MINIMAL CHANGE DISEASE IN ADULTS
https://doi.org/10.24884/1561-6274-2013-17-6-9-36
Abstract
The review presents modern data about pathogenesis, morphological characteristics, clinical picture and treatment of minimal change disease in adults.
About the Authors
A. V. SmirnovRussian Federation
I. I. Trofimenko
Russian Federation
V. G. Sipovskiy
Russian Federation
References
1. Coggis CH. Minimal change nephrosis in adults. In: Zurukzoglu W, ed. Treatable and Preventable Glomerular Disease, Karger, Basel, Switzerland, 1981. 336-344. Proceedings of the 8th International Congress of Nephrology
2. Lewis EJ. Management of the nephrotic syndrome in adults. In: Caeron JS, Glassock RJ, eds. The Nephrotic Syndrome. Dekker, New York, 1988. 461-521
3. Cameron, JS Hick J. The origins and development of the concept of a ‘nephrotic syndrome’ Am J Nephrol 2002; 22: 240- 247
4. Volhard F, Fahr T. Die Brighsche Nierenkrankheit, Klinik, Pathologie und Atlas. J.Springer, Berlin, 1914
5. Fogazzi G B, E Ritz Novel classification of glomerulonephritis in the monograph of Franz Volhard and Theodor Fahr. Nephrol Dia Transplant 1998; 13(11): 2965-2967
6. Luft FC, Dietz R Franz. Volhard in historical perspective. Hypertension 1993; 22(2):m253-256
7. Серов ВВ, Варшавский ВА Что называть гломерулонефритом: спорные вопросы классификации. Арх пат 1987; (1): 67-75
8. Варшавский ВА, Проскурнева ЕП, Гасанов АБ, и др. Об уточнении клинико-морфологической классификации хронического гломерулонефрита. Нефрология и диализ 1999; 1:(2-3) : 100–106
9. http://www.icd10data.com/ICD10CM/Codes/N00-N99,
10. Barisoni L, Schnaper HW, Kopp JB. A proposed taxonomy for the podocytopathies: a reassessment of the primary nephrotic diseases. Clin J Am Soc Nephrol 2007; 2(3): 529-542
11. Wang SX, Zhang YK, Zhao MH, Zou WZ. Ultrastructural features and expression of cytoskeleton proteins of podocyte from patients with minimal change disease and focal segmental glomerulosclerosis. Shi SF Ren Fail 2008; 30(5): 477-483
12. Kavoura E, Gakiopoulou H, Paraskevakou H, et al. Immunohistochemical evaluation of podocalyxin expression in glomerulopathies associated with nephrotic syndrome. Hum Pathol 2011; 42(2): 227-235
13. Смирнов АВ. Лечение гломерулопатий циклоспорином. Правильный подход с неверным обоснованием. Нефрология 2010; 14(4): 9-22
14. Primary nephritic syndrome in children: clinical significance of histopathologic variants of minimal change and of diffuse mesangial hypercellularity. A report of the International Study of kidney Disease in children. Kidney Int 1981;20:765-71. [No authors listed]-
15. Begum A, Rahman H, Hossain MM, at al. Histological variant of nephrotic syndrome with atypical presentation in children. Mymensingh Med J 2009; 18(1) 42-46
16. Maruyama M, Toyoda M, Umezono T, et al Clinical significance of IgM deposition in the mesangium and mesangial hypercellularity in adult minimal change nephrotic syndrome. Nihon Jinzo Gakkai Shi 2006; 48(1): 14-21
17. D’Agati VD, Jannette JCh, Silva FG. Non-Neoplastic kidney Diseases. Chapter 5: Minimal Change Disease ARP Press, Wasington, 2005; 105-125
18. Zhou XJ, Laszik Z, Nadasdy T, D’Agati V, Silva FG et al. Silva’s Diagnostic Renal Pathology. Chapter 4:Glomerular Disease associated with nephrotic syndrome and proteinuria. Cambridge University Press 2009; 79-127
19. Tsukada M, Honda K, Nitta K, et al. [Incidental mesangial IgA deposition in minimal change nephrotic syndrome(MCNS)]. Nippon Jinzo Gakkai Shi 2003; 45(7): 681-688
20. Choi J, Jeong HJ, Lee HY, et al. Significance of mesangial IgA deposition in minimal change nephrotic syndrome: a study of 60 cases. Yonsei Med J 1990; 31(3): 258-263
21. Westhoff TH, Waldherr R, Loddenkemper C, at al. Mesangial IgA deposition in minimal change nephritic syndrome : coincide in different entities or variant of minimal change disease. Clin.Nephrol 2006; 65(3): 203-207
22. Soma J, Saito T, Sato H, et al. [Minimal change nephrotic syndrome with predominant mesangial IgA deposits: clinicopathological study]. Nippon Jinzo Gakkai Shi 1991; 33(2): 153-159
23. Kerjaschki D. Dysfunctions of cell biological mechanisms of visceral epithelial cell (podocytes) in glomerular diseases. Kidney Int 1994; 45: 300–313
24. Chuang PY, He JC. Signaling in regulation of podocyte phenotypes. Nephron Physiol 2009; 111 (2): 9-15
25. Nakamura T, Ushiyama C, Suzuki S, et al. The urinary podocyte as a marker for the differential diagnosis of idiopathic focal glomerulosclerosis and minimal-change nephrotic syndrome. Am J Nephrol 2000; 20(3): 175-179
26. Shi SF, Wang SX, Zhang YK, et al. Ultrastructural features and expression of cytoskeleton proteins of podocyte from patients with minimal change disease and focal segmental glomerulosclerosis. Ren Fail 2008; 30(5): 477-483
27. Van den Berg JG, van den Bergh Weerman MA, Assmann KJ, et al. Podocyte foot process effacement is not correlated with the level of proteinuria in human glomerulopathies. Kidney Int 2004; 66(5): 1901-1906
