Urolithiasis and the major urinary protein
https://doi.org/10.36485/1561-6274-2025-29-4-37-43
EDN: XQQPWY
Abstract
The pathogenetic approach to metaphylaxis of urolithiasis is a widespread, socially significant healthcare issue due to the increasing incidence and, particularly, its recurrent nature, despite advances in pharmacotherapy and the application of lithotripsy. Pathological crystal genesis is viewed as a consequence of exceeding the solubility threshold of various urinary mineral components on one hand, and as a result of post-translational defects in the main proteome of urine formation – uromodulin (UMOD), which demonstrates a sanogenetic system in healthy individuals for maintaining biophysical homeostasis stability: the colloidal properties of urine. However, in addition to this, UMOD, by binding mannose-dependent pili of infectious agents, blocks bacterial contact with urothelial cells, given that urinary tract infection is a known factor in urolithiasis. By modeling the urine of healthy individuals through co-incubation with E. coli bacteria, a decrease in the concentration of polymerized uromodulin in urine has been demonstrated as a factor increasing the risk of calcium oxalate crystal formation.
Keywords
About the Authors
N. A. VerlovRussian Federation
Nikolay A. Verlov, Ph.D.
188300, Russia, Leningradskaya oblast, Gatchina 1, mkr. Orlova roshcha
Phone: +7 (813) 714-60-93
K. R. Dyussupova
Russian Federation
Karina R. Dyussupova
197022, Russia, Saint-Petersburg, 197022, Russia, St-Petersburg, L. Tolstoy st., 6-8, build 11
V. L. Emanuel
Russian Federation
Vladimir L. Emanuel
197022, Russia, St-Petersburg, L. Tolstoy st., 6-8, build 11
References
1. The National Medical Research Centre of Radiology of Ministry of health of Russian Federation et al. The incidence of urolithiasis in the Russian Federation from 2005 to 2020. ECU 2022;15(2):10–17. https://doi.org/10.29188/2222-8543-2022-15-2-10-17
2. Li S, Huang X, Liu S et al. Trends in the Incidence and DALYs of Urolithiasis From 1990 to 2019: Results From the Global Burden of Disease Study 2019. Front Public Health 2022;10(825541). https://doi.org/10.3389/fpubh.2022.825541
3. Borumandnia N et al. Longitudinal trend of urolithiasis incidence rates among world countries during past decades. BMC Urol 2023;23(1):166. https://doi.org/10.1186/s12894-023-01336-0
4. Allam EAH. Urolithiasis unveiled: pathophysiology, stone dynamics, types, and inhibitory mechanisms: a review. Afr J Urol 2024;30(1):34. https://doi.org/10.1186/s12301-024-00436-z
5. O’Kell AL, Grant DC, Khan SR. Pathogenesis of calcium oxalate urinary stone disease: species comparison of humans, dogs, and cats. Urolithiasis 2017;45(4):329–336. https://doi.org/10.1007/s00240-017-0978-x
6. Alexander RT et al. Kidney Stones and Cardiovascular Events: A Cohort Study. Clinical Journal of the American Society of Nephrology 2014;9(3):506–512. https://doi.org/10.2215/cjn.04960513
7. Natochin YuV. Nephrology and fundamental science. Nephrology (Saint-Petersburg) 2012;16(1):9–21.(In Russ.) https://doi.org/10.24884/1561-6274-2012-16-1-9-21
8. Luo W, Zhou Y, Gao C et al. Urolithiasis, Independent of Uric Acid, Increased Risk of Coronary Artery and Carotid Atherosclerosis: A Meta-Analysis of Observational Studies. BioMed Research International 2020;2020(1):1–11. https://doi.org/10.1155/2020/1026240
9. Tamborino F, Cicchetti R, Mascitti M et al. Pathophysiology and Main Molecular Mechanisms of Urinary Stone Formation and Recurrence. JMS 2024;25(5):3075. https://doi.org/10.3390/ijms25053075
