi.org/10.1159/000520280

40. Ebaid H, Bashandy SAE, Abdel-Mageed AM, Al-Tamimi J, Hassan I, Alhazza IM. Folic acid and melatonin mitigate diabetic nephropathy in rats via inhibition of oxidative stress. Nutrition & Metabolism 2020;17(1). doi:https://doi.org/10.1186/s12986-019-0419-7

41. Alaa H, Abdelaziz M, Mustafa M et al. RETRACTED ARTICLE: Therapeutic effect of melatonin-loaded chitosan/lecithin nanoparticles on hyperglycemia and pancreatic beta cells regeneration in streptozotocin-induced diabetic rats. Scientific Reports 2023;13(1). doi:https://doi.org/10.1038/s41598-023-36929-0

42. Mahmoud NM, Elshazly SM, Hassan AA, Soliman E. Agomelatine improves streptozotocin-induced diabetic nephropathy through melatonin receptors/SIRT1 signaling pathway. International Immunopharmacology 2022;115:109646–109646. doi:https://doi.org/10.1016/j.intimp.2022.109646

43. Xu YY, Chen T, Ding H, Chen Q, Fan QL. Melatonin inhibits circadian gene DEC1 and TLR2/MyD88/NF-κB signaling pathway to alleviate renal injury in type 2 diabetic mice. Acta Diabetologica 2024;61(11):1455–1474. doi:https://doi.org/10.1007/s00592-024-02312-2

44. Refaa Burhan Altemimi, Ibrahim NN, Nazar LA, Hasan HA, Mastafa Heilo Al-Musawi, Moghadam FM. The Predictive Value of Melatonin Levels for the Development of Diabetic Nephropathy in Men with Type 2 Diabetes Mellitus. Reports of Biochemistry and Molecular Biology 2024;13(3):341–348. doi:https://doi.org/10.61186/rbmb.13.3.341

45. Daher G, Santos-Bezerra DP, Cavaleiro AM et al. Rs4862705 in the melatonin receptor 1A gene is associated with renal function decline in type 1 diabetes individuals. Frontiers in Endocrinology 2024;15. doi:https://doi.org/10.3389/fendo.2024.1331012

46. Satari M, Bahmani F, Reiner Z et al. Metabolic and antiinflammatory response to melatonin administration in patients with diabetic nephropathy. Iran J Kidney Dis 2021;1(1):22–30. doi: 33492301

47. Kadhim HM, Ismail SH, Hussein KI et al. Effects of melatonin and zinc on lipid profile and renal function in type 2 diabetic patients poorly controlled with metformin. Journal of Pineal Research 2006;41(2):189–193. doi:https://doi.org/10.1111/j.1600-079x.2006.00353.x

48. Sasivimon Promsan, Anusorn Lungkaphin. The roles of melatonin on kidney injury in obese and diabetic conditions. BioFactors 2020;46(4):531–549. doi:https://doi.org/10.1002/biof.1637

49. Afsar B, Afsar RE, Sag AA et al. Sweet dreams: therapeutic insights, targeting imaging and physiologic evidence linking sleep, melatonin, and diabetic nephropathy. Clin Kidney J 2020;13(4):522–530. doi:10.1093/ckj/sfz198

50. Zhou Z, Wang R, Wang J et al. Melatonin pretreatment on exosomes: Heterogeneity, therapeutic effects, and usage. Frontiers in Immunology 2022;13. doi:https://doi.org/10.3389/fimmu.2022.933736

51. Han YS, Yoon YM, Go G, Lee JH, Lee SH. Melatonin Protects Human Renal Proximal Tubule Epithelial Cells Against High Glucose-Mediated Fibrosis via the Cellular Prion Protein-TGF-β-Smad Signaling Axis. International Journal of Medical Sciences 2020;17(9):1235–1245. doi:https://doi.org/10.7150/ijms.42603