28. Deegens JK, Dijkman HB, Borm GF, et al. Podocyte foot process effacement as a diagnostic tool in focal segmental glomerulosclerosis. Kidney Int 2008; 74(12): 1568-1576
29. Coppo R, Ponticelli C. Minimal change nephropathy. In: Ponticelli C, Glassock R.F., eds. Treatment of primary glomerulonephritis. 2-nd ed. Oxford university press, N-Y, 2009, 179-213
30. Audard V, Lang P, Sahali D. [Minimal change nephrotic syndrome : new insights into disease pathogenesis]. Med Sci (Paris). 2008; 24(10): 853-858
31. Morales-Ruiz M, Fulton D, Sowa G, et al. Vascular endothelial growth factor-stimulated actin reorganization and migration of endothelial cells is regulated via the serine/threonine kinase Akt. Circ Res 2000; 86(8): 892-896
32. Sung, SH, Ziyadeh FN, Wang A, et al. Blockade of vascular endothelial growth factor signaling ameliorates diabetic albuminuria in mice. J Am Soc Nephrol 2006; 17(11): 3093-3104
33. McCarthy E T, Sharma M, Savin VJ. Circulating Permeability Factors in Idiopathic Nephrotic Syndrome and Focal Segmental Glomerulosclerosis. Clin J Am Soc Nephrol 2010; 5(11): 2115-2121
34. Bakker WW, Borghuis T, Harmsen MC, et al.Protease activity of plasma hemopexin. Kidney Int 2005; 68(2), 603–610
35. Lai KW, Wei CL, Tan LK, et al. Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J Am Soc Nephrol 2007; 18(5): 1476–1485
36. Abdel-Hafez M, Shimada M, Lee PY, et al. Idiopathic nephrotic syndrome and atopy: is there a common link? Am J Kidney Dis 2009; 54(5): 945-953
37. Pavenstädt H, Kriz W, Kretzler M. Cell Biology of the Glomerular Podocyte Physiol Rev J 2003; 83:253-307
38. Faul C, Asanuma K, Yanagida-Asanuma E, et al. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends cell biol 2007; 17 (9): 428-437
39. Tryggvason K, Patrakka J, Wartiovaara J. Hereditary proteinuria syndromes and mechanisms of proteinuria. N Engl J Med 2006; 354(13): 1387-1401
40. Piscione TD, Licht C.Genetics of proteinuria: an overview of gene mutations associated with nonsyndromic proteinuric glomerulopathies. Adv Chronic Kidney Dis 2011; 18(4): 273-289
41. Saleem MA New developments in steroid-resistant nephrotic syndrome. Pediatr Nephrol 2013;28(5): 699-709
42. Lahdenkari AT, Kestilä M, Holmberg C, et al Nephrin gene (NPHS1) in patients with minimal change nephrotic syndrome (MCNS). Kidney Int 2004; 65(5): 1856-1863
43. Shono A, Tsukaguchi H, Kitamura A, et al. Predisposition to relapsing nephrotic syndrome by a nephrin mutation that interferes with assembly of functioning microdomains. Hum Mol Genet 2009; 18(16): 2943-2956
44. Regele HM, Fillipovic E, Langer B et al. Glomerular expression of dystroglycans is reduced in minimal change nephrosis but not in focal segmental glomerulosclerosis. J Am Soc Nephrol 2000; 11: 403–404
45. Giannico G, Yang H, Neilson EG, Fogo AB. Dystroglycan in the diagnosis of FSGS. Clin J Am Soc Nephrol 2009; 4(11): 1747-1753
46. Clement LC, Avila-Casado C, Macé C, et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoidsensitive nephrotic syndrome. Nat Med. 2011; 17(1): 117-1122
47. Reiser J, von Gersdorff G, Loos M, et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome J Clin Invest 2004; 113(10): 1390-1397
48. Garin EH, Mu W, Arthur JM, et al. Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney Int 2010; 78(3): 296-302
49. Araya C, Diaz L, Wasserfall C et al. T regulatory cell function in idiopathic minimal lesion nephrotic syndrome. Pediatr Nephrol 2009; 24: 1691–1698
50. Glassock, RJ. Secondary minimal change disease. Nephrol Dial Trans]plant 2003; 18 (Suppl 6):vi52 – vi58
51. Lien YH, Lai LW. Pathogenesis, diagnosis and management of paraneoplastic glomerulonephritis. Nat Rev Nephrol 2011; 7(2): 85-95
52. Auguet, T, Lorenzo, A, Colomer, E, et al. Recovery of minimal change nephrotic syndrome and acute renal failure in a patient with Renal cell carcinoma. Am J Nephrol 1998; 18: 433-435
53. Ravnskov U. Glomerular, tubular and interstitial nephritis associated with non-steroidal antiinflammatory drugs. Evidence of a common mechanism. Br J Clin Pharmacol 1999; 47(2): 203-210
54. Hertig A, Droz D, Lesavre P, et al. SLE and idiopathic nephrotic syndrome: coincidence or not? Am J Kidney Dis 2002; 40(6): 1179-1184
55. Lewis EJ, Schwartz MM, Korbet SM, Chan TM, eds. Lupus Nephritis, 2nd ed. Oxford Univercity Press, N-Y, 2011, p.325
56. Alpers CE, Cotran RS Neoplasia and glomerular injury. Kidney Int 1986; 30(4): 465-473
57. Audard V, Larousserie F, Grimbert P, et al.. Minimal change nephrotic syndrome and classical Hodgkin’s lymphoma: report of 21 cases and review of the literature. Kidney Int 2006; 69(12): 2251-2260
58. Sayegh J, Boisliveau V, Boyer F, et al. Steroid-resistant minimal change nephrotic syndrome in Waldenstr m macroglobulinemia. Ann Hematol 2013; 92(3): 425-426.
