Preview

Nephrology (Saint-Petersburg)

Advanced search

RENAL TUBULAR ACIDOSIS IN PRACTICE OF «ADULT» NEPHROLOGIST. COMMUNICATION 1. KIDNEYS ROLE IN ACID BASE HOMEOSTASIS REGULATION

https://doi.org/10.24884/1561-6274-2013-17-1-20-41

Abstract

This review briefly summarizes the current understanding about of acid-base transport in the kidney and the regulation of these processes. Attention was turned to range of questions which are deficiently observed in national science-medical literature: molecular structure of some transporters, involved in these processes, role of local pH, pCO2 and bicarbonate sensors, characteristics of gases transport through cell membranes etc. Was made an effort to show defects in which mechanisms of proton and bicarbonate translocation in renal tubules form the basis for rare and unique diseases – renal tubular acidosis.

About the Authors

I. G. Kayukov
Научно-исследовательский институт нефрологии, Санкт-Петербургский государственный медицинский университет
Russian Federation


V. A. Dobronravov
Научно-исследовательский институт нефрологии, Санкт-Петербургский государственный медицинский университет
Russian Federation


A. G. Kucher
Санкт-Петербургский государственный медицинский университет
Russian Federation


A. M. Essaian
Санкт-Петербургский государственный медицинский университет
Russian Federation


A. V. Smirnov
Научно-исследовательский институт нефрологии, Санкт-Петербургский государственный медицинский университет
Russian Federation


References

1. Rodri’guez Soriano J. Renal tubular acidosis: The clinical entity. J Am Soc Nephrol 2002; 13: 2160–2170

2. Fry AC, Karet FE. Inherited renal acidoses. Physiology 2007; 22:202-211

3. Pereira PCB, Miranda DM, Oliveira EA, Simões e Silva AC. Molecular pathophysiology of renal tubular acidosis Current Genomics 2009; 10: 51-59

4. Koeppen BM. The kidney and acid-base regulation. Adv Physiol Educ 2009; 33(4): 275-281

5. Wagner СA, Kovacikova J, Stehberger PA et al. Renal acid-base transport: old and new players. Nephron Physiol 2006; 103: 1–6

6. Boron WF. Acid-base transport by the renal proximal tubule J Am Soc Nephrol 2006; 17: 2368–2382

7. Brown D, Paunescu TG, Breton S, Marshansky V. Regulation of the V-ATPase in kidney epithelial cells: dual role in acidbase homeostasis and vesicle trafficking. J Exp Biol 2009; 212(Pt 11):1762-1772

8. Brown D, Breton S, Ausiello DA, Marshansky V. Sensing, signaling and sorting events in kidney epithelial cell physiology. Traffic 2009;10(3):275-284

9. Schwartz GJ, Tsuruoka S, Vijayakumar S, Petrovic S, Mian A, Al-Awqati Q. Acid incubation reverses the polarity of intercalated cell transporters, an effect mediated by hensin. J Clin Invest 2002;109(1):89-99

10. Bobulescu IA, Moe OW. Luminal Na(+)/H (+) exchange in the proximal tubule. Pflugers Arch 2009; 458(1): 5-21

11. Igarashi T, Sekine T, Inatomi J, Seki G.Unraveling the molecular pathogenesis of isolated proximal renal tubular acidosis. J Am Soc Nephrol 2002;13(8):2171-2177

12. Katzir Z, Dinour D, Reznik-Wolf H, Nissenkorn A, Holtzman E. Familial pure proximal renal tubular acidosis-a clinical and genetic study. Nephrol Dial Transplant 2008;23(4):1211-1215

13. Purkerson JM, Schwartz GJ. The role of carbonic anhydrases in renal physiology. Kidney Int 2007; 71(2):103-115

14. Старк З, Саварирайан Р. Остеопетроз. Нефрология 2010; 14(2): 20-34

15. Jacquemin C, Mullaney P, Svedberg E. Marble brain syndrome: osteopetrosis, renal acidosis and calcification of the brain. Neuroradiology 1998;40(10):662-663

16. Al-Ibrahim A, Al-Harbi M, Al-Musallam S. Paralysis episodes in carbonic anhydrase II deficiency. Saudi J Kidney Dis Transpl 2003;14(1):70-74

17. Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat 2004;24(3):272

18. Bolt RJ, Wennink JM, Verbeke JI, Shah GN, Sly WS, Bцkenkamp A. Carbonic anhydrase type II deficiency. Am J Kidney Dis 2005 46(5):A50, e71-73

19. Gross E, Pushkin A, Abuladze N et al. Regulation of the sodium bicarbonate cotransporter kNBC1 function: role of Asp986, Asp988 and kNBC1-carbonic anhydrase II binding. J Physiol 2002; 544: 679–685

20. Petrovic S, Ma L, Wang Z, Soleimani M. Identification of an apical Cl− /HCO− 3 exchanger in rat kidney proximal tubule. Am J Physiol Cell Physiol 2003;285:C608-C617

21. Mount DB, Romero MF. The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch 2004; 447: 710–721

22. Ko SB, Shcheynikov N, Choi JY et al. A molecular mechanism for aberrant CFTR-dependent HCO(3)(-) transport in cystic fibrosis. EMBO J 2002; 21: 5662–5672

23. Li X, Liu Y, Alvarez BV et al. A novel carbonic anhydrase II binding site regulates NHE1 activity. Biochemistry 2006; 45: 2414–2424

24. Soleimani M, Burnham C: Physiologic and molecular aspects of the Na/HCO3- cotransporter in health and disease processes. Kidney Int 2000; 57: 371–384 25. Tanner MJ. The structure and function of band 3 (AE1): recent developments (review). Mol Membr Biol 1997; 14: 155–165

25. Fry AC, Karet FE. Inherited renal acidoses. Physiology 2007; 22:202-211

26. Alper SL. Molecular physiology of SLC4 anion exchangers. Exp Physiol 2006; 91: 153–161

27. Gallagher PG. Red cell membrane disorders. Hematology Am Soc Hematol Educ Program 2005: 13–18

28. Ribeiro ML, Alloisio N, Almeida H et al. Severe hereditary spherocytosis and distal renal tubular acidosis associated with the total absence of band 3. Blood 2000; 96: 1602-1604

29. Shayakul C, Jarolim P, Zachlederova M et al. Characterization of a highly polymorphic marker adjacent to the SLC4A1 gene and of kidney immunostaining in a family with distal renal tubular acidosis. Nephrol Dial Transplant 2004; 19: 371-379

30. Pushkin A, Yip KP, Clark I et al. NBC3 expression in rabbit collecting duct: colocalization with vacuolar H+-ATPase. Am J Physiol 1999; 277: F974–F981

31. Yip K-P, Tsuruoka S, Schwartz GJ, Kurtz I. Apical H+/base transporters mediating bicarbonate absorption and pHi regulation in the OMCD. Am J Physiol 2002; 283: F1098–F1104

32. Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP. Renal vacuolar H+-ATPase. Physiol Rev 2004; 84(4):1263-1314.

33. Toei M, Saum R, Forgac M. Regulation and isoform function of the V-ATPases. Biochemistry 2010;49(23):4715-4723

34. Jefferies KC, Cipriano DJ, Forgac M. Function, structure and regulation of the vacuolar (H+)-ATPases. Arch Biochem Biophys 2008;476(1):33-42

35. Beyenbach KW, Wieczorek H. The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol 2006; 209(Pt 4):577-589

36. Saroussi S, Nelson N. The little we know on the structure and machinery of V-ATPase. J Exp Biol 2009;212(Pt 11):1604-1610

37. Cipriano DJ, Wang Y, Bond S, Hinton A, Jefferies KC, Qi J, Forgac M. Structure and regulation of the vacuolar ATPases. Biochim Biophys Acta 2008;1777(7-8):599-604

38. Okuno D, Iino R, Noji H. Rotation and structure of FoF1- ATP synthase. J Biochem 2011;149(6):655-664

39. Nakamoto RK, Baylis Scanlon JA, Al-Shawi MK. The rotary mechanism of the ATP synthase. Arch Biochem Biophys 2008;476(1):43-50

