DRUG THERAPY FOR PATIENTS WITH CHRONIC KIDNEY DISEASE: IS THERE A PLACE FOR DOUBLE NEPRILYSIN AND AT1-ANGIOTENSIN RECEPTOR INHIBITOR LCZ696 (SACUBITRIL/VALSARTAN)?
https://doi.org/10.24884/1561-6274-2018-22-2-59-67
Abstract
About the Authors
O. B. KuzminRussian Federation
Oleg B Kuzmin, MD, PhD, DMedSci, Prof., Department of Pharmacology
460000 Russia, Orenburg, Park st., 7.
V. V. Zhezha
Russian Federation
Vladislav V. Zhezha, Department of Pharmacology
460000 Russia, Orenburg, Park st., 7.
V. V. Belaynin
Russian Federation
Vitaly V. Belyanin, Department of Pharmacology
460000 Russia, Orenburg, Park st., 7.
L. N. Landar
Russian Federation
Larisa N. Landar, Department of Pharmacology
460000 Russia, Orenburg, Park st., 7.
References
1. Egido J, Rojas-Rivera J, Vas S et al. Atrasentan for the treatment of diabetic nephropathy. Expert Opin Investig Drugs 2017; 26 (6): 741–750 doi: 10.1080/13543784.2017.1325872
2. Кузьмин ОБ, Жежа ВВ, Ландарь ЛН. Нефропротективные свойства дигидропиридиновых блокаторов Са2+-каналов. Обзоры по клинической фармакологии и лекарственной терапии 2010; 8 (1): 6–12 [Kuz’min OB, Zhezha VV, Landar’ LN. Nefroprotektivnye svojstva digidropipridinovyh blokatorov Ca2+kanalov. Obsory po klinicheskoj farmacologii i lekarstvennoj terapii 2010; 8 (1): 6–12]
3. Uchida S, Takahashi M, Sugawara M, Saito T et al. Effects of the N/L-type calcium channel blocker cilnidihine on nephropathy and uric acid metabolism in hypertensive patients with chronic kidney disease (J-CIRCLE study). J Clin Hypertens (Greenwich) 2014; 16 (10): 746–753 doi: 10.1111/jch.12412
4. Takayama T, Yoda S, Yjima Y et al. Improvement of augmentation index and urinary albumin excretion with benedipine in hypertensive patients with chronic kidney disease. Int Heart J 2016; 57 (1): 53–60 doi: 10.1536/ihj.15-208
5. Breyer MD, Susztak K. Developing treatments for chronic kidney disease in the 21st century. Semin Nephrol 2016; 36 (6): 436–447 doi: 10.1016/j.semnephrol.2016.08.001
6. Benigni A, Perico N, Dadan J et al. Functional implications of decreased renal cortical atrial natriuretic peptide binding in experimental diabetes. Cirs Res 1990; 66 (6): 1453–1460
7. Polsin D, Kamincki HJ, Kastner C et al. Decreased renal corin expression contributes to sodium retention in proteinuric kidney diseases. Kidney Int 2010; 78 (7): 650–659 doi: 10.1038/ki.2010.197
8. Abassi Z, Weissman I, Karram T et al. Restoration of renal responsiveness to atrial natriuretic peptide in experimental nephrotic syndrome by albumin infusion. Am J Nephrol 2013; 38 (4): 292–299 doi: 10.1159/000355014
9. Zhao Y, Yu H, Zhao X et al. The effects of LCZ696 in patients with hypertension compared with angiotensin receptor blockers: a meta-analysis of randomized controlled trials. J Cardiovasc Pharmacol Ther 2017; 22 (5): 447–457 doi: 10.1177/1074248417693379
10. von Lueder TG, Wang BH, Kompa AR et al. Angiotensin receptor neprilysin inhibitor LCZ696 attenuates cardiac remodeling and dysfunction after myocardial infarction by reducing cardiac fibrosis and hypertrophy. Circ Heart Fail 2015; 8 (1):71–88 doi: 10.1161/CIRCHEARTFAILURE.114.001785
11. Voors AA, Cori M, Liu LC et al. Renal effects of the angiotensin receptor neprilysin inhibitor LCZ696 in patients with heart failure and preserve ejection fraction. Eur J Heart Fail 2015;17 (5): 510–517 doi: 10.1002/ejhf.232
12. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure association (HFA) of the ESC. Eur J Heart Fail 2016;18 (8): 891–975 doi: 10.1002/ejhf.592
13. Kerkela R, Ulvila J, Magga J. Natriuretic peptides in the regulation of cardiovascular physiology and metabolic events. J Am Heart Assoc 2015; 4: e002423 doi: 10.1161/JAHA.115.002423
14. Meems LMG, Burnet JC. Innovative therapeutics: designer natriuretic peptides. JACC Basic Transl Sci. 2016; 1 (7): 557–567 doi: 10.1016/j.jacbts.2016.10.01
15. Hirsch JR, Meyer M, Forssmann WG. ANP and urodilatin: who is who in the kidney. Eur J Med Res 2006; 11 (10): 447–454
16. Wu Q, Xu-Cai YO, Chen S, Wang W. Corin: a new insights into natriuretic peptide system. Kidney Int 2009; 75 (2): 142–146 doi: 10.1038/ki.2008.418
17. Wu C, Wu F, Pan J et al. Furin-mediated processing of pro-C-type natriuretic peptide. J Biol Chem 2003; 278 (28): 25847–25852
18. Theilig F, Wu Q. ANP-induced signaling cascade and its implications in renal pathophysiology. Am J Physiol Renal Physiol 2015; 308 (10); F1047–F1055 doi: 10.1152/ajprenal.00164.2014
19. von Lueder TG, Sanralingham SJ, Wang BH et al. Renin-angiotensin blockade combined with natriuretic peptide system augmentation: novel therapeutic concepts to combat heart failure. Circ Heart Fail 2013; 6 (3): 594–605 doi: 10.1161/CIRCHEARTFAILURE.112.000289
20. Kuhn M. Molecular physiology of membrane guanylyl cyclase receptors. Physiol Reviews 2016; 96 (2): 751–804 doi: 10.1152/physrev.00022.2015
21. Volpe M. Natriuretic peptides and cardio-renal disease. Int J Cardiol 2014; 176 (3): 630–639 doi: 10.1016/j.ijcard.2014.08.032
22. Li Y, Sarkar O, Brochu M, Anand-Srivastava MD. Natriuretic peptide receptor-C attenuates hypertension in spontaneously hypertensive rats: role nitroxidative stress and Gi proteins. Hypertension 2014; 63 (4): 8460855 doi: 10.1161/HYPERTENSIONAHA.113.01772
23. Rubattu S, Sciarretta S, Morriello A et. NHR-C: a component of natriuretic peptide family with implications in human diseases. J Mol Med (Berl) 2010; 88 (9): 889–897 doi: 10.1007/s00109-010-0641-2
24. Potter LR. Natriuretic peptide metabolism, clearance and degradation. FEBS J 2011; 278 (11):1808–1817 doi: 10.1111/j.1742-4658.2011.08082.x
25. Domenig O, Manzel A, Grobe N et al. Neprilysin is a mediator of alternative renin-angiotensin system activation in the murine and human kidney. Sci Rep 2016; 6: 33678 doi: 10.1038/srep33678
26. Dong L, Wang H, Dong N et al. Localization corin and atrial natriuretic peptide expression in human renal segments. Clin Sci London 2016; 130 (18): 1655–1664 doi: 10.1042/CS20160398
27. Ogawa Y, Mukoyama M, Yokoi H et al. Natriuretic peptide receptor guanylyl cyclase-A protects podocytes from aldosterone-induced glomerular injury. J Am Soc Nephrol 2012; 23 (7): 1198–1209 doi: 10.1681/ASN.2011100985
28. Wang W, Shen J, Cui Y et al. Impaired sodium excretion and salt sensitive hypertension in corin-deficient mice. Kidney Int 2012; 82 (1): 26–33 doi: 10.1038/ki.2012.41
29. Nishikimi T, Inaba-Iemura C, Ichimura K et al. Natriuretic peptide/natriuretic peptide receptor-A (NPR-A) system has inhibitory effects in renal fibrosis in mice. Regul Pep 2009; 154 (1–3): 44–53 doi: 10.1016/j.regpep.2009.02.006
30. Yoshihara F, Tukodome T, Kishimoto I et al. Aggravated renal tubular damage and interstitial fibrosis in mice lacking guanylyl cyclase-A (GC-A), a receptor for atrial and B-type natriuretic peptides. Clin Exp Nephrol 2015; 19 (2): 197–207 doi: 10.1007/s10157-014-0982-1