59. Bacchetta J, Juillard L, Cochat P, Droz JP. Paraneoplastic glomerular diseases and malignancies. Crit Rev Oncol Hematol 2009; 70(1): 39-58
60. Whelan TV, Hirszel P. Minimal-change nephropathy associated with pancreatic carcinoma. Arch Intern Med 1988; 148(4): 975-976
61. Meyrier A, Delahousse M, Callard P, Rainfray M. Minimal change nephrotic syndrome revealing solid tumors. Nephron 1992; 61(2): 220-223
62. Miyajima S, Taguchi Y, Tanaka E, et al. [A case of pulmonary adenocarcinoma accompanied by minimal change nephrotic syndrome, antiphospholipid syndrome and warm-type autoimmune hemolytic anemia]. Nihon Kokyuki Gakkai Zasshi 2006; 44(9): 631-635.[Article in Japanese]
63. Macanovic M, Peat D. Minimal change nephropathy with adenocarcinoma of breast. J R Soc Med 2000; 93(10): 539
64. Chan PC, Lau CC, Cheng IK, et al. Minimal change glomerulopathy in two patients after thymectomy. Singapore Med J 1990; 31(1): 46-47
65. Bacchetta J, Ranchère D, Dijoud F, Droz JP. Mesothelioma of the testis and nephrotic syndrome: a case report. J Med Case Rep 2009; 3: 7248
66. Aoyama, M, Sugimoto, T, Yokono, T, et al. Minimal-change nephropathy and chronic hepatitis C infection: coincidental or associated? Nephrol Dial Transplant 2007; 22:1479-1480
67. Stubanus M, Göbel H, Rieg S, et al..Quiz page. Minimal change glomerulonephritis associated with secondary syphilis. Am J Kidney Dis 2007; 49(6): A49-50
68. Almansori, M, Kovithavongs, T, Qarni, MU. Cyclooxygenase-2 inhibitor-associated minimal-change disease. Clin Nephrol 2005; 63:381-384
69. Alper AB Jr, Meleg-Smith S, Krane NK. Nephrotic syndrome and interstitial nephritis associated with celecoxib.Am J Kidney Dis 2002; 40(5): 1086-1890.
70. Sakarcan A, Thomas DB, O’Reilly KP, Richards RW. Lithium-induced nephrotic syndrome in a young pediatric patient. Pediatr Nephrol 2002; 17(4): 290-292
71. Belghiti D, Patey O, Berry JP, et al. [Lipoid nephrosis of toxic origin. 2 cases]. Presse Med 1986; 15(39): 1953-1955. [Article in French]
72. Tang HL, Chu KH, Mak YF, et al. Minimal change disease following exposure to mercury-containing skin lightening cream. Hong Kong Med J 2006; 12(4): 316-318
73. Tang HL, Mak YF, Chu KH, et al. Minimal change disease caused by exposure to mercury-containing skin lightening cream: a report of 4 cases. Clin Nephrol. 2013;7 9(4): 326-334
74. Mori S, Matsushita Y, Arizono K. Minimal-change nephrotic syndrome associated with isoniazid in anti-tuberculosis chemoprophylaxis for a patient with rheumatoid arthritis. Intern Med 2011; 50(3): 253-257
75. Takeuchi T, Takegawa M, Ito Y, et al. [Minimal change nephrotic syndrome developing in a rheumatoid arthritis patient under etanercept treatment]. Nihon Rinsho Meneki Gakkai Kaishi 2008; 31(3): 178-182.[Article in Japanese]
76. Tasic V, Lozanovski VJ, Ristoska-Bojkovska N, et al. Nephrotic syndrome occurring during tiopronin treatment for cystinuria. Eur J Pediatr 2011;v170(2):v247-249
77. Silva S, Maximino J, Henrique R, et al. Minimal change nephrotic syndrome after stem cell transplantation: a case report and literature review. Journal of Medical Case Reports 2007, 1:121
78. Troxell ML, Pilapil M, Miklos DB, et al. Renal pathology in hematopoietic cell transplantation recipients. Mod Pathol 2008; 21(4): 396-406
79. Raml A, Sedlak M, Schmekal B, et al. Spontaneous remission of therapy-resistant minimal change nephritis in an adult woman 12 years after onset of the disease. Wien Med Wochenschr 2006; 156(13-14): 421-425
80. Colattur SN, Korbet SM. Long-term Outcome of Adult Onset Idiopathic Minimal Change Disease. Saudi J Kidney Dis Transpl 2000; 11(3): 334-344
81. Cameron JS, Turner DR, Ogg CS, et al. The nephrotic syndrome in adults with minimal change glomerular lesions. Q J Med 1974;43: 461-488
82. Waldman, M, Crew, RJ, Valeri, A, et al. Adult minimalchange disease: clinical characteristics, treatment, and outcomes. Clin J Am Soc Nephrol 2007; 2: 445 –453
83. Schrier RW: Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy. N Engl J Med 1988; 319: 1065-1076
84. Schrier RW, Fassett RG. A critique of the overfill hypothesis of sodium and water retention in the nephrotic syndrome. Kidney Int 1998; 53:1111-1117
85. Zacchia M, Trepiccione F, Morelli F, et al. Nephrotic syndrome: new concepts in the pathophysiology of sodium retention. J Nephrol 2008; 21(6): 836-842
86. Doucet A, Favre G, Deschênes G. Molecular mechanism of edema formation in nephrotic syndrome: therapeutic implications. Pediatr Nephrol 2007; 22(12):1983-1990
87. Deschenes G, Gonin S, Zolty E, et al. Increased synthesis and avp unresponsiveness of Na,K-ATPase in collecting duct from nephritic rats. J Am Soc Nephrol 2001; 12: 2241-2252