40. Романовский ЮМ, Тихонов АН. Молекулярные преобразователи энергии живой клетки. Протонная АТФ-синтаза – вращающийся молекулярный мотор. Усп физ наук 2010; 180 931–956

41. Miranda KC, Karet FE, Brown D. An extended nomenclature for mammalian V-ATPase subunit genes and splice variants. PLoS One 2010;5(3):e9531

42. Hurtado-Lorenzo A, Skinner M, El Annan J et al. V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat Cell Biol 2006;8:124–136

43. Karet FE, Finberg KE, Nelson RD et al. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 1999;21:84–90

44. Villa A, Guerrini MM, Cassani B, Pangrazio A, Sobacchi C. Infantile malignant, autosomal recessive osteopetrosis: the rich and the poor. Calcif Tissue Int 2009;84(1):1-12

45. Frattini A, Orchard PJ, Sobacchi C et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 2000; 25(3):343-346

46. Ogbureke KU, Zhao Q, Li YP. Human osteopetroses and the osteoclast V-H+-ATPase enzyme system. Front Biosci 2005;10:2940-2954

47. Susani L, Pangrazio A, Sobacchi C et al. TCIRG1-dependent recessive osteopetrosis: mutation analysis, functional identification of the splicing defects, and in vitro rescue by U1 snRNA. Hum Mutat 2004; 24(3):225-235

48. Sautin YY, Lu M, Gaugler A, Zhang L, Gluck SL. Phosphatidylinositol 3-kinase-mediated effects of glucose on vacuolar H+-ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells. Mol Cell Biol 2005;25:575–589

49. Lafourcade C, Sobo K, Kieffer-Jaquinod S, Garin J, van der Goot FG. Regulation of the V-ATPase along the endocytic pathway occurs through reversible subunit association and membrane localization. PLoS One 2008; 3(7):e2758

50. Shao E, Nishi T, Kawasaki-Nishi S, Forgac M. Mutational analysis of the non-homologous region of subunit A of the yeast V-ATPase. J Biol Chem 2003;278:12985–12991

51. Forgac M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 2007;8:917–929

52. Nelson N. A journey from mammals to yeast with vacuolar H+-ATPase (V-ATPase). J Bioenerg Biomembr 2003;35:281–289

53. Liu Q, Leng XH, Newman PR, Vasilyeva E, Kane PM, Forgac M. Site-directed mutagenesis of the yeast V-ATPase A subunit. J Biol Chem 1997;272:11750–11756

54. Gumz ML, Lynch IJ, Greenlee MM, Cain BD, Wingo CS. The renal H+-K+-ATPases: physiology, regulation, and structure. Am J Physiol Renal Physiol 2010; 298: F12–F21

55. Kraut JA, Helander KG, Helander HF, Iroezi ND, Marcus EA, Sachs G. Detection and localization of H+-K+-ATPase isoforms in human kidney. Am J Physiol Renal Physiol 2001; 281(4): F763-F768

56. Tosukhowong P, Tungsanga K, Eiam-Ong S, Sitprija V. Environmental distal renal tubular acidosis in Thailand: an enigma. Am J Kidney Dis 1999; 33(6): 1180-1186

57. Simpson AM, Schwartz GJ. Distal renal tubular acidosis with severe hypokalaemia, probably caused by colonic H+-K+- ATPase deficiency. Arch Dis Child 2001; 84:504–507

58. Toto RD. Metabolic acid-base disorders. In: Kokko JP, Tannen RL. Fluids and electrolytes. Saunders, Philadelphia e.a., 1986; 229-304

59. Weiner ID, Verlander JW. Role of NH3 and NH4_ transporters in renal acid-base transport. Am J Physiol Renal Physiol 2011; 300: F11–F23

60. Karet FE. Mechanisms in hyperkalemic renal tubular acidosis. J Am Soc Nephrol 2009; 20: 251–254

61. Simon E, Martin D, Buerkert J. Contribution of individual superficial nephron segments to ammonium handling in chronic metabolic acidosis in the rat. Evidence for ammonia disequilibrium in the renal cortex. J Clin Invest 1985; 76: 855–864

62. Wilcox CS, Granges F, Kirk G, Gordon D, Giebisch G. Effects of saline infusion on titratable acid generation and ammonia secretion. Am J Physiol Renal Fluid Electrolyte Physiol 1984; 247: F506–F519