52. Pourhanifeh MH, Hosseinzadeh A, Dehdashtian E, Hemati K, Mehrzadi S. Melatonin: new insights on its therapeutic properties in diabetic complications. Diabetology & Metabolic Syndrome 2020;12(1). doi:https://doi.org/10.1186/s13098-020-00537-z

53. Valdivielso JM, Rodríguez-Puyol D, Pascual J et al. Atherosclerosis in chronic kidney disease: more, less, or just different? Arterioscler Thromb Vasc Biol 2019;39(9):1938–1966. doi: 10.1161/ATVBAHA.119.312808

54. Suh SH, Oh TR, Choi HS et al. Association of Left Ventricular Diastolic Dysfunction With Cardiovascular Outcomes in Patients With Pre-dialysis Chronic Kidney Disease: Findings From KNOW-CKD Study. Frontiers in Cardiovascular Medicine 2022;9. doi:https://doi.org/10.3389/fcvm.2022.844312

55. Zhang C, Fang X, Zhang H et al. Genetic susceptibility of hypertension induced kidney disease. Physiological Reports 2020;9(1). doi:https://doi.org/10.14814/phy2.14688

56. Mennuni S, Rubattu S, Pierelli G et al. Hypertension and kidneys: unraveling complex molecular mechanisms underlying hypertensive renal damage. J Hum Hypertens 2014;28(2):74–79. doi: 10.1038/jhh.2013.47

57. Ku E, Lee BJ, Wei J, Weir MR. Hypertension in CKD: core curriculum 2019. Am J Kidney Dis 2019;74(1):120–131. doi: 10.1053/j.ajkd.2019.01.015

58. Russcher M, Koch B, Nagtegaal E. The role of melatonin treatment in chronic kidney disease. Front Biosci (Landmark Ed) 2012;17:2644–2656

59. QIAO YF, GUO WJ, LI L et al. Melatonin attenuates hypertension- induced renal injury partially through inhibiting oxidative stress in rats. Molecular Medicine Reports 2015;13(1):21–26. doi:https:// doi.org/10.3892/mmr.2015.4495

60. de Souza AVG, Golim MA, Deffune E et al. Evaluation of Renal Protection From High Doses of Melatonin in an Experimental Model of Renal Ischemia and Reperfusion in Hyperglycemic Rats Transplantation Proceedings 2014;46(5):1591–1593. doi:https:// doi.org/10.1016/j.transproceed.2014.02.024

61. Shan SK, Lin X, Wu F et al. Vascular wall microenvironment: Endothelial cells original exosomes mediated melatonin-suppressed vascular calcification and vascular ageing in a m6A methylation dependent manner. Bioactive Materials 2024;42:52–67. doi:https:// doi.org/10.1016/j.bioactmat.2024.08.021

62. Wang H, Tzi Bun NgNote. Hypotensive Activity of the Pineal Indoleamine Hormones Melatonin, 5-Methoxytryptophol and 5-Methoxytryptamine. Pharmacology & Toxicology 2000;86(3):125–128. doi:https://doi.org/10.1034/j.1600-0773.2000.d01-23.x

63. Ma S, Chen J, Feng J et al. Melatonin Ameliorates the Progression of Atherosclerosis via Mitophagy Activation and NLRP3 Inflammasome Inhibition. Oxidative Medicine and Cellular Longevity 2018;2018:1–12. doi:https://doi.org/10.1155/2018/9286458

64. Zhao Z, Wang X, Zhang R et al. Melatonin attenuates smoking-induced atherosclerosis by activating the Nrf2 pathway via NLRP3 inflammasomes in endothelial cells. Aging 2021; 13(8):11363–11380. doi:https://doi.org/10.18632/aging.202829

65. Amir Ajoolabady, Bi Y, David Julian McClements et al. Melatonin-based therapeutics for atherosclerotic lesions and beyond: Focusing on macrophage mitophagy. Pharmacological Research 2022;176:106072–106072. doi:https://doi.org/10.1016/j.phrs.2022.106072

