Preview

Нефрология

Расширенный поиск

ГИПЕРГОМОЦИСТЕИНЕМИЯ КАК СИСТЕМНАЯ ПРОБЛЕМА С ТОЧКИ ЗРЕНИЯ НЕФРОЛОГА

https://doi.org/10.24884/1561-6274-2006-10-2-7-17

Полный текст:

Об авторах

В. А. Добронравов
Санкт-Петербургский государственный медицинский университета им. акад. И.П. Павлова
Россия

кафедра пропедевтики внутренних болезней, отдел биохимии научно-исследовательского центра Санкт-Петербургского государ­ственного медицинского университета им. акад. И.П.Павлова



А. А. Жлоба
Санкт-Петербургский государственный медицинский университета им. акад. И.П. Павлова
Россия
кафедра пропедевтики внутренних болезней, отдел биохимии научно-исследовательского центра Санкт-Петербургского государ­ственного медицинского университета им. акад. И.П.Павлова


И. И. Трофименко
Санкт-Петербургский государственный медицинский университета им. акад. И.П. Павлова
Россия
кафедра пропедевтики внутренних болезней, отдел биохимии научно-исследовательского центра Санкт-Петербургского государ­ственного медицинского университета им. акад. И.П.Павлова


Список литературы

1. Xue JL, Ma JZ, Louis TA, Collins AJ. Forecast of the number of patients with end-stage renal disease in the United States to the year 2010. J Am Soc Nephrol2001; 12: 2753-2758

2. Lysaght MJ. Maintenance dialysis population dynamics:current trends and long-term implications. J Am Soc Nephrol 2002; 13: S37–S40

3. Mackenzie HS, Taal MW, Luycks VA et al. Adaptation to nephron loss. In: Brenner BM ed. Brenner and Rector’s The Kidney. 6th ed. Saunders, Philadelphia, 2000; 1901–1942

4. Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis1998; 32(suppl 3): S112–S119

5. Collins AJ, Li S, Gilbertson DT et al. Chronic kidney disease and cardiovascular disease in the Medicare population. Kidney Int2003; 64(Suppl 87): S24–S31

6. Levin A, Djurdev O, Barrett B et al. Cardiovascular disease in patients with chronic kidney disease: Getting to the heart of the matter. Am J Kidney Dis2001; 38: 1398–1407

7. Chobanian AV, Bakris GL, Black HR et al. The seventh report of the Joint National Committee on prevention, detection, evaluation and treatment of high blood pressure: The JNC VII report. JAMA2003; 289: 2560–2573

8. Sarnak MJ, Levey AS, Schoolwerth AC et al. Kidney disease as a risk factor for the development of cardiovascular disease: A statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology and Epidemiology and Prevention. Hypertension 2003; 42: 1050–1065

9. Смирнов АВ, Добронравов ВА, Каюков ИГ. Кардио-ренальный континуум: патогенетические основы превентивной нефрологии. Нефрология 2005; 9(3): 7–15

10. Brenner BM, Meyer TW, Hostetter TH. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med1 982; 307: 652–659

11. Schieppati A, Remuzzi G. The future of renoprotection: Frustration and promises. Kidney Int 2003; 64 (6): 1947–1955

12. Landray MJ, Wheeler DC, Lip GY et al. Inflammation, endothelial dysfunction, and platelet activation in patients with chronic kidney disease: the chronic renal impairment in Birmingham (CRIB) study. Am J Kidney Dis 2004; 43(2): 244–53

13. Nygard O, Nordrehaug JE, Refsum H et al. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 1997; 337(4): 230–236

14. Ueland PM, Refsum H, Beresford SAA, Vollset SE. The controversy over homocysteine and cardiovascular risk. Am J Clin Nutr 2000; 72: 324–332

15. Bostom AG, Rosenberg IH, Silbershatz H et al. Nonfasting plasma total homocysteine levels and stroke incidence in elderly persons: The Framingham Study. Ann Intern Med 1999; 131(5): 352–355

16. Vollset SE, Refsum H, Tverdal A, et al. Plasma total homocysteine and cardiovascular and noncardiovascular mortality: the Hordaland Homocysteine Study. Am J Clin Nutr 2001; 74 (1): 130–136