63. Boron WF. Sharpey-Schafer lecture: gas channels. Exp Physiol 2010;95(12):1107-1130

64. Brown AC, Hallouane D, Mawby WJ, Karet FE, Saleem MA, Howie AJ, Toye AM. RhCG is the major putative ammonia transporter expressed in the human kidney, and RhBG is not expressed at detectable levels. Am J Physiol Renal Physiol 2009; 296(6): F1279-F1290

65. Seshadri RM, Klein JD, Smith T, Sands JM, Handlogten ME, Verlander JW, Weiner ID. Changes in the subcellular distribution of the ammonia transporter Rhcg, in response to chronic metabolic acidosis. Am J Physiol Renal Physiol 2006; 290: F1443–F1452

66. Lim SW, Ahn KO, Kim WY, Han DH, Li C, Ghee JY, Han KH, Ki m HY, Handlogten ME, Kim J, Yang CW, Weiner ID. Expression of ammonia transporters, Rhbg and Rhcg, in chronic cyclosporine nephropathy in rats. Nephron Exp Nephrol 2008; 110: e49–e58

67. Каюков ИГ, Смирнов АВ, Шабунин МА и др. Редкие заболевания в практике взрослого нефролога: состояния, ассоциированные с гипокалиемией. Сообщение II. Синдром Лидля. Нефрология 2009; 13(1): 98-106

68. Wagner CA, Devuyst O, Bourgeois S, Mohebbi N. Regulated acid-base transport in the collecting duct. Pflugers Arch, 2009; 458: 137–156

69. Thomas W, Harvey BJ. Mechanisms underlying rapid aldosterone effects in the kidney. Annu Rev Physiol 2010; 73: 335–357

70. Royaux IE, Wall SM, Karniski LP, Everett LA, Suzuki K, Knepper MA, Green ED. Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc Natl Acad Sci USA 2001; 98: 4221–4226

71. Greenlee MM, Lynch IJ, Gumz ML, Cain BD, Wingo CS. Mineralocorticoids stimulate the activity and expression of renal H+,K+-ATPases. J Am Soc Nephrol 2011; 22(1):49-56

72. Drumm K, Kress TR, Gassner B, Krug AW, Gekle M. Aldosterone stimulates activity and surface expression of NHE3 in human primary proximal tubule epithelial cells (RPTEC). Cell Physiol Biochem 2006;17(1-2): 21-28

73. Furgeson SB, Linas S. Mechanisms of type I and type II pseudohypoaldosteronism. J Am Soc Nephrol 2010; 21(11):1842- 1845

74. Kostakis ID, Cholidou KG, Perrea D. Syndromes of impaired ion handling in the distal nephron: pseudohypoaldosteronism and familial hyperkalemic hypertension. Hormones (Athens) 2012;11(1):31-53

75. Wagner CA, Mohebbi N, Uhlig U, Giebisch GH, Breton S, Brown D, Geibel JP. Angiotensin II stimulates H-ATPase activity in intercalated cells from isolated mouse connecting tubules and cortical collecting ducts. Cell Physiol Biochem 2011; 28(3):513-520

76. Rothenberger F, Velic A, Stehberger PA, Kovacikova J, Wagner CA. Angiotensin II stimulates vacuolar H+ -ATPase activity in renal acid-secretory intercalated cells from the outer medullary collecting duct. J Am Soc Nephrol 2007; 18(7):2085-2093

77. Turban S, Beutler KT, Morris RG, Masilamani S, Fenton RA, Knepper MA, Packer RK. Long-term regulation of proximal tubule acid-base transporter abundance by angiotensin II. Kidney Int 2006; 70(4):660-668

78. Nagami GT. Enhanced ammonia secretion by proximal tubules from mice receiving NH(4)Cl: role of angiotensin II. Am J Physiol Renal Physiol 2002; 282(3):F472-477

79. Wall SM, Fischer MP, Glapion DM, De La Calzada M. ANG II reduces net acid secretion in rat outer medullary collecting duct. Am J Physiol Renal Physiol 2003; 285(5):F930-937

