Preview

Nephrology (Saint-Petersburg)

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Urolithiasis and the major urinary protein

https://doi.org/10.36485/1561-6274-2025-29-4-37-43

EDN: XQQPWY

Abstract

The pathogenetic approach to metaphylaxis of urolithiasis is a widespread, socially significant healthcare issue due to the increasing incidence and, particularly, its recurrent nature, despite advances in pharmacotherapy and the application of lithotripsy. Pathological crystal genesis is viewed as a consequence of exceeding the solubility threshold of various urinary mineral components on one hand, and as a result of post-translational defects in the main proteome of urine formation – uromodulin (UMOD), which demonstrates a sanogenetic system in healthy individuals for maintaining biophysical homeostasis stability: the colloidal properties of urine. However, in addition to this, UMOD, by binding mannose-dependent pili of infectious agents, blocks bacterial contact with urothelial cells, given that urinary tract infection is a known factor in urolithiasis. By modeling the urine of healthy individuals through co-incubation with E. coli bacteria, a decrease in the concentration of polymerized uromodulin in urine has been demonstrated as a factor increasing the risk of calcium oxalate crystal formation.

About the Authors

N. A. Verlov
Petersburg Nuclear Physics Institute named by B.P.Konstantinov of National Research Centre «Kurchatov Institute»
Russian Federation

Nikolay A. Verlov, Ph.D.

188300, Russia, Leningradskaya oblast, Gatchina 1, mkr. Orlova roshcha

Phone: +7 (813) 714-60-93



K. R. Dyussupova
First Pavlov State Medical University of St. Petersburg
Russian Federation

Karina R. Dyussupova

197022, Russia, Saint-Petersburg, 197022, Russia, St-Petersburg, L. Tolstoy st., 6-8, build 11



V. L. Emanuel
First Pavlov State Medical University of St. Petersburg
Russian Federation

Vladimir L. Emanuel

197022, Russia, St-Petersburg, L. Tolstoy st., 6-8, build 11



References

1. The National Medical Research Centre of Radiology of Ministry of health of Russian Federation et al. The incidence of urolithiasis in the Russian Federation from 2005 to 2020. ECU 2022;15(2):10–17. https://doi.org/10.29188/2222-8543-2022-15-2-10-17

2. Li S, Huang X, Liu S et al. Trends in the Incidence and DALYs of Urolithiasis From 1990 to 2019: Results From the Global Burden of Disease Study 2019. Front Public Health 2022;10(825541). https://doi.org/10.3389/fpubh.2022.825541

3. Borumandnia N et al. Longitudinal trend of urolithiasis incidence rates among world countries during past decades. BMC Urol 2023;23(1):166. https://doi.org/10.1186/s12894-023-01336-0

4. Allam EAH. Urolithiasis unveiled: pathophysiology, stone dynamics, types, and inhibitory mechanisms: a review. Afr J Urol 2024;30(1):34. https://doi.org/10.1186/s12301-024-00436-z

5. O’Kell AL, Grant DC, Khan SR. Pathogenesis of calcium oxalate urinary stone disease: species comparison of humans, dogs, and cats. Urolithiasis 2017;45(4):329–336. https://doi.org/10.1007/s00240-017-0978-x

6. Alexander RT et al. Kidney Stones and Cardiovascular Events: A Cohort Study. Clinical Journal of the American Society of Nephrology 2014;9(3):506–512. https://doi.org/10.2215/cjn.04960513

7. Natochin YuV. Nephrology and fundamental science. Nephrology (Saint-Petersburg) 2012;16(1):9–21.(In Russ.) https://doi.org/10.24884/1561-6274-2012-16-1-9-21

8. Luo W, Zhou Y, Gao C et al. Urolithiasis, Independent of Uric Acid, Increased Risk of Coronary Artery and Carotid Atherosclerosis: A Meta-Analysis of Observational Studies. BioMed Research International 2020;2020(1):1–11. https://doi.org/10.1155/2020/1026240

9. Tamborino F, Cicchetti R, Mascitti M et al. Pathophysiology and Main Molecular Mechanisms of Urinary Stone Formation and Recurrence. JMS 2024;25(5):3075. https://doi.org/10.3390/ijms25053075