17. Bostom AG, Silbershatz H, Rosenberg IH, et al. Nonfasting plasma total homocysteine levels and all-cause and cardiovascular disease mortality in elderly Framingham men and women. Arch Intern Med 1999; 159(10): 1077–1080

18. Graham IM, Daly LE, Refsum HM, et al. Plasma homocysteine as a risk factor for vascular disease. JAMA 1997; 277: 1775–1781

19. Черкас ЮВ, Денисенко AД. Определение содержания гомоцистеина в плазме крови человека методом изократической обращенно-фазовой жидкостной хроматографии (ВЭЖХ). Клин лаб диагн 2001; 5: 35–37

20. Hoogeveen EK, Kostense PJ, Jakobs C, Dekker J M et al. Hyperhomocysteinemia Increases Risk of Death, Especially in Type 2 Diabetes : 5-Year Follow-Up of the Hoorn Study. Circulation 2000; 101(13): 1506–1511

21. Jungers P, Chauveau P, Bandin O, Chadefaux B et al. Hyperhomocysteinemia is associated with atherosclerotic occlusive arterial accidents in predialysis chronic renal failure patients. Miner Electrolyte Metab 1997; 23: 170–173

22. Bostom AG, Shemin D, Verhoef P et al. Elevated fasting total plasma homocysteine levels and cardiovascular disease outcomes in maintenance dialysis patients: A prospective study. Arterioscler Thromb Vasc Biol 1997; 17: 2554–2558

23. Moustapha A, Naso A, Nahlawi M et al. Prospective study of hyperhomocysteinemia as an adverse cardiovascular risk factor in end-stage renal disease. Circulation 1998; 97: 138–141

24. Mallamaci F, Zoccali C, Tripepi G et al. Hyperhomocysteinemia predicts cardiovascular outcomes in hemodialysis patients. Kidney Int 2002; 61: 609–614

25. Zhloba AA, Blashko EL. Liquid chromatographic determination of total homocysteine in blood plasma with photometric detection. J Chromatography B 2004; 800: 275–280

26. Смирнов АВ, Добронравов ВА, Голубев РВ и др. Распространенность гипергомоцистеинемии в зависимости от стадии хронической болезни почек. Нефрология 2005; 9 (2): 48–52

27. Bostom AG, Lathrop L. Hyperhomocysteinemia in end-stage renal disease: prevalence, etiology, and potential relationship to arteriosclerotic outcomes. Kidney Int 1997; 52 (1): 10–20

28. Arnadottir M, Hultberg T, Nilsson-Ehle P, Thysell H. The effect of reduced glomerular filtration rate on plasma total homocysteine concentration. Scand J Clin Lab Invest 1996; 56: 41–46

29. Bostom A, Brosnan JT, Hall B. Net uptake of plasma homocysteine by the rat kidney in vivo. Atherosclerosis 1995; 116: 59–62

30. van Guldener C, Donker AJM, Jakobs C et al. No net renal extraction of homocysteine in fasting humans. Kidney Int 1998; 54: 166–169

31. Suliman ME, Divino Filho JC, Barany P et al. Effects of high-dose folic acid and pyridoxine on plasma and erythrocyte sulfur amino acids in hemodialysis patients. J Am Soc Nephrol 1999; 10: 1287–1296

32. Finkelstein JD. Pathways and regulation of homocysteine metabolism in mammals. Semin Thromb Hemost 2000; 26: 219–226

33. Fowler B. Homocysteine: Overview of biochemistry, molecular biology, and role in disease process. Semin Vasc Med 2005; 5(2): 77–86

34. Klee GG. Cobalamin and folate evaluation; measurement of methylmalonic acid and homocysteine vs vitamin B12 and folate. Clin Chem 2000; 46: 1277–1283

35. Seshadri N, Robinson K. Homocysteine, B vitamins, and coronary artery disease. Medical Clinics of North America 2000; 84(1): 215–237

36. Harker LA, Harlan JM, Ross. Effect of sulfinpyrazone on homocysteine-induced endothelial injury and arteriosclerosis in baboons. R Circ Res 1983; 53(6): 731–739