88. Besse-Eschmann V, Klisic J, Nief V, et al. Regulation of the proximal tubular sodium/proton exchanger NHE3 in rats with puromycin aminonucleoside (PAN)-induced nephrotic syndrome. J Am Soc Nephrol 2002; 13: 2199-2206
89. Svenningsen P, Bistrup C, Friis UG, et al. Plasmin in nephrotic urine activates the epithelial sodium channel. J Am Soc Nephrol 2009; 20:299-310
90. Passero CJ, Hughey RP, Kleyman TR. New role for plasmin in sodium homeostasis. Curr Opin Nephrol Hypertens 2010; 19(1): 13-19
91. Svenningsen P, Friis UG, Versland JB, et al .Mechanisms of renal NaCl retention in proteinuric disease. Acta Physiol (Oxf) 2013; 207(3):536-545
92. Lewis DM, Tooke JE, Beaman M, et al. Peripheral microvascular parameters in the nephrotic syndrome. Kidney Int 1998;54(4):1261-1266
93. Siddall EC, Radhakrishnan J. The pathophysiology of edema formation in the nephrotic syndrome. Kidney Int 2012; 82(6): 635-642
94. Koomans HA. Pathophysiology of oedema in idiopathic nephrotic syndrome. Nephrol Dial Transplant 2003; 18 Suppl 6: vi30-vi32
95. Theuns-Valks SD, van Wijk JA, van Heerde M, et al. Abdominal Pain and Vomiting in a Boy With Nephrotic Syndrome. Clin Pediatr (Phila) 2011; 50(5): 470-473
96. Wang SJ, Tsau YK, Lu FL, Chen CH. Hypovolemia and hypovolemic shock in children with nephrotic syndrome. Acta Paediatr Taiwan 2000; 41(4): 179-183
97. KDIGO Clinical Practice Guideline for Glomerulonephritis. Kidney Int Suppl 2012; 2 (2), 156–180
98. Sakarcan A, Timmons C, Seikaly M. Reversible idiopathic acute renal failure in children with primary nephritic syndrome. J Pediatr 1994; 125: 723–727
99. Tavares MB, Chagas de Almeida Mda C, Martins RT, et al . Acute tubular necrosis and renal failure in patients with glomerular disease. Ren Fail 2012; 34(10): 1252-1257
100. Lowenstein J, Schacht RG, Baldwin DS. Renal failure in minimal change nephrotic syndrome. Am J Med 1981; 70(2): 227-233
101. Nolasco F, Cameron JS, Heywood EF et al. Adult onset minimal change nephrotic syndrome; a long term follow-up. Kidney Int 1986; 29: 1215-1223
102. Stellato T, Cappelleri A, Farina M, et al. Severe reversible acute renal failure in idiopathic nephrotic syndrome. J Nephrol 2010; 23(6): 717-724
103. Morita A, Ishimura E, Tabata T, Shoji et al. Acute renal failure associated with minimal change nephrotic syndrome in an elderly adult. Osaka City Med J 1994; 40(1): 37-42
104. Cameron MA, Peri U, Rogers TE, Moe OW. Minimal change disease with acute renal failure: a case against the nephrosarca hypothesis. Nephrol Dial Transplant 2004; 19: 2642-2646
105. Tinawi M, Salinas-Madrigal L, Domoto D Minimal change disease presenting with acute tubular necrosis. Am J Kidney Dis 1995; 25(4): 648-650
106. Agarwal N, Phadke KD, Garg I, Alexander P Acute renal failure in children with idiopathic nephrotic syndrome. Pediatr Nephrol 2003; 18(12): 1289-1292
107. Koomans HA Pathophysiology of acute renal failure in idiopatic nephrotic syndrome. Nephrol Dial Transplant 2001; 16(2):221-224
108. Baek JE, Yang WS, Chang JW, et al. Fatty acid-bearing albumin induces VCAM-1 expression through c-Src kinase-AP-1/ NF-kB pathways: effect of L-carnitine. Kidney Blood Press Res 2010; 33(1): 72-84
109. Ishola DA Jr, Post JA, van Timmeren MM, et al. Albuminbound fatty acids induce mitochondrial oxidant stress and impair antioxidant responses in proximaltubular cells. Kidney Int 2006; 70(4): 724-731
110. Guash A, Myers B. Determinants of glomerular hypofiltration in nephrotic patients with minimal changes nephropathy. J Am Soc Nephrol 1994; 4: 1571-1581
111. Drummond MC, Kristal B, Myers BD, Deen WM. Structural basis for reduced filtration capacity in nephrotic syndrome. J Clin Invest 1994; 4: 187-1195
112. Vande Walle JG, Mauel R, Raes A, et al. ARF in children with minimal changes nephritic syndrome may be related to functional changes of the glomerular basal membrane. Am J Kidney Dis 2004; 43: 399- 404
113. Yalavarthy R, Smith ML, Edelstein C. Acute kidney injury complicating minimal change disease: the case for careful use of diuretics and angiotensin-converting enzyme inhibitors. Nephrology (Carlton) 2007; 12(5): 529-531
114. Kerlin BA, Ayoob R, Smoyer WE. Epidemiology and pathophysiology of nephrotic syndrome-associated thromboembolic disease. Clin J Am Soc Nephrol 2012; 7(3): 513-552
115. Llach, F, Hypercoagulability, renal vein thrombosis, and other thrombotic complications of nephrotic syndrome.Kidney Int 1985, 28: 429-439