66. Yao Q, Pecoits-Filho R, Lindholm B, Stenvinkel P. Traditional and non-traditional risk factors as contributors to atherosclerotic cardiovascular disease in end-stage renal disease. Scand J Urol Nephrol 2004;38:405–416

67. Zhang Y, Liu X, Bai X et al. Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. Journal of Pineal Research 2017;64(2):e12449. doi:https://doi.org/10.1111/jpi.12449

68. Gupta M, Orozco G, Rao M, Gedaly R, Malluche HH, Neyra JA. The Role of Alterations in Alpha-Klotho and FGF-23 in Kidney Transplantation and Kidney Donation. Frontiers in Medicine 2022;9. doi:https://doi.org/10.3389/fmed.2022.803016

69. Huang YS, Lu KC, Chao TK et al. Role of melatonin receptor 1A and pituitary homeobox-1 coexpression in protecting tubular epithelial cells in membranous nephropathy. Journal of Pineal Research 2018;65(1). doi:https://doi.org/10.1111/jpi.12482

70. Huang Y, Lu K, Chao H et al. The MTNR1A mRNA is stabilized by the cytoplasmic hnRNPL in renal tubular cells. Journal of Cellular Physiology 2020;236(3):2023–2035. doi:https://doi.org/10.1002/jcp.29988

71. Fu X, Luo ZX, Yin HH et al. Metabolomics study reveals blood biomarkers for early diagnosis of chronic kidney disease and IgA nephropathy: A retrospective cross-sectional study. Clinica Chimica Acta. Published online February 1, 2024:117815–117815. doi:https://doi.org/10.1016/j.cca.2024.117815

72. İmamoğlu M, Cay A, Çobanoglu Ü et al. Effects of melatonin on suppression of renal scarring in experimental model of pyelonephritis. Urology 2006;67(6):1315–1319. doi:https://doi.org/10.1016/j.urology.2005.12.013

73. Göksel Şener, Halil Tuğtepe, Ayliz Velioğlu-Öğünç, Şule Çetinel, Nursal Gedik, Yeğen BÇ. Melatonin prevents neutrophil-mediated oxidative injury in Escherichia coli-induced pyelonephritis in rats. Journal of Pineal Research 2006;41(3):220–227. doi:https://doi.org/10.1111/j.1600-079x.2006.00357.x

74. Allameh Z, Salamzadeh J. Use of antioxidants in urinary tract infection. Journal of Research in Pharmacy Practice 2016;5(2):79–85. doi:https://doi.org/10.4103/2279-042X.179567

75. Couser WG, Johnson RJ. The etiology of glomerulonephritis: roles of infection and autoimmunity. Kidney International 2014;86(5):905–914. doi:https://doi.org/10.1038/ki.2014.49

76. Oliveira CB, Lima CAD, Vajgel G, Sandrin-Garcia P. The Role of NLRP3 Inflammasome in Lupus Nephritis. International Journal of Molecular Sciences 2021;22(22):12476. doi:https://doi.org/10.3390/ijms222212476

77. Peng X, Yang T, Liu G, Liu H, Peng Y, He L. Piperine ameliorated lupus nephritis by targeting AMPK-mediated activation of NLRP3 inflammasome. International Immunopharmacology 2018;65:448–457. doi:https://doi.org/10.1016/j.intimp.2018.10.025

78. Bonomini F, Dos Santos M, Veronese FV, Rezzani R. NLRP3 Inflammasome Modulation by Melatonin Supplementation in Chronic Pristane-Induced Lupus Nephritis. International Journal of Molecular Sciences 2019;20(14):3466. doi:https://doi.org/10.3390/ijms20143466

79. dos Santos M, Favero G, Bonomini F et al. Oral supplementation of melatonin protects against lupus nephritis renal injury in a pristane-induced lupus mouse model. Life Sciences 2018;193:242–251. doi:https://doi.org/10.1016/j.lfs.2017.10.038