37. Wang H, Yoshizumi M, Lai K et al. Inhibition of growth and p21ras methylation in vascular endothelial cells by homocysteine but not cysteine. J Biol Chem 1997; 272(40): 25380–25385

38. Chambers JC., McGregor A, Jean-Marie J et al. Demonstration of rapid inset vascular endothelial dysfunction after hyperhomocysteinemia and effect reversible with vitamin C therapy. Circulation 1999; 99:1156–1160

39. Bellamy MF, McDowell IF, Ramsey MW. Hyperhomocysteinemia after an oral methionine load acutely impairs endothelial function in healthy adults. Circulation 1998; 98: 1848–1852

40. Austin RC, Lentz SR, Werstuck GH. Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ 2004; 11: S56–S64

41. Tsai JC, Perrella MA, Yoshizumi M et al. Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis. Proc Natl Acad Sci USA 1994; 91: 6369–6373

42. Outinen PA, Sood SK, Pfeifer SI et al. Homocysteine-induced endoplasmic reticulum stress and growth arrest leads to specific changes in gene expression in human vascular endothelial cells. Blood 1999; 94: 959–967

43. Werstuck GH, Lentz SR, Dayal S et al. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest 2001; 107(10): 1263–1273

44. Zhang C, Cai Y, Adachi MT et al. Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response. J Biol Chem 2001; 276: 35867–35874

45. Ungvari Z, Csiszar A, Edwards JG et al. Increased superoxide production in coronary arteries in hyperhomocysteinemia: role of tumor necrosis factor-alpha, NAD(P)H oxidase, and inducible nitric oxide synthase. Arterioscl Thromb Vasc Biol 2003; 23: 418–424

46. Lee R, Frenkel EP. Hyperhomocysteinemia and thrombosis. Hematol Oncol Clin North Am 2003; 17(1): 85-102

47. Welch GN, Upchurch GRJ, Loscalzo J. Homocysteine, oxidative stress, and vascular disease. Hosp Pract 1997; 32: 81–82

48. Lee ME, Wang H. Homocysteine and hypomethylation. A novel link to vascular disease. Trends Cardiovasc Med 1999; 9: 49–54

49. Perna AF, Ingrosso D, Lombardi C et al. Possible mechanisms of homocysteine toxicity Kidney Int 2003; 63: S137–140

50. Jakubowski H. Protein N-homocysteinylation: implications for atherosclerosis. Biomed Pharmacother 2001; 55: 443–447

51. Misra HP. Generation of superoxide free radical during the autoxidation of thiols. J Biol Chem 1974; 249: 2151–2155

52. Heinecke JS. Superoxide mediated oxidation of low-density lipoproteins by thiols. In: Cerutti PA, Cerutti JM, McCord I, I Fridovich, eds. Oxy-radicals in Molecular Biology and Pathology, Alan R. Liss, New York, 1988: 433–457

53. Loscalzo J. The oxidant stress of hyperhomocyst(e)inemia. J Clin Invest1996; 98: 5–7

54. Wall RT, Harlan JM, Harker LA, Striker GE. Homocysteineinduced endothelial cell injury in vitro: a model for the study of vascular injury. Thromb Res 1980; 18: 113–121

55. Berman RS, Martin W. Arterial endothelial barrier dysfunction: actions of homocysteine and the hypoxanthine-xanthine oxidase free radical generating system. Br J Pharmacol 1993; 108: 920–926

56. Matthias D, Becker CH, Riezler R, Kindling PH. Homocysteine induced arteriosclerosis-like alterations of the aorta in normotensive and hypertensive rats following the application of high doses of methionine. Atherosclerosis 1996; 122: 201–216

57. Harker LA, Ross R, Slichter SJ, Scott CR. Homocystineinduced arteriosclerosis. The role of endothelial cell injury and platelet response in its genesis. J Clin Invest 1976; 58: 731–741

58. Hossain GS, van Thienen JV, Werstuck GH et al. TDAG51 is induced by homocysteine, promotes detachment-mediated programmed cell death, and contributes to the development of atherosclerosis in hyperhomocysteinemia. J Biol Chem 2003; 278: 30317–30327

59. Buemi M, Marino D, Di Pasquale G et al. Effects of homocysteine on proliferation, necrosis and apoptosis of vascular smooth muscle cells in culture and influence of folic acid. Thromb Res 2001; 104: 207–213