116. Glassock RJ. Prophylactic anticoagulation in nephrotic syndrome: a clinical conundrum. J Am Soc Nephrol 2007; 18(8): 2221-2225
117. Mahmoodi BK, ten Kate MK, Waanders F, et al. High absolute risks and predictors of venous and arterial thromboembolic events in patients with nephrotic syndrome: results from a large retrospective cohort study. Circulation 2008; 117(2): 224-230
118. Lee JK, Baek MS, Mok YM, et al. Successfully treated femoral artery thrombosis in a patient with minimal change nephrotic syndrome. Chonnam Med J 2013 Apr; 49(1): 50-53
119. Palmer SC, Nand K, Strippoli GF. Interventions for minimal change disease in adults with nephrotic syndrome. Cochrane Database Syst Rev 2008; (1): CD001537
120. Chen MC, Lam KK, Hsu KT. Spontaneous bacterial peritonitis in adult patients with primary nephrotic syndrome. Changgeng Yi Xue Za Zhi 1999; 22(2): 227-233
121. Chen WC, Huang JW, Chen KY, et al. Spontaneous bilateral bacterial empyema in a patient with nephrotic syndrome. J Infect 2006; 53(3): e131-134
122. Lin TY, Ni YH, Chang FY, Wang NC. Cytomegalovirus pneumonitis in a patient with nephrotic syndrome receiving lowdose prednisolone and pulmonary tuberculosis. Am J Med Sci 2007; 334(5): 393-395
123. Anders HJ, Andersen K, Stecher B The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int 2013, 83(6): 1010-1016
124. Lacquaniti A, Bolignano D, Donato V, et al. Alterations of lipid metabolism in chronic nephropathies: mechanisms, diagnosis and treatment. Kidney Blood Press Res 2010; 33(2): 100-110
125. Cмиpнов АВ. Фактоpы, опpеделяющие уpовни показателей липидного обмена у больных гломеpулонефpитом без наpушения функции почек и пpи хpонической почечной недостаточности на фоне консеpвативной теpапии. Сообщение 1. Клинические фактоpы, опpеделяющие уpовень липидов и апопpотеина-В в плазме кpови и в составе низкоплотных липопpотеидов у больных гломеpулонефpитом. Hефpология 2000, 4(1) : 34-43
126. Anderson Sh, Komers R, BrennerBM. Chapter 26. Renal and systemic manifestations of glomerular diseases In: Brenner: Brenner and Rector’s The Kidney, 8th ed. Saunders – 2007, p 2448
127. Ellison DH. Wilcox ChS. Chapter 46. Diuretics In: Brenner: Brenner and Rector’s The Kidney, 8th ed. Saunders – 2007, p.1646
128. Смирнов АВ, Кучер АГ, Каюков ИГ, Есаян АМ. Руководство по лечебному питанию для больных хронической болезнью почек. СПб. Тверь: ООО «Издательство «Триада», 2009, 240 с
129. Levine JS, Iglesias J. Diuretic use and fluid management. In: Murray PT, Hall JB, Brady HR, eds: Intensive Care in Nephrology London: Taylor & Francis, 2006, 315–333
130. Brater DC. Update in diuretic therapy: clinical pharmacology. Semin Nephrol 2011; 31(6): 483-494
131. Lerma E, Berns J, Nissenson A. Current Diagnosis and Treatment Nephrology and Hypertension: The McGraw-Hill Companies, Inc. 2009, 7-21
132. Dorhout Mees EJ. Does it make sense to administer albumin to the patient with nephrotic oedema? Nephrol Dial Transplant 1996; 11(7): 1224-1226
133. Davenport A. Ultrafiltration in diuretic-resistant volume overload in nephrotic syndrome and patients with ascites due to chronic liver disease. Cardiology 2001; 96(3-4): 190-195
134. American Academy of Pediatrics. Committee on Infectious Diseases. Policy statement: recommendations for the prevention of pneumococcal infections, including the use of pneumococcal conjugate vaccine (Prevnar), pneumococcal polysaccharide vaccine, and antibiotic prophylaxis. Pediatrics 2000; 106 (2 Pt 1): 362-366. [No authors listed]
135. Nuorti JP, Whitney CG; Prevention of pneumococcal disease among infants and children – use of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine – recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2010; 59(RR-11): 1-18
136. Robinson J. Efficacy of pneumococcal immunization in patients with renal disease-what is the data? Am J Nephrol 2004 24(4): 402-409
137. Смирнов АВ, Шилов ЕМ, Добронравов ВА, Каюков ИГ, Бобкова ИН, Швецов МЮ, Цыгин АН, Шутов АМ. Национальные рекомендации. Хроническая болезнь почек:осныовные принципы скрининга, диагностики, профилактики и подходы к лечению. Нефрология 2012, 16(1): 89-115
138. Kaysen GA, Gambertoglio J, Jimenez I, et al. Effect of dietary protein intake on albumin homeostasis in nephrotic patients. Kidney Int 1986; 29(2): 572-577
139. Giordano M, De FP, Lucidi P, et al. Effects of dietary protein restriction on fibrinogen and albumin metabolism in nephrotic patients. Kidney Int 2001; 60(1): 235–242
140. Maroni BJ, Staffeld C, Young VR, et al. Mechanisms permitting nephrotic patients to achieve nitrogen equilibrium with a protein-restricted diet. J Clin Invest 1997, 99(10): 2479- 2487