80. Fogo AB. Causes and pathogenesis of focal segmental glomerulosclerosis. Nat Rev Nephrol 2015;11:76–87

81. Zhu X, Tang L, Mao J et al. Decoding the Mechanism behind the Pathogenesis of the Focal Segmental Glomerulosclerosis. Tang M, ed. Computational and Mathematical Methods in Medicine. 2022;2022:1–15. doi:https://doi.org/10.1155/2022/1941038

82. Wu CC, Lu KC, Lin GJ et al. Melatonin enhances endogenous heme oxygenase-1 and represses immune responses to ameliorate experimental murine membranous nephropathy. Journal of pineal research 2012;52(4):460–469. doi:https://doi.org/10.1111/j.1600-079x.2011.00960.x

83. Bizzarri M, Proietti S, Cucina A, Reiter RJ. Molecular mechanisms of the pro-apoptotic actions of melatonin in cancer: a review. Expert Opinion on Therapeutic Targets 2013;17(12):1483–1496. doi:https://doi.org/10.1517/14728222.2013.834890

84. Lin YW, Lee LM, Lee WJ et al. Melatonin inhibits MMP-9 transactivation and renal cell carcinoma metastasis by suppressing Akt-MAPKs pathway and NF-κB DNA-binding activity. Journal of Pineal Research 2016;60(3):277–290. doi:https://doi.org/10.1111/jpi.12308

85. Min K, Kim HS, Park EJ, Kwon TK. Melatonin enhances thapsigargin-induced apoptosis through reactive oxygen speciesmediated upregulation of CCAAT-enhancer-binding protein homologous protein in human renal cancer cells. Journal of Pineal Research 2012;53(1):99–106. doi:https://doi.org/10.1111/j.1600-079x.2012.00975.x

86. Kucuktulu E. Protective effect of melatonin against radiation induced nephrotoxicity in rats. Asian Pac J Cancer Prev 2012;13(8):4101–4105. PMID: 23098524

87. Kapić D, Mornjaković Z, Ćosović E, Šahinović M. A histological study of the effect of exogenous melatonin on gentamicin induced structural alterations of proximal tubules in rats. Biomolecules and Biomedicine 2014;14(1):30–34. doi:https://doi.org/10.17305/bjbms.2014.2293

88. Lee IC, Kim SH, Lee SM et al. Melatonin attenuates gentamicin-induced nephrotoxicity and oxidative stress in rats. Archives of Toxicology 2012;86(10):1527–1536. doi:https://doi.org/10.1007/s00204-012-0849-8

89. Morishima I, Matsui H, Hiroaki Mukawa et al. Melatonin, a pineal hormone with antioxidant property, protects against adriamycin cardiomyopathy in rats. Life sciences 1998;63(7):511–521. doi:https://doi.org/10.1016/s0024-3205(98)00302-6

90. Parlakpinar H, Ozer MK, Sahna E, Vardi N, Cigremis Y, Acet A. Amikacin-induced acute renal injury in rats: protective role of melatonin. Journal of Pineal Research 2003;35(2):85–90. doi:https://doi.org/10.1034/j.1600-079x.2003.00059.x

91. Yousef JM, Chen G, Hill PA et al. Melatonin attenuates colistin-induced nephrotoxicity in rats. Antimicrob Agents Chemother 2011;52(11):4044–4049

92. Hrenák J, Arendášová K, Rajkovičová R et al. Protective effect of captopril, olmesartan, melatonin and compound 21 on doxorubicin-induced nephrotoxicity in rats. Physiological Research 2013;62(Suppl 1):S181–189. doi:https://doi.org/10.33549/physiolres.932614

93. Montilla PL, Túnez IF, Muñoz C, Gascón FL, Vicente J. Protective role of melatonin and retinol palmitate in oxidative stress and hyperlipidemic nephropathy induced by adriamycin in rats. Journal of Pineal Research 1998;25(2):86–93. doi:https://doi.org/10.1111/j.1600-079x.1998.tb00544.x

94. Abraham P, Kolli VK, Rabi S. Melatonin attenuates methotrexate-induced oxidative stress and renal damage in rats. Cell Biochemistry and Function 2010;28(5):426–433. doi:https://doi.org/10.1002/cbf.1676