80. Good DW, George T, Wang DH. Angiotensin II inhibits HCO3 absorption via a cytochrome P-450-dependent pathway in MTAL. Am J Physiol 1999; 276(5 Pt 2):F726-736

81. Tojo A, Tisher CC, Madsen KM. Angiotensin II regulates H+-ATPase activity in rat cortical collecting duct. Am J Physiol Renal Fluid Electrolyte Physiol 1994; 267: F1045–F1051

82. Chatsudthipong V, Chan YL. Inhibitory effect of angiotensin II on renal tubular transport. Am J Physiol Renal Physiol 1991; 260: F340–F346

83. Aoyagi T, Izumi Y, Hiroyama M, Matsuzaki T et al.Vasopressin regulates the renin-angiotensin-aldosterone system via V1a receptors in macula densa cells. Am J Physiol Renal Physiol 2008; 295(1):F100-107

84. Izumi Y, Hori K, Nakayama Y et al. Aldosterone requires vasopressin V1a receptors on intercalated cells to mediate acidbase homeostasis. J Am Soc Nephrol 2011; 22(4):673-680

85. Wesson DE. Endothelins and kidney acidification. Contrib Nephrol 2011;172:84-93

86. Wesson DE. Regulation of kidney acid excretion by endothelins. Kidney Int 2006; 70: 2066–2073

87. Pallini A, Hulter HN, Muser J, Krapf R. Role of endothelin-1 in renal regulation of acid-base equilibrium in acidotic humans. Am J Physiol Renal Physiol 2012 Aug 1. [Epub ahead of print]

88. Chambrey R, Picard N. Role of tissue kallikrein in regulation of tubule function. Curr Opin Nephrol Hypertens 2011;20(5):523- 528

89. Mohebbi N, Kovacikova J, Nowik M, Wagner CA. Thyroid hormone deficiency alters expression of acid-base transporters in rat kidney. Am J Physiol Renal Physiol 2007; 293(1):F416-427

90. Tresguerres M, Buck J, Levin LR. Physiological carbon dioxide, bicarbonate, and pH sensing. Pflugers Arch 2010; 60(6):953-964

91. Ludwig MG, Vanek M, Guerini D et al. Proton-sensing Gprotein-coupled receptors. Nature 2003; 425: 93–98

92. Mohebbi N, Benabbas C, Vidal S et al. The protonactivated G protein coupled receptor OGR1 acutely regulates the activity of epithelial proton transport proteins. Cell Physiol Biochem 2012;29(3-4):313-324

93. Codina J, Liu J, Bleyer AJ et al. Phosphorylation of S955 at the protein kinase A consensus promotes maturation of the alpha subunit of the colonic H+,K+ -ATPase. J Am Soc Nephrol 2006; 17: 1833-1840

94. Sun X, Yang LV, Tiegs BC et al. Deletion of the pH sensor GPR4 decreases renal acid excretion. J Am Soc Nephrol 2010; 21: 1745-1755

95. Codina J, Opyd TS, Powell ZB et al. pH-dependent regulation of the α-subunit of H+-K+-ATPase (HKα2). Am J Physiol Renal Physiol 2011;301(3):F536-543

96. Lesage F, Lazdunski M. Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol 2000;279(5):F793-801

97. Welling PA, Ho K. A comprehensive guide to the ROMK potassium channel: form and function in health and disease. Am J Physiol Renal Physiol 2009;297(4):F849-863

98. Hibino H, Inanobe A, Furutani K et al. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010;90(1):291-366

99. Gluck SL. Acid sensing in renal epithelial cells. J Clin Invest 2004;114:1696–169

100. Lev S, Moreno H, Martinez R et al. Protein-tyrosine kinase Pyk2 involved in Ca2+-induced regulation of ion-channel and map kinase functions. Nature 1995;376:737–745

101. Li SY, Sato S, Yang XJ et al. Pyk2 activation is integral to acid stimulation of sodium/hydrogen exchanger 3. J Clin Invest 2004;114:1782–1789

102. Preisig PA. The acid-activated signaling pathway: starting with Pyk2 and ending with increased NHE3activity. Kidney Int 2007;72:1324–1329