60. Woo KS, Chook P, Lolin YI et al. Hyperhomocysteinemia is a risk factor for endothelial dysfunction in humans. Circulation 1997; 96: 2542–2544

61. Lentz SR, Sobey CG, Piegors DJ et al. Vascular dysfunction in monkeys with diet-induced hyperhomocyst(e)inemia. J Clin Invest 1996; 98: 24–29

62. Salazar FJ, Pinilla JM, Lopes F et al. Renal effects of prolonged synthesis inhibition of endothelium-derived nitric oxide. Hypertension 1992: 20: 113–117

63. Kone BC, Baylis C. Biosynthesis and homeostatic roles of NO in the normal kidney. Am J Physiol 1997; 272: F561–F578

64. Nath KA, Norby SM. Reactive oxygen species and acute renal failure. Am J Med 2000; 109: 665–678

65. Stuhlinger MC, Oka RK, Graf EE et al. Endothelial dysfunction induced by hyperhomocyst(e)inemia role of asymmetric dimethylarginine. Circulation 2003; 108(8): 933–938

66. Boger RH, Bode-Boger S M, Sydow K et al. Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in monkeys with hyperhomocyst(e)inemia or hypercholesterolemia. Arterioscler Thromb Vasc Biol 2000; 20: 1557–1564

67. Sood HS, Cox MJ, Tyagi SC. Generation of nitrotyrosine precedes activation of metalloproteinase in myocardium of hyperhomocysteinemic rats. Antioxid Redox Signal 2002; 4(5): 799–804

68. Knipp M, Braun O, Vasak M. Searching for DDAH inhibitors: S-nitroso-L-homocysteine is a chemical lead. J Am Chem Soc 2005; 127: 2372–2373

69. Ossani GP, Fischer PA, Caram SG et al. Mild hyperhomocysteinemia promotes renal hemodynamic dysfunction without histopathologic changes in adult rats. Kidney Int 2004; 66(5): 1866–1872

70. Upchurch GRJr, Welch GN, Fabian AJ et al. Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 1997; 272: 17012–17107

71. Tyagi N, Sedoris KC, Steed M et al. Mechanisms of homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol 2005; 289(6): H2649–H2656

72. Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol 2004; 15: 1983–1992

73. Au-Yeung KK, Woo CW, Sung FL et al. Hyperhomocysteinemia activates nuclear factor-B in endothelial cells via oxidative stress. Circ Res 2004; 94: 28–36

74. Poddar R, Sivasubramanian N, Dibello PM et al. Homocysteine induces expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells: implications for vascular disease. Circulation 2001; 103: 2717–2723

75. Wang G, Siow YL and O K. Homocysteine induces monocyte chemoattractant protein-1 expression by activating NF-kappa B in THP-1 macrophages. Am J Physiol Heart Circ Physiol 2001; 280: H2840–H2847

76. Nappo F, De Rosa N, Marfella R et al. Impairment of endothelial functions by acute hyperhomocysteinaemia and reversal by antioxidant vitamins. JAMA 1999; 281: 2113–2118

77. Rakhit RD, Marber MS. Nitric oxide: an emerging role in cardioprotection? Heart 2001; 86: 368–372

78. Undas A, Williams EB, Butenas S et al. Homocysteine inhibits inactivation of factor Va by activated protein C. J Biol Chem 2001; 276: 4389–4397

79. Jakubowski H. Homocysteine thiolactone: metabolic origin and protein homocysteinylation in humans. J Nutr 2000; 130: 377S–381S

80. Sass JO, Nakanishi T, Sato T et al. S-homocysteinylation of transthyretin is detected in plasma and serum of humans with different types of hyperhomocysteinemia. Biochem Biophys Res Commun 2003; 310: 242–246

81. Lubec B, Fang-Kircher S, Lubec T et al. Evidence for McKusick’s hypothesis of deficient collagen cross-linking in patients with homocystinuria. Biochim Biophys Acta 1996; 1315: 159–162

82. Vignini A, Nanetti L, Bacchetti T et al. Modification induced by homocysteine and low-density lipoprotein on human aortic endothelial cells: an in vitro study. J Clin Endocrino Metab 2004; 89: 4558–4561