95. Hara M, Yoshida M, Nishijima H et al. Melatonin, a pineal secretory product with antioxidant properties, protects against cisplatin-induced nephrotoxicity in rats. Journal of Pineal Research 2001;30(3):129–138. doi:https://doi.org/10.1034/j.1600-079x.2001.300301.x

96. Datta M, Majumder R, Chattopadhyay A, Bandyopadhyay D. Protective effect of melatonin in atherosclerotic cardiovascular disease: A comprehensive review. Melatonin Research 2021;4(3):408–430. doi:https://doi.org/10.32794/mr112500102

97. Stacchiotti A, Ricci F, Rezzani R et al. Tubular Stress Proteins and Nitric Oxide Synthase Expression in Rat Kidney Exposed to Mercuric Chloride and Melatonin. Journal of Histochemistry & Cytochemistry 2006;54(10):1149–1157. doi:https://doi.org/10.1369/jhc.6a6932.2006

98. Mitziev AK. Izmenenie aktivnostyi pereksinnogo okisleniya lipidov kak mekhanizm razvitiya patologii pochek pri deystvii tyazhelykh metallov. Patol Fiziol Eksp Ter 2015;59(2):65–69

99. Ding F, Zhang L, Wu X et al. Melatonin ameliorates renal dysfunction in glyphosate- and hard water-treated mice. Ecotoxicology and Environmental Safety 2022;241:113803–113803. doi:https:// doi.org/10.1016/j.ecoenv.2022.113803

100. Zhang L, Ding F, Wu X et al. Melatonin ameliorates glyphosate-and hard water-induced renal tubular epithelial cell senescence via PINK1-Parkin-dependent mitophagy. Ecotoxicology and Environmental Safety 2023;255:114719. doi:https://doi.org/10.1016/j.ecoenv.2023.114719

101. Movahhed SMM. Possible benefits of exogenous melatonin for individuals on dialysis: a narrative review on potential mechanisms and clinical implications. Naunyn-Schmiedeberg’s Archives of Pharmacology. Published online June 7, 2021. doi:https://doi.org/10.1007/s00210-021-02099-x

102. Ostadmohammadi V, Soleimani A, Bahmani F et al. The Effects of Melatonin Supplementation on Parameters of Mental Health, Glycemic Control, Markers of Cardiometabolic Risk, and Oxidative Stress in Diabetic Hemodialysis Patients: A Randomized, Double-Blind, Placebo-Controlled Trial. Journal of Renal Nutrition Published online October 2019. doi:https://doi.org/10.1053/j.jrn.2019.08.003

103. Houssem Marzougui, Imen Ben Dhia, Mezghani I et al. The Synergistic Effect of Intradialytic Concurrent Training and Melatonin Supplementation on Oxidative Stress and Inflammation in Hemodialysis Patients: A Double-Blind Randomized Controlled Trial. Antioxidants 2024;13(11):1290–1290. doi:https://doi.org/10.3390/antiox13111290

104. Houssem Marzougui, Hammouda O, Imen Ben Dhia et al. Melatonin ingestion before intradialytic exercise improves immune responses in hemodialysis patients. International Urology and Nephrology 2020;53(3):553–562. doi:https://doi.org/10.1007/s11255-020-02643-3

105. Labonia W, Rubio D, Arias C. Melatonin corrects reticuloendothelial blockade and iron status in haemodialysed patients. Nephrology 2005;10(6):583–587. doi:https://doi.org/10.1111/j.1440-1797.2005.00488.x

106. Garwood S. Renal insufficiency after cardiac surgery. Semin Cardiothorac Vasc Anesth 2004;8(3):227–241. doi:10.1177/108925320400800305

107. Mangano CM, Diamondstone LS, Ramsay JG, Aggarwal A, Herskowitz A, Mangano DT. Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes, and hospital resource utilization. The Multicenter Study of Perioperative Ischemia Research Group. Ann Intern Med 1998;128(3):194–203. doi:10.7326/0003-4819-128-3-199802010-00005