31. Staffel J, Valletta D, Federlein A et al. Natriuretic peptide receptor guanylyl cyclase-A in podocytes is renoprotective but dispensable for physiologic renal function. J Am Soc Nephrol 2017; 28 (1): 260–277 doi: 10.1681/ASN.2015070731
32. Kato Y, Mori K, Kasahara M et al. Natriuretic peptide receptor guanylyl cyclase-A pathway counteracts glomerular injury evoked by aldosterone through p38 mitogenactivated protein kinase inhibition. Sci Rep 2017; 7: 46624 doi: 10.1038/srep46624
33. Terada Y, Tomita K, Nonoguchi H et al. PRC localization of C-type natriuretic peptide and B-type receptor mRNAs in rat nephron segments. Am J Physiol 1994; 267 (2): F215–F222
34. Osawa H, Yamabe H, Kaizuka M et al. C-type natriuretic peptide inhibits proliferation and monocyte chemoattractant protein-1 secretion in cultured human mesangial cells. Nephron 2000; 86 (4): 467–472 doi: 10.1159/000045836
35. Lewko B, Endlich N, Kriz W et al. C-type natriuretic peptide as a podocyte hormone and modulation of its cGMP production by glucose and mechanical stress. Kidney Int 2004; 66 (3):1001–1008 doi: 10.1111/j.1523-1755.2004.00848.x
36. Guo L-J, Alli AA, Eaton DC, Bao HF. ENaC is regulated by natriuretic peptide receptor-dependent cGMP signaling. Am J Physiol Renal Physiol 2013; 304 (7); F930–F937 doi: 10.1152/ajprenal.00638.2012
37. Xu P, Wang J, Zhao XQ et al. Overexpressed C-type natriuretic peptide serves as an early compensatory response to counteract extracellular matrix remodeling in unilateral obstruction rats. Mol Biol Rep 2013; 40 (2): 1429–1441 doi: 10.1007/s11033-012-2186-7
38. Xu P, Zhang XC, Kong HB et al. Exogenous C-type natriuretic peptide infusion ameliorates unilateral ureteral obstructioninduced tubulointerstitial fibrosis in rats. Lab Invest 2015; 95 (3): 263–272 doi: 10.1038/labinvest.2014.149
39. Xu P, Xia X, Xuan Q et al. Neutral endopeptidase and natriuretic peptide receptors participate in the regulation of C-type natriuretic peptide expression in renal interstitial fibrosis. J Recept Signal Transduct Res 2017; 37 (1): 71–83 doi: 10.3109/10799893.2016.1155068
40. Spanus KS, Kronenberg F, Ritz E et al. B-type natriuretic peptide concentrations predict the progression of nondiabetic chronic kidney disease: the Mild to Moderate Kidney Disease study. Clin Chem 2007; 53 (7): 1264–1267 doi: 10.1373/clinchem.2006.083170
41. Yoshitomi R, Nakayama M, Sakoh T et al. Plasma B-type natriuretic peptide concentration is independently associated with kidney function decline in Japanese patients. J Hypertens 2016; 34 (4): 753–761 doi: 10.1097/HJH.0000000000000847
42. Schaub JA, Coca SG, Moledina DG et al. Amino-terminal pro-B-type natriuretic peptide for diagnosis and prognosis in patients with renal dysfunction: a systematic review and metaanalysis. JASS Heart Fail 2015; 3 (12): 977–989 doi: 10.1016/j.jchf.2015.07.014
43. Fang C, Shen L, Dong L et al. Reduced urinary corin levels in patients with chronic kidney disease. Clin Sci (London) 2013; 124 (12): 709–717 doi: 10.1042/CS20120517
44. Bae EH, Lee J, Ma SK, Kim SW. Changes of atrial natriuretic peptide system in rats with puromycin aminonucleoside-induced nephrotic syndrome. Korean J Physiol Pharmacol 2009; 13 (1): 1–7 doi: 10.4196/kjpp.2009.13.1.1