141. Mak SK, Short CD, Mallick NP. Long-term outcome of adult-onset minimal-change nephropathy. Nephrol Dial Transplant 1996; 11(11): 2192-2201
142. Guess A, Agrawal S, Wei CC. Dose- and time-dependent glucocorticoid receptor signaling in podocytes. Am J Physiol Renal Physiol 2010; 299(4): F845-853
143. Ransom RF, Lam NG, Hallett MA, et al. Glucocorticoids protect and enhance recovery of cultured murine podocytes via actin filament stabilization. Kidney Int 2005; 68(6): 2473-2483
144. Tornatore, KM, Logue, G, Venuto, RC, Davis, PJ. Pharmacokinetics of methylprednisolone in elderly and young healthy males. J Am Geriatr Soc 1994; 42: 1118-1122
145. Cattran DC, Alexopoulos E, Heering P, et al. Cyclosporin in idiopathic glomerular disease associated with the nephrotic syndrome: workshop recommendations. Kidney Int 2007; 72(12): 1429-1447
146. Eguchi A, Takei T, Yoshida T, et al. Combined cyclosporine and prednisolone therapy in adult patients with the first relapse of minimal-change nephrotic syndrome. Nephrol Dial Transplant 2010; 25(1): 124-129
147. Firestein GS, Budd RC, Harris ED et al. Kelley’s Textbook of Rheumatology, 9h ed., Saunders, 894-916, 941-953
148. van Staa TP, Leufkens HG, Abenhaim Let al. Oral corticosteroids and fracture risk: relationship to daily and cumulative doses. Rheumatology (Oxford) 2000; 39(12): 1383-1389
149. van Staa TP, Leufkens HG, Abenhaim Let al. Use of oral corticosteroids in the United Kingdom. QJM 2000; 93(2): 105-111
150. Weinstein RS. Clinical practice. Glucocorticoid-induced bone disease. N Engl J Med 2011; 365(1): 62-70
151. Cooper MS. Sensitivity of bone to glucocorticoids. Clin Sci (Lond) 2004; 107(2): 111-123
152. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest 1998; 102(2): 274–282
153. Weinstein RS, Nicholas RW, Manolagas SC. Apoptosis of osteocytes in glucocorticoid-induced osteonecrosis of the hip. J Clin Endocrinol Metab 2000; 85: 2907–2912
154. Kanis, JA, Johansson, H, Oden, A, et al. A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res 2004; 19(6): 893-899
155. Pranić-Kragić A, Radić M, Martinović-Kaliterna D, Radić J. Glucocorticoid induced osteoporosis. Acta Clin Croat 2011; 50(4): 563-566
156. Massey LK, Whiting SJ. Dietary salt, urinary calcium, and bone loss. J Bone Miner Res 1996; 11(6): 731-736
157. Lee CT, Lien YH, Lai LW, et al. Variations of dietary salt and fluid modulate calcium and magnesium transport in the renal distal tubule. Nephron Physiol 2012; 122(3-4): 19-27
158. Reginster JY, Kuntz D, Verdickt W, et al. Prophylactic use of alfacalcidol in corticosteroid-induced osteoporosis. Osteoporos Int 1999; 9: 75-81
159. Ringe JD, Coster A, Meng T, et al. Treatment of glucocorticoidinduced osteoporosis with alfacalcidol/calcium versus vitamin D/calcium. Calcif Tissue Int 1999; 65: 337-340
160. Sambrook, P, Birmingham, J, Kelly, P, et al. Prevention of corticosteroid osteoporosis. A comparison of calcium, calcitriol, and calcitonin. N Engl J Med 1993; 328:1747-1752
161. Grieff M, Bushinsky DA. Diuretics and disorders of calcium homeostasis. Semin Nephrol 2011; 31(6): 535-541
162. de Nijs RN, Jacobs JW, Lems WF, et al. Alendronate or alfacalcidol in glucocorticoid-induced osteoporosis. N Engl J Med 2006; 355(20): 2156-2157
163. Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc 2008; 83(9): 1032-1045
164. van Staa TP, Geusens P, Zhang B, et al. Individual fracture risk and the cost-effectiveness of bisphosphonates in patients using oral glucocorticoids. Rheumatology (Oxford) 2007; 46(3): 460-466
165. Markowitz GS, Appel GB, Fine PL, et al. Collapsing focal segmental glomerulosclerosis following treatment with high-dose pamidronate. J Am Soc Nephrol 2001; 12(6): 1164-1172
166. ten Dam MA, Hilbrands LB, Wetzels JF. Nephrotic syndrome induced by pamidronate. Med Oncol 2011; 28(4): 1196-1200
167. Perazella MA, Markowitz GS. Bisphosphonate nephrotoxicity. Kidney Int 2008; 74(11): 1385-1393
168. Lenart BA, Lorich DG, Lane JM. Atypical fractures of the femoral diaphysis in postmenopausal women taking alendronate. N Engl J Med 2008; 358(12): 1304-1306
169. Black DM, Kelly MP, Genant HK, et al. Bisphosphonates and fractures of the subtrochanteric or diaphyseal femur. N Engl J Med 2010; 362: 1761-1771
170. Kim SY, Schneeweiss S, Katz JN, et al. Oral bisphosphonates and risk of subtrochanteric or diaphyseal femur fractures in a population-based cohort. J Bone Miner Res 2011; 26(5): 993-1001
171. Kuo YJ, Tsuang FY, Sun JS, et al. Calcitonin Inhibits SDCPInduced Osteoclast Apoptosis and Increases Its Efficacy in a Rat Model of Osteoporosis. PLoS One 2012; 7(7): e40272