83. Beltowski J. Protein homocysteinylation: a new mechanism of atherogenesis? Postepy Hig Med Dosw 2005; 59: 392–404

84. Jakubowski H. Translational incorporation of S-nitrosohomocysteine into protein. J Biol Chem 2000; 275(29): 21813–21816

85. Жлоба АА, Иванова СЮ. Очистка и энзиматическая активность комплекса α2М-LRP-рецептор-α2-макроглобулин-трипсин. Ученые записки Санкт-Петeрбургского государственного медицинского университета имени академика И.П. Павлова. 2002; П9(1): 62–66

86. Жлоба АА, Иванова СЮ. Изучение свойств и выявление экспрессии рецептора активированного α2-макроглобулина человека. Клиническая лабораторная диагностика 2002; 4: 7–11

87. Binder CJ, Chang MK, Shaw PX et al. Innate and acquired immunity in atherosclerosis. Nat Med 2002; 8: 1218–1226

88. Virella G, Thorpe SR, Alderson NL et al. DCCT/EDIC Research Group. Autoimmune response to advanced glycosylation end-products of human LDL. J Lipid Res 2003; 44: 487–493

89. Ferguson E, Parthasarathy S, Joseph J, Kalyanaraman B. Generation and initial characterization of a novel polyclonal antibody directed against homocysteine thiolactone-modified low density lipoprotein. J Lipid Res 1998; 39: 925–933

90. Undas A, Jankowski M, Twardowska M et al. Antibodies to N-homocysteinylated albumin as a marker for early-onset coronary artery disease in men. Thromb Haemost 2005; 93: 346–350

91. Undas A, Perla J, Lacinski M et al. Autoantibodies against N-homocysteinylated proteins in humans: implications for atherosclerosis. Stroke 2004; 35(6): 1299–1303

92. Werstuck GH, Lentz SR, Dayal S et al. Homocysteineinduced endoplasmic reticulum stress causes dysregulation of the cholesterol and fatty acid biosynthetic pathways. J Clin Invest 2001; 107: 1263–1273

93. Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002;109: 1125–1131

94. Kaufman RJ. Orchestrating the unfolded protein response in health and disease. J Clin Invest 2002; 110:1389–1398

95. Zhang C, Cai Y, Adachi MT et al. Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response. J Biol Chem 2001; 276: 35867–35874

96. Outinen PA, Sood SK, Liaw PC et al. Characterization of the stress-inducing effects of homocysteine. Biochem J 1998; 332: 213–221

97. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362 (6423): 801–809

98. Tyagi SC. Homocysteine redox receptor and regulation of extracellular matrix components in vascular cells. Am J Physiol 1998; 274 (2 Pt 1): C396–405

99. Tsai JC, Wang H, Perrella MA et al. Induction of cyclin A gene expression by homocysteine in vascular smooth muscle cells. J Clin Invest 1996; 97: 146–153

100. Lubec B, Labudova O, Hoeger H et al. Homocysteine increases cyclin-dependent kinase in aortic rat tissue. Circulation 1996; 94: 2620–2625

101. Chiang PK, Gordon RK, Tal J et al. Adenosylmethionine and methylation. FASEB J 1996; 10: 471–480

102. Yi P, Melnyk S, Pogribna M et al. Homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem 2000; 275(38): 29318–29323

103. Esteller M, Herman JG. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol 2002; 196: 1–7

104. Dong C, Yoon W, Goldschmidt-Clermont PJ. DNA methylation and atherosclerosis. J Nutr 2002; 132: 2406S–2409S

105. Scott JM, Molloy AM, Kennedy DG et al. Effects of the disruption of transmethylation in the central nervous system: an animal model. Acta Neurol Scand 1994; Suppl.154: 27–31

106. Schatz RA, Wilens TE, Sellinger OZ. Decreased transmethylation of biogenic amines after in vivo elevation of brain S-adenosyl-L-homocysteine. J Neurochem 1981; 36: 1739–1748

107. Leonard EJ, Skeel A, Chiang PK, Cantoni GL. The action of the adenosylhomocysteine hydrolase inhibitor, 3-deazaadenosine, on phagocytic function of mouse macrophages and human monocytes. Biochem Biophys Res Commun 1978; 84: 102–109