10. Argade S et al. An evaluation of Tamm–Horsfall protein glycans in kidney stone formers using novel techniques. Urolithiasis 2015;43(4):303–312. https://doi.org/10.1007/s00240-015-0775-3

11. Armstrong JA. Urinalysis in Western culture: A brief history. Kidney International 2007;71(5):384–387. https://doi. org/10.1038/sj.ki.5002057

12. Bolodeoku J, Olukoga A, Donaldson D. Historical perspectives on health Origins of blood analysis in clinical diagnosis. Journal of the Royal Society for the Promotion of Health 1998;118(4):231–236. https://doi.org/10.1177/146642409811800409

13. Olukoga AO, Bolodeoku J, Donaldson D. Laboratory Instrumentation in Clinical Biochemistry: An Historical Perspective. J R Soc Med 1997;90(10):570–577. https://doi.org/10.1177/146642409811800409

14. Billman GE. Homeostasis: The Underappreciated and Far Too Often Ignored Central Organizing Principle of Physiology. Front Physiol 2020;11:200. https://doi.org/10.3389/fphys.2020.00200

15. Oghoverere AB, Igho OE. Comparative histochemical study of the kidney of six mammalian species. J Med Scie 2019;51(1):11–23. https://doi.org/10.19106/jmedscie/005101201902

16. Ivanova LA et al. Matrix is everywhere: extracellular DNA is a link between biofilm and mineralization in Bacillus cereus planktonic lifestyleю npj Biofilms Microbiomes 2023;9(1):9. https://doi.org/10.1038/s41522-023-00377-5

17. Santucci L, Candiano G, Brushi M et al. Urinary proteome in a snapshot: normal urine and glomerulonephritis. JN 2013;26(4):610–616. https://doi.org/10.5301/jn.5000233

18. Deen WM. What determines glomerular capillary permeability? J Clin Invest 2004;114(10):1412–1414. https://doi.org/10.1172/jci200423577

19. Rodewald R, Karnovsky MJ. Porous substructure of the glomerular slit diaphragm in the rat and mouse. The Journal of Cell Biology 1974;60(2):423–433. https://doi.org/10.1083/jcb.60.2.423

20. Tojo A, Kinugasa S. Mechanisms of Glomerular Albumin Filtration and Tubular Reabsorption. International Journal of Nephrology 2012;2012:1–9. https://doi.org/10.1155/2012/481520

21. Graham RC, Karnovsky MJ. Glomerular permeability. The Journal of Experimental Medicine 1966;124(6):1123–1134. https://doi.org/10.1084/jem.124.6.1123

22. Natochin YuV. Kidney: excretion or preservation organ? Progress in physiological science 2019;50(4):14–25. (In Russ.) https:// doi.org/10.1134/S0301179819040064

23. Seriki AS. Role of the Kidneys in the Regulation of Intra-and Extra-Renal Blood Pressure. Ann Clin Hypertens 2018;2:048–058. https://doi.org/10.29328/journal.ach.1001011

24. Hall JE, Hall ME. Guyton and Ha ll Textbook Of Medical Physiology. 14th ed. Elsevier, Philadelphia, 2021;1184

25. Srivastava R, Micanovic R, El-Achkar TM et al. An Intricate Network of Conserved DNA Upstream Motifs and Associated Transcription Factors Regulate the Expression of Uromodulin Gene. Journal of Urology 2014;192(3):981–989. https:// doi.org/10.1016/j.juro.2014.02.095

26. Tokonami N, Takata T, Beyeler J et al. Uromodulin is expressed in the distal convoluted tubule, where it is critical for regulation of the sodium chloride cotransporter NCC. Kidney International 2018;94(4):701–715. https://doi.org/10.1016/j.kint.2018.04.021

27. Izzedine H, Lescure FX, Bonnet F. HIV medication-based urolithiasis. Clin Kidney J 2014;7(2):121–126. https://doi.org/10.1093/ckj/sfu008


Review

For citations:


Verlov N.A., Dyussupova K.R., Emanuel V.L. Urolithiasis and the major urinary protein. Nephrology (Saint-Petersburg). 2025;29(4):37-43. (In Russ.) https://doi.org/10.36485/1561-6274-2025-29-4-37-43. EDN: XQQPWY

Views: 23

JATS XML

ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)