108. Donohoe J, Venkatachalam MA, Bernard D, Levinsky NG. Tubular leakage and obstruction after renal ischemia: Structuralfunctional correlations. 1978;13(3):208–222. doi:https://doi.org/10.1038/ki.1978.31

109. Yang C, Sung P, Chiang JY et al. Combined tacrolimus and melatonin effectively protected kidney against acute ischemiareperfusion injury. The FASEB journal 2021;35(6). doi:https://doi.org/10.1096/fj.202100174r

110. Sener G, Sehirli AO, Keyer-Uysal M, Arbak S, Ersoy Y, Yeğen BC. The protective effect of melatonin on renal ischemiareperfusion injury in the rat. J Pineal Res 2002;32(2):120–126. doi:10.1034/j.1600-079x.2002.1848.x

111. Yang J, Liu H, Han S et al. Melatonin pretreatment alleviates renal ischemia-reperfusion injury by promoting autophagic flux via TLR4/MyD88/MEK/ERK/mTORC1 signaling. FASEB J 2020;34(9):12324–12337. doi:10.1096/fj.202001252R

112. Zahran R, Ghozy A, Elkholy SS, El-Taweel F, El-Magd MA. Combination therapy with melatonin, stem cells and extracellular vesicles is effective in limiting renal ischemia-reperfusion injury in a rat model. Int J Urol 2020;27(11):1039–1049. doi:10.1111/iju.14345

113. Panah F, Ghorbanihaghjo A, Argani H et al. The effect of oral melatonin on renal ischemia-reperfusion injury in transplant patients: A double-blind, randomized controlled trial. Transpl Immunol 2019;57:101241. doi:10.1016/j.trim.2019.101241

114. Anna, Isidor Minović, Martijn van Faassen, et al. Urinary Excretion of 6-Sulfatoxymelatonin, the Main Metabolite of Melatonin, and Mortality in Stable Outpatient Renal Transplant Recipients. Journal of Clinical Medicine 2020;9(2):525–525. doi:https://doi.org/10.3390/jcm9020525

115. Maung SC, Sara AE, Chapman C, Cohen D, Cukor D. Sleep disorders and chronic kidney disease. World Journal of Nephrology 2016;5(3):224. doi:https://doi.org/10.5527/wjn.v5.i3.224

116. Elder SJ, Pisoni RL, Akizawa T et al. Sleep quality predicts quality of life and mortality risk in haemodialysis patients: Results from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Nephrology Dialysis Transplantation 2007;23(3):998–1004. doi:https:// doi.org/10.1093/ndt/gfm630

117. Tu CY, Chou YH, Lin YH, Huang WL. Sleep and emotional disturbance in patients with non-dialysis chronic kidney disease. Journal of the Formosan Medical Association 2019;118(6):986–994. doi:https://doi.org/10.1016/j.jfma.2018.10.016

118. Tan LH, Chen PS, Chiang HY et al. Insomnia and Poor Sleep in CKD: A Systematic Review and Meta-analysis. Kidney Medicine 2022;4(5):100458. doi:https://doi.org/10.1016/j.xkme.2022.100458

119. Hsu CY, Lee CT, Lee YJ et al. Better Sleep Quality and Less Daytime Symptoms in Patients on Evening Hemodialysis: A Questionnaire-based Study. Artificial Organs 2008;32(9):711–716. doi:https://doi.org/10.1111/j.1525-1594.2008.00593.x

120. Novak M, Molnar MZs, Ambrus C et al. Chronic Insomnia in Kidney Transplant Recipients. American Journal of Kidney Diseases 2006;47(4):655–665. doi:https://doi.org/10.1053/j.ajkd.2005.12.035

121. Gopal A, Farragher J, Jassal SV, Mucsi I. Sleep Disorders in CKD. American Journal of Kidney Diseases. Published online February 2025. doi:https://doi.org/10.1053/j.ajkd.2024.12.010