108. Chiang, PK, Im YS, Cantoni GL. Phospholipids biosynthesis by methylations and choline incorporation: effect of 3-deazaadenosine. Biochem Biophys Res Commun 1980; 94: 174–181

109. Chen P, Poddar R, Tipa EV, Jacobsen DW. Homocysteine metabolism in cardiovascular cells and tissues: implications for hyperhomocysteinemia and cardiovascular disease. Adv Enzyme Regul 1999; 39: 93–109

110. Chen YF, Li PL, Zou AP. Effect of hyperhomocysteinemia on plasma or tissue adenosine levels and renal function. Circulation 2002; 106: 1275–1281

111. Hansen PB, Schnermann J. Vasoconstrictor and vasodilator effects of adenosine in the kidney. Am J Physiol Renal Physiol 2003; 285: F590–F599

112. Biaggioni I, Mosqueda-Garcia R. Adenosine in cardiovascular homeostasis and the pharmacologic control of its activity. In: Laragh JH, Brenner BM, eds. Hypertension, Pathophysiology, Diagnosis, and Management. 2nd ed. Raven, New York, 1995: 1125–1140

113. Fischer PA, Dominguez GN, Cuniberti LA et al. Hyperhomocysteinemia induces renal hemodynamic dysfunction: is nitric oxide involved? J Am Soc Nephrol 2003; 14: 653–660

114. Kumagai H, Katoh S, Hirosawa K et al. Renal tubulointerstitial injury in weanling rats with hyperhomocysteinemia. Kidney Int 2002; 62: 1219–1228

115. Baylis C, Slangen B, Hussain S, Weaver C. Relationship between basal NO release and cyclooxygenase products in the normal rat kidney. Am J Physiol 1996; 271: R1327–R1334

116. Diez N, Perez R, Hurtado V, Santidrian S. Hyperhomocysteinaemia induced by dietary folate restriction causes kidney oxidative stress in rats. Br J Nutr 2005; 94(2): 204–210

117. Zhang F, Siow YL, O K. Hyperhomocysteinemia activates NF-B and inducible nitric oxide synthase in the kidney. Kidney Int 2004; 65(4): 1327–1338

118. McCully. KS Vascular pathology of homocysteinemia: Implications for the pathogenesis of arteriosclerosis. Am J Pathol 1969; 56: 111–128

119. Brenner BM. Hemodynamically mediated glomerular injury and the progressive nature of kidney disease. Kidney Int 1983; 23: 647–655

120. Dworkin LD, Feiner HD. Glomerular injury in uninephrectomized spontaneously hypertensive rats. A consequence of glomerular capillary hypertension. J Clin Invest 1986; 77: 797–809

121. Li N, Chen YF, Zou AP. Implications of hyperhomocysteinemia in glomerular sclerosis in hypertension. Hypertension 2002; 39: 443–448

122. Miller A, Mujumdar V, Shek E et al. Hyperhomocyst(e)inemia induces multiorgan damage. Heart Vessels 2000; 15(3):135–143

123. Tsai JrC, Chen LN, Hwang ShJ et al. Homocysteine stimulates the expression of monocyte chemoattractant protein-1 and inducible nitric oxide synthase, and DNA synthesis in rat mesangial cells. Congress ERA-EDTA, Berlin, june 8-12, 2003; [T62], abstract

124. Yang ZZ, Zou AP. Homocysteine enhances TIMP-1 expression and cell proliferation associated with NADH oxidase in rat mesangial cells. Kidney Int2003; 63(3): 1012–1020

125. Yi F, Zhang AY, Janscha JL, Li PL, Zou AP.Homocysteine activates NADH/NADPH oxidase through ceramide-stimulated Rac GTPase activity in rat mesangial cells. Kidney Int 2004; 66(5):1977–1987

126. Ingram AJ, Krepinsky JC, James L et al. Activation of mesangial cell MAPK in response to homocysteine. Kidney Int 2004; 66( 2): 733–745

127. Смирнов АВ, Добронравов ВА, Неворотин АИ и др. Гомоцистеин вызывает повреждение не только клубочкового, но и канальцевого отдела нефрона (экспериментальное исследование). Нефрология 2005; 9(3): 81–87