45. Obineche EN, Adeghate E, Chandranath IS et al. Alterations in atrial natriuretic peptide and its receptors in streptozotocininduced diabetic rat kidneys. Mol Cell Biochem 2004; 261 (1): 3–8
46. Obineche EN, Chandranath IS, Adeghate E et al. Alterations in atrial natriuretic peptide and its receptor levels in long-term streptozotocin-induced diabetes in rats. Ann N Y Acad Sci 2006; 1084: 223–234 doi: 10.1196/annals.1372.025
47. Jespersen B, Eiskjaer H, Mogensen CE et al. Reduced natriuretic effect of atrial natriuretic peptide: a possible role of decreased cyclic guanosine monophospate. Nephron 1995; 71 (1): 44–53
48. Plum J, Mirzaian Y, Grabensee B. Atrial natriuretic peptide, sodium retention, and proteinuria in nephrotic syndrome. Nephrol Dial Transplant 1996; 11 (6): 1034–1042
49. Taal MW, Nenov VD, Wong W et al. Vasopeptidase inhibition affords greater renoprotection than angiotensin-converting enzyme alone. J Am Soc Nephrol 2001; 12 (10): 2051–2059
50. Packer M, Califf RM, Konstam RA et al. Comparison of omapatrilat and enalapril in patients with chronic heart failure. The Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE). Circulation 2002; 106 (8): 920–926 doi: 10.1161/01.CIR.0000029801.86489.50
51. Gu J, Noe A, Chandra P et al. Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensinneprilysin inhibitor (ARNi). J Clin Pharmacol 2010; 50 (4): 401–414 doi: 10.1177/0091270009343932
52. Hegde LG, Yu C, Renner P et al. Concomitant angiotensin AT1 receptor antagonism and neprilysin inhibition produces omapatrilat-like antihypertensive effects without promoting tracheal plasma extravasation in the rat. J Cardiovasc Pharmacol 2011; 57 (4): 495–504 doi: 10.1097/FJC.0b01e318210fc7e
53. Ushijima K, Ando Y, Arakawa Y et al. Prevention against renal damage in rats with subtotal nephrectomy by sacubitril/ valsartan (LCZ696), a dual acting angiotensin receptor-neprilysin inhibitor. Pharmacol Res Perspect 2017; 5 (4): e00336 doi: 10.1002/prp2.336
54. Ito S, Satoh M, Tamaki Y et al. Safety and efficacy of LCZ696, a first-in-class angiotensin receptor neprilysin inhibitor, in Japanese patients with hypertension and renal dysfunction. Hypertens Res 2015; 38 (4): 269–275 doi: 10.1038/hr.2015.1
55. Voors AA, Gori M, Liu LC et al. Renal effects of angiotensin receptor neprilysin inhibitor LCZ696 in patients with heart failure and preserved ejection fraction. Eur J Heart Fail 2015; 17 (5): 510–517 doi: 10.1002/ejhf.232
56. Jacobs EM, Vervoort J, Branten AJ et al. Atrial natriuretic peptide increases albuminuria in type 1 diabetic patients: evidence for blockade of tubular protein reabsorption. Eur J Clin Invest 1999; 29 (2): 109–115 doi: 10.1046/j.1365–2362.1999.00422.x
57. UK HARP-III Collaborative Group. Randomized multicentre pilot study of sacubitryl/valsartan versus irbesartan in patients with chronic kidney disease: United Kingdom Heart and Renal Protection (HARP)-III rationale, trial design and baseline data. Nephrol Dial Transplant 2016; pii gfw321 doi: 10.1093/ndt/gfw321
Review
For citations:
Kuzmin O.B., Zhezha V.V., Belaynin V.V., Landar L.N. DRUG THERAPY FOR PATIENTS WITH CHRONIC KIDNEY DISEASE: IS THERE A PLACE FOR DOUBLE NEPRILYSIN AND AT1-ANGIOTENSIN RECEPTOR INHIBITOR LCZ696 (SACUBITRIL/VALSARTAN)? Nephrology (Saint-Petersburg). 2018;22(2):59-67. (In Russ.) https://doi.org/10.24884/1561-6274-2018-22-2-59-67