10. Argade S et al. An evaluation of Tamm–Horsfall protein glycans in kidney stone formers using novel techniques. Urolithiasis 2015;43(4):303–312. https://doi.org/10.1007/s00240-015-0775-3
11. Armstrong JA. Urinalysis in Western culture: A brief history. Kidney International 2007;71(5):384–387. https://doi. org/10.1038/sj.ki.5002057
12. Bolodeoku J, Olukoga A, Donaldson D. Historical perspectives on health Origins of blood analysis in clinical diagnosis. Journal of the Royal Society for the Promotion of Health 1998;118(4):231–236. https://doi.org/10.1177/146642409811800409
13. Olukoga AO, Bolodeoku J, Donaldson D. Laboratory Instrumentation in Clinical Biochemistry: An Historical Perspective. J R Soc Med 1997;90(10):570–577. https://doi.org/10.1177/146642409811800409
14. Billman GE. Homeostasis: The Underappreciated and Far Too Often Ignored Central Organizing Principle of Physiology. Front Physiol 2020;11:200. https://doi.org/10.3389/fphys.2020.00200
15. Oghoverere AB, Igho OE. Comparative histochemical study of the kidney of six mammalian species. J Med Scie 2019;51(1):11–23. https://doi.org/10.19106/jmedscie/005101201902
16. Ivanova LA et al. Matrix is everywhere: extracellular DNA is a link between biofilm and mineralization in Bacillus cereus planktonic lifestyleю npj Biofilms Microbiomes 2023;9(1):9. https://doi.org/10.1038/s41522-023-00377-5
17. Santucci L, Candiano G, Brushi M et al. Urinary proteome in a snapshot: normal urine and glomerulonephritis. JN 2013;26(4):610–616. https://doi.org/10.5301/jn.5000233
18. Deen WM. What determines glomerular capillary permeability? J Clin Invest 2004;114(10):1412–1414. https://doi.org/10.1172/jci200423577
19. Rodewald R, Karnovsky MJ. Porous substructure of the glomerular slit diaphragm in the rat and mouse. The Journal of Cell Biology 1974;60(2):423–433. https://doi.org/10.1083/jcb.60.2.423
20. Tojo A, Kinugasa S. Mechanisms of Glomerular Albumin Filtration and Tubular Reabsorption. International Journal of Nephrology 2012;2012:1–9. https://doi.org/10.1155/2012/481520
21. Graham RC, Karnovsky MJ. Glomerular permeability. The Journal of Experimental Medicine 1966;124(6):1123–1134. https://doi.org/10.1084/jem.124.6.1123
22. Natochin YuV. Kidney: excretion or preservation organ? Progress in physiological science 2019;50(4):14–25. (In Russ.) https:// doi.org/10.1134/S0301179819040064
23. Seriki AS. Role of the Kidneys in the Regulation of Intra-and Extra-Renal Blood Pressure. Ann Clin Hypertens 2018;2:048–058. https://doi.org/10.29328/journal.ach.1001011
24. Hall JE, Hall ME. Guyton and Ha ll Textbook Of Medical Physiology. 14th ed. Elsevier, Philadelphia, 2021;1184
25. Srivastava R, Micanovic R, El-Achkar TM et al. An Intricate Network of Conserved DNA Upstream Motifs and Associated Transcription Factors Regulate the Expression of Uromodulin Gene. Journal of Urology 2014;192(3):981–989. https:// doi.org/10.1016/j.juro.2014.02.095
26. Tokonami N, Takata T, Beyeler J et al. Uromodulin is expressed in the distal convoluted tubule, where it is critical for regulation of the sodium chloride cotransporter NCC. Kidney International 2018;94(4):701–715. https://doi.org/10.1016/j.kint.2018.04.021
27. Izzedine H, Lescure FX, Bonnet F. HIV medication-based urolithiasis. Clin Kidney J 2014;7(2):121–126. https://doi.org/10.1093/ckj/sfu008
Review
For citations:
Verlov N.A., Dyussupova K.R., Emanuel V.L. Urolithiasis and the major urinary protein. Nephrology (Saint-Petersburg). 2025;29(4):37-43. (In Russ.) https://doi.org/10.36485/1561-6274-2025-29-4-37-43. EDN: XQQPWY
JATS XML


