128. Смирнов АВ, Добронравов ВА, Неворотин АИ и др. Гипергомоцистеинемия усугубляет повреждение нефрона при экспериментальной хронической почечной недостаточности. Нефрология 2005; 9(4): 67–74

129. Bridges CC, Zalups RK. Homocysteine, System b0,+ and the renal epithelial transport and toxicity of inorganic mercury. Am J Pathol 2004; 165: 1385–1394

130. Hoogeveen EK, Kostense PJ, Jager A et al. Serum homocysteine level and protein intake are related to risk of microalbuminuria: The Hoorn Study. Kidney Int 1998; 54: 203–209

131. Jager A, Kostense PJ, Nijpels G et al. Serum homocysteine levels are associated with the development of (micro)albuminuria: the Hoorn study. Arterioscler Thromb Vasc Biol 2001; 21(1): 74–81

132. Chico A, Perez A, Cordoba A et al. Plasma homocysteine is related to albumin excretion rate in patients with diabetes mellitus: a new link between diabetic nephropathy and cardiovascular disease? Diabetologia 1998; 41(6): 684–693

133. Lanfredini M, Fiorina P, Peca MG et al. Fasting and post-methionine load homocyst(e)ine values are correlated with microalbuminuria and could contribute to worsening vascular damage in non-insulin-dependent diabetes mellitus patients. Metabolism 1998; 47: 915–921

134. Vermeulen EG, Rauwerda JA, van den Berg M et al. Homocysteine-lowering treatment with folic acid plus vitamin B6 lowers urinary albumin excretion but not plasma markers of endothelial function or C-reactive protein: further analysis of secondary end-points of a randomized clinical trial. Eur J Clin Invest 2003; 33(3): 209–215

135. Bigazzi R, Bianchi S, Baldari D et al. Microalbuminuria predicts cardiovascular events and renal insufficiency in patients with essential hypertension. J Hypertens 1998; 16(9):1325–1333

136. Verhave JC, Gansevoort RT, Hillege HL et al. PREVEND Study Group. An elevated urinary albumin excretion predicts de novo development of renal function impairment in the general population. Kidney Int 2004; 92 [Suppl]: S18–21

137. Ninomiya T, Kiyohara Y, Kubo M et al. Hyperhomocysteinemia and the development of chronic kidney disease in a general population: the Hisayama study. Am J Kidney Dis 2004; 44(3): 437–445

138. Ikegaya N, Yanagisawa C, Kumagai H. Relationship between plasma homocysteine concentration and urinary markers of tubulointerstitial injury. Kidney Int 2005; 67(1): 375

139. Samuelsson O, Lee DM, Attman PO et al. The plasma levels of homocysteine are elevated in moderate renal insufficiency but do not predict the rate of progression. Nephron 1999; 82(4): 306–311

140. Sarnak MJ, Wang SR, Beck GJ et al. Homocysteine, cysteine, and B vitamins as predictors of kidney disease progression. Am J Kidney Dis 2002; 40(5): 932–939

141. Hovind P, Tarnow L, Rossing P et al. Progression of diabetic nephropathy: role of plasma homocysteine and plasminogen activator inhibitor-1. Am J Kidney Dis 2001; 38(6): 1376–1380


Рецензия

Для цитирования:


Добронравов В.А., Жлоба А.А., Трофименко И.И. ГИПЕРГОМОЦИСТЕИНЕМИЯ КАК СИСТЕМНАЯ ПРОБЛЕМА С ТОЧКИ ЗРЕНИЯ НЕФРОЛОГА. Нефрология. 2006;10(2):7-17. https://doi.org/10.24884/1561-6274-2006-10-2-7-17

For citation:


Dobronravov V.A., Zhloba A.A., Trofimenko I.I. HYPERHOMOCYSTEINEMIA AS A SYSTEMIC PROBLEM FROM A NEPHROLOGIST’S VIEWPOIN. Nephrology (Saint-Petersburg). 2006;10(2):7-17. (In Russ.) https://doi.org/10.24884/1561-6274-2006-10-2-7-17

Просмотров: 224


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)