172. Khajuria DK, Razdan R, Mahapatra DR. Drugs for the management of osteoporosis: a review. Rev Bras Reumatol 2011; 51(4): 365-371, 379-382
173. Saag KG, Zanchetta JR, Devogelaer JP, et al. Effects of teriparatide versus alendronate for treating glucocorticoidinduced osteoporosis: thirty-six-month results of a randomized, doubleblind, controlled trial. Arthritis Rheum 2009; 60: 3346–3355
174. Gallay PA. Cyclophilin inhibitors. Clin Liver Dis 2009; 13(3): 403-417
175. Faul C, Donnelly M, Merscher-Gomez S, et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 2008; 14: 931-938
176. Mathieson PW. Proteinuria and immunity – an overstated relationship? N Engl J Med 2008; 359 (23): 2492-2494
177. Mathieson PW. Podocyte actin in health, disease and treatment. Nephrol Dial Transplant 2010; 25 (6): 1772-1773
178. Yanagida- Asanuma E, Asanuma K, Kim K, et al. Synaptopodin protects against proteinuria by disrupting Cdc42: IRSp53: Mena signaling complexes in kidney podocytes. Am J Pathol 2007; 171 (2): 415-427
179. Asanuma K, Kim K, Oh J, et al. Synaptopodin regulates the actin- bundling activity of alpha-actinin in an isoform- specific manner. J Clin Invest 2005; 115 (5): 1188-1198
180. Asanuma K, Yanagida-Asanuma E, Faul C et al. Synaptopodin orchestrates actin organization and cell motility via regulation of RhoA signalling. Nat Cell Biol 2006; 8 (5): 485-491
181. Смирнов АВ, Трофименко ИИ. Практические вопросы применения циклоспорина в лечении гломерулопатий. Нефрология 2010; 14(4): 96-102
182. Nashan B, Cole E, Levy G, Thervet E, Clinical validation studies of neoral C2 monitoring: a review. Transplantation 2002; 73 [Suppl. 9]: S3—S11
183. Levy G, Thervet E, Lake J, Uchida K. Patient management by Neoral C2 monitoring: An international consensus statement. Transplantation 2002; 73 [Suppl.9]: S12—S18
184. Cole E, Midtvedt K, Johnston A, et al. Recommendations for the Implementation of Neoral C2 Monitoring in Transplantation. Clinical Practice 2002; 73 [ Suppl.9], S19—S22
185. Вознесенская Т С Эффективность и токсичность циклоспорина А. Мониторинг концентрации. Обзор литературы. Нефрология и диализ 2005; 7(2): 135-149
186. Nakamura T, Nozu K, Iijima K, et al. Association of cumulative cyclosporine dose with its irreversible nephrotoxicity in Japanese patients with pediatric-onset autoimmune diseases. Biol Pharm Bull 2007; 30(12): 2371-2375
187. Naito M, Takei T, Eguchi A, et al. Monitoring of blood cyclosporine concentration in steroid-resistant nephrotic syndrome. Intern Med 2008; 47(18): 1567-1572
188. Meyrier, A. Treatment of idiopathic nephrosis by immunophillin modulation. Nephrol Dial Transplant 2003; 18[Suppl 6]:vi79- vi 86
189. Meyrier, A, Noël, LH, Auriche, P, Callard, P. Long-term renal tolerance of cyclosporin A treatment in adult idiopathic nephrotic syndrome. Collaborative Group of the Société de Néphrologie. Kidney Int 1994; 45: 1446 -1456
190. Alexopoulos E, Papagianni A, Tsamelashvili M et al. Induction and long-term treatment with cyclosporine in membranous nephropathy with the nephrotic syndrome. Nephrol Dial Transplant 2006; 21 (11): 3127-3132
191. Ponticelli C. Cyclosporine: from renal transplantation to autoimmune diseases. Ann N Y Acad Sci 2005 1051: 551–558
192. Moroni G, Doria A, Ponticelli C.Cyclosporine (CsA) in lupus nephritis: assessing the evidence. Nephrol Dial Transplant 2009; 24(1): 15-20
193. El-Husseini A, El-Basuony F, Donia A, et al. Concomitant administration of cyclosporine and ketoconazole in idiopathic nephrotic syndrome. Nephrol Dial Transplant 2004 ;19(9): 2266-2271
194. Shannon MW, Borron SW, Burns M. Haddad and Winchester’s Clinical Management of Poisoning and Drug Overdose, Chapter 57 – Transplant Agents and Other Immunosuppressives 4th ed. Saunders; 2007; 943-948
195. Клим Ф. Такролимус при трансплантации почки. Сообщение I, Нефрология 2007; 11 (2): 7-25
196. Sinha MD, Macleod R, Rigby E, et al. Treatment of severe steroid-dependent nephrotic syndrome (SDNS) in children with tacrolimus. Nephrol Dial Transplant 2006; 21: 1848-1854
197. Gulati S, Prasad N, Sharma RK, et al. Tacrolimus: a new therapy for steroid-resistant nephrotic syndrome in children. Nephrol Dial Transplant 2008 ;23(3): 910-913
198. Li X, Li H, Ye H, et al. Tacrolimus therapy in adults with steroid- and cyclophosphamide-resistant nephrotic syndrome and normal or mildly reduced GFR. Am J Kidney Dis 2009; 54(1): 51-58
199. Li X, Li H, Chen J, et al. Tacrolimus as a steroid-sparing agent for adults with steroid-dependent minimal change nephrotic syndrome. Nephrol Dial Transplant 2008; 23(6): 1919-1925