103. Yamaji Y, Tsuganezawa H, Moe OW, Alpern RJ. Intracellular acidosis activates c-Src. Am J Physiol Cell Physiol 1997;272:C886– C893

104. Ambuhl PM, Amemiya M, Danczkay M et al. Chronic metabolic acidosis increases NHE3 protein abundance in rat kidney. Am J Physiol Renal Physiol 1996;271:F917–F925

105. Yang XJ, Amemiya M, Peng Y et al. Acid incubation causes exocytic insertion of NHE3 in OKP cells. Am J Physiol Cell Physiol 2000;279:C410–C419

106. Espiritu DJD, Bernardo AA, Robey RB, Arruda JAL. A central role for Pyk2-Src interaction in coupling diverse stimuli to increased epithelial NBC activity. Am J Physiol Renal Physiol 2002;283:F663–F670

107. Tresguerres M, Levin LR, Buck J. Intracellular cAMP signaling by soluble adenylyl cyclase. Kidney Int 2011; 79(12):1277- 1288

108. Tresguerres M, Parks SK, Salazar E et al.Bicarbonatesensing soluble adenylyl cyclase is an essential sensor for acid/ base homeostasis. Proc Natl Acad Sci U S A 2010;107(1):442-447

109. Willoughby D, Cooper DM. Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev 2007; 87(3):965-1010

110. Buck J, Levin LR. Physiological sensing of carbon dioxide/bicarbonate/pH via cyclic nucleotide signaling. Sensors (Basel) 2011;11(2):2112-2128

111. Hallows KR, Alzamora R, Li H et al. AMP activated protein kinase inhibits alkaline pH- and PKA-induced apical vacuolar H+- ATPase accumulation in epididymal clear cells. Am J Physiol Cell Physiol 2009;296:C672–681

112. Gong F, Alzamora R, Smolak C et al. Vacuolar H+-ATPase apical accumulation in kidney intercalated cells is regulated by PKA and AMP-activated protein kinase. Am J Physiol Renal Physiol 2010; 298(5):F1162-1169

113. Paunescu TG, Da Silva N, Russo LM et al. Association of soluble adenylyl cyclase with the V-ATPase in renal epithelial cells. Am J Physiol Renal Physiol 2008; 294(1):F130-F138

114. Zaccolo M. cAMP signal transduction in the heart: understanding spatial control for the development of novel therapeutic strategies. Br J Pharmacol 2009; 158:50–60

115. Litvin TN, Kamenetsky M, Zarifyan A et al. Kinetic properties of «soluble» adenylyl cyclase. Synergism between calcium and bicarbonate. J Biol Chem 2003; 278 (18):15922–15926

116. Reed BY, Gitomer WL, Heller HJ et al. Identification and characterization of a gene with base substitutions associated with the absorptive hypercalciuria phenotype and low spinal bone density. J Clin Endocrinol Metab 2002; 87(4):1476–1485

117. Sutton RAL, Wong NLM, Dirks JH. Effects of metabolic acidosis and alkalosis on sodium and calcium transport in the dog kidney. Kidney Int 1979; 15:520–533

118. Zhou Y, Bouyer P, Boron WF. Role of a tyrosine kinase in the CO2-induced stimulation of HCO3- reabsorption by rabbit S2 proximal tubules. Am J Physiol Renal Physiol 2006;291(2):F358- 367

119. Zhou Y, Zhao J, Bouyer P, Boron WF. Evidence from renal proximal tubules that HCO3- and solute reabsorption are acutely regulated not by pH but by basolateral HCO3- and CO2. Proc Natl Acad Sci U S A 2005;102(10):3875-3880


Review

For citations:


Kayukov I.G., Dobronravov V.A., Kucher A.G., Essaian A.M., Smirnov A.V. RENAL TUBULAR ACIDOSIS IN PRACTICE OF «ADULT» NEPHROLOGIST. COMMUNICATION 1. KIDNEYS ROLE IN ACID BASE HOMEOSTASIS REGULATION. Nephrology (Saint-Petersburg). 2013;17(1):20-41. (In Russ.) https://doi.org/10.24884/1561-6274-2013-17-1-20-41

Views: 565


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)