122. Edalat-Nejad M, Haqhverdi F, Hossein-Tabar T, Ahmadian M. Melatonin improves sleep quality in hemodialysis patients. Indian Journal of Nephrology 2013;23(4):264. doi:https:// doi.org/10.4103/0971-4065.114488

123. Asghar MS, Ahsan MN, Jawed R et al. A Comparative Study on the Use of Alprazolam and Melatonin for Sleep Disturbances in Hemodialysis Patients. Cureus. Published online November 28, 2020. doi:https://doi.org/10.7759/cureus.11754

124. Elshahat Ali Yousef, El A, Aya Atef Baddor, Mohammed Abd-Elkader Sobh. A Cross-sectional Study on Pulmonary Hypertension in Patients with Stage 5 Chronic Kidney Disease. Saudi Journal of Kidney Diseases and Transplantation. 2022;33(Suppl 1):S1–S11. doi:https://doi.org/10.4103/1319-2442.367802

125. Marzieh SH, Jafari H, Shorofi SA et al. The effect of melatonin on sleep quality and cognitive function of individuals undergoing hemodialysis. Sleep Medicine 2023;111:105–110. doi:https://doi.org/10.1016/j.sleep.2023.09.011

126. Ованесов КБ. Значение ретино-эпифизарной системы для психофармакологического эффекта: автореф. дис. … д-ра мед. наук. М., 2004. 44 с. EDN NPXDXR

127. Арушанян ЭБ, Ованесов КБ, Ованесова ИМ. Сравни- тельное влияние мелатонина и билобила на световосприятие и психофизиологические показатели у лиц, перенесших черепно-мозговую травму. Эксп Клин Фармакол 2007;70(2):20–23. EDN TNJCMT

128. Шабанов ПД, Арушанян ЕБ, Байрамов АА и др., ред. Психонейроэндокринология-2024: новые тенденции развития. Арт-Экспресс; 2025:544. ISBN 978-5-4391-1025-4. EDN AXGECL

129. Арушанян ЭБ, Ованесов КБ. Влияние имипрамина на динамику вынужденного плавания у крыс после энуклеации и пинеалэктомии. Журн. высш. нервн. деят им. И.П. Павлова 1996;46(2):393–395. EDN MOVHHN

130. Арушанян ЭБ, Ованесов КБ. Антидепрессанты: Учебник для студентов в вопросах и ответах. Ставропольский государственный медицинский университет; 2017:200. EDN YPUIEX

131. Арушанян ЕБ, Ованесов КБ. Значение мелатонина для физиологии и патологии глаза. Мед Вестн Сев Кавказа 2016;11(1):126–133. doi:10.14300/mnnc.2016.11017. EDN VVXSZV

132. Ованесов КБ, Шабанов ПД. Показатели ретинальной фоточувствительности как объективный показатель выраженности психостимулирующего эффекта. Обзоры по клинической фармакологии и лекарственной терапии 2021;19(3):313–326. doi:10.17816/RCF193313-326

133. Ованесов КБ, Шабанов ПД. Оценка ретинальной фоточувствительности как объективный показатель выраженности психодепримирующего эффекта. Обзоры по клинической фармакологии и лекарственной терапии 2021;19(2): 211–220. doi: 10.17816/RCF192211-220. EDN NYPREG


Рецензия

Для цитирования:


Ованесов К.Б., Колмакова Е.В., Бакулина Н.В. Мелатонин в патогенезе и лечении хронической болезни почек. Нефрология. 2025;29(4):22-36. https://doi.org/10.36485/1561-6274-2025-29-4-22-36. EDN: MUTQZV

For citation:


Ovanesov K.B., Kolmakova E.V., Bakulina N.V. Melatonin in the pathogenesis and treatment of chronic kidney disease. Nephrology (Saint-Petersburg). 2025;29(4):22-36. (In Russ.) https://doi.org/10.36485/1561-6274-2025-29-4-22-36. EDN: MUTQZV

Просмотров: 55

JATS XML

ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)