200. Li X, Xu N, Li H, et al. Tacrolimus as rescue therapy for adult-onset refractory minimal change nephrotic syndrome with reversible acute renal failure. Nephrol Dial Transplant 2013; 28(9):2306-2312
201. Fan L, Liu Q, Liao Y, et al. Tacrolimus is an alternative therapy option for the treatment of adult steroid-resistant nephrotic syndrome: a prospective, multicenter clinical trial. Int Urol Nephrol 2012; 45(2): 459-468
202. Ponticelli C, Edefonti A, Ghio L, et al. Cyclosporin versus cyclophosphamide for patients with steroid-dependent and frequently relapsing idiopathic nephrotic syndrome: a multicentre randomized controlled trial. Nephrol Dial Transplant 1993; 8: 1326-1332
203. Allison AC. Mechanisms of action of mycophenolate mofetil. Lupus. 2005;14 [Suppl 1]: s2-8
204. Siu YP, Tong MK, Leung K, et al. The use of enteric-coated mycophenolate sodium in the treatment of relapsing and steroiddependent minimal change disease J Nephrol 2008; 21: 127 – 131
205. Choi MJ, Eustace JA, Gimenez LF et al. Mycophenolate mofetil treatment for primary glomerular disease. Kidney Int 2002; 61: 1098–1114
206. Pesavento TE, Bay WH,Agarwal G, et al. Mycophenolate therapy in frequently relapsing minimal change disease that has failed cyclophosphamide therapy. Am J Kidney Dis 2004; 43(3): e3-6
207. Segarra A, Amoedo ML, Martinez Garcia JM, et al. Efficacy and safety of ‘rescue therapy’with mycophenolate mofetil in resistant primary glomerulonephritis- a multicentre study. Nephrol Dial Transplant 2007; 22: 1351-1360
208. Yi ZW, Dang XQ, He QN, et al. Assessment of mycophenolate mofetil for treatment of frequently relapsing nephrotic syndrome in children. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2007; 32(6): 938-940
209. François H, Daugas E, Bensman A, Ronco P. Unexpected efficacy of rituximab in multirelapsing minimal change nephrotic syndrome in the adult: first case report and pathophysiological considerations. Am J Kidney Dis 2007; 49(1): 158-161
210. Kurosu N, Sugiura H, Iwasaki C, et al. Successful use of single-dose rituximab for the maintenance of remission in a patient with steroid-resistant nephrotic syndrome. Intern Med 2009; 48(21): 1901-1904
211. Hoxha E, Stahl RA, Harendza S. Rituximab in adult patients with immunosuppressive-dependent minimal change disease. Clin Nephrol 2011; 76(2): 151-158
212. Gulati A, Sinha A, Jordan SC, et al. Efficacy and safety of treatment with rituximab for difficult steroid-resistant and -dependent nephrotic syndrome: multicentric report. Clin J Am Soc Nephrol 2010; 5(12): 2207-2212
213. Peters HP, van de Kar NC, Wetzels JF. Rituximab in minimal change nephropathy and focal segmental glomerulosclerosis: report of four cases and review of the literature. Neth J Med 2008; 66(10): 408-415
214. Ravani P, Ponticelli A, Siciliano C, et al. Rituximab is a safe and effective long-term treatment for children with steroid and calcineurin inhibitor-dependent idiopathic nephrotic syndrome. Kidney Int 2013; 84(5): 1025-1033
215. Magnasco A, Ravani P, Edefonti A, et al. Rituximab in children with resistant idiopathic nephrotic syndrome. J Am Soc Nephrol 2012; 23(6): 1117-1124
216. Bruchfeld A, Benedek S, Hilderman M, et al. Rituximab for minimal change disease in adults: long-term follow-up. Nephrol Dial Transplant first published online October 11, 2013
217. Kronbichler A, König P, Busch M, et al. Rituximab in adult patients with multi-relapsing/steroid-dependent minimal change disease and focal segmental glomerulosclerosis: a report of 5 cases. Wien Klin Wochenschr 2013;1 25(11-12): 328-333
218. Munyentwali H, Bouachi K, Audard V, et al. Rituximab is an efficient and safe treatment in adults with steroid-dependent minimal change disease. Kidney Int 2013; 83(3): 511-516
219. Cara-Fuentes G, Kairalla JA, Ishimoto T, et al. Rituximab in idiopathic nephrotic syndrome: does it make sense? Pediatr Nephrol 2013 Jun 23. [Epub ahead of print].
220. Bruneau S, Dantal J. New insights into the pathophysiology of idiopathic nephrotic syndrome. Clin Immunol 2009; 133(1): 13-21
221. Fornoni A, Sageshima J, Wei C, et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med 2011; 3(85): 85ra46
222. Cade R, Mars D, Privette M, et al. Effect of long-term azathioprine administration in adults with minimal-change glomerulonephritis and nephrotic syndrome resistant to corticosteroids. Arch Intern Med 1986; 146: 737–741
Review
For citations:
Smirnov A.V., Trofimenko I.I., Sipovskiy V.G. MINIMAL CHANGE DISEASE IN ADULTS. Nephrology (Saint-Petersburg). 2013;17(6):9-36. (In Russ.) https://doi.org/10.24884/1561-6274-2013-17-6-9-36