Preview

Нефрология

Расширенный поиск

ФЕТАЛЬНОЕ ПРОГРАММИРОВАНИЕ ПАТОЛОГИИ ВЗРОСЛЫХ

https://doi.org/10.24884/1561-6274-2012-16-2-111-117

Полный текст:

Аннотация

В обзоре приводятся данные, свидетельствующие о роли условий внутриутробного развития плода в возникновении хронической патологии у взрослого и пожилого индивидуума. Обсуждается значимость массы тела при рождении, связанная с характером питания матери, состоянием плаценты, трофическим статусом плода для развития ожирения, артериальной гипертензии и инсулинорезистентности в постнатальном периоде. Малая масса плода ассоциирована с малым числом нефронов и с высокой уязвимостью почек взрослого.

Об авторах

Н. Н. Смирнова
Санкт-Петербургский государственный медицинский университет им. акад. И.П.Павлова
Россия

Кафедра педиатрии 

197022, ул. Льва Толстого, д. 6–8, Тел.: 89954566



Н. Б. Куприенко
Санкт-Петербургский государственный медицинский университет им. акад. И.П.Павлова
Россия
Кафедра педиатрии


Список литературы

1. Patricia M. Quen. Carol E. Lany Handbook of Pediatric Nutrition, an Aspin Publication 1993: 560–572

2. Коровина НА, Захарова ИН, Нетребенко ОК и др. Функциональное состояние почек у детей при различных видах вскармливания. Детская гастроэнтерология и нутрициология 2005; 3 (13): 133–136

3. Дедов ИИ, Мельниченко ГА, Бутрова СА и др. Ожирение в подростковом возрасте. Результаты российского эпидемиологического исследования. Тер арх 2007; 10 (79): 28–32

4. Диагностика и лечение артериальной гипертензии (Рекомендации Российского медицинского общества по артериальной гипертонии и Всероссийского научного общества кардиологов). Авторы (рабочая группа): ИЕ Чазова, ЛГ Ратова, СА Бойцов, ДВ Небиеридзе. Системные гипертензии 2010; 3: 5–26

5. Рязанов АС, Аракелянц АА, Юренев АП. Патогенез артериальной гипертонии в рамках метаболического синдрома. Тер арх 2003; 3 (75): 86–88

6. Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1986; 341 (1): 1077–1081

7. Stein CE, Fall CH, Kumaran K. et al. Fetal growth and coronary heart disease in south India. Lancet 1996; 348: 1269–1273

8. Leon DA, Lithell HO, Vagero D et al. Reduced fetal growth rate and increased risk of death from ischemic heart disease: cohort study of 15 000 Swedish men and women born 1915-29. Br Med J 1998; 317: 241–245

9. Huxley RR, Shiell AW. Law CM. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systemic review of the literature. J Hypertens 2000; 18: 815–831

10. Hales CN, Barker DJ, Clark PM et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991; 303: 1019–1022

11. Barker DJ, Hales CN, Fall CH at al. Type2 (non-insulindependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): Relation to reduced fetal growth. Diabetologia 1993; 36: 62–67

12. Barker DJ, Winter PD, Osmond C at al. Weight in infancy and death from ischemic heart disease. Lancet 1989; 2: 577–580

13. Martyn CN, Barker DJ, Osmond C, mother’s pelvic size, fetal growth, and death from stroke and coronary heart disease in men in the UK. Lancet 1996; 348: 1264–1268

14. Mc Cormack VA, dos Santos Silva I, De Stavola BL at al. Fetal growth and subsequent risk of breast cancer: Result from long term follow up of Swedish cohort. BMJ 2003; 326: 248

15. Leadbitter P, Pearce N, Cheng S at al. Relationship between fetal growth and the development of asthma and atopy in childhood. Thorax 1999; 54: 905–910

16. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science 2001; 293: 1089–1093

17. Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 2004; 20: 63–68

18. Ravelli AC, Der Meulen GH, Osmond C at al. Obesity at the age of 50 in men and women exposed to famine prenatally. Am J Clin Nutr 1999; 70: 811–816

19. Vaisse C, Clement K, Durand E at al. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest 2000; 106: 253–262

20. King KL, Roberts CT, Sohlstrom AI at al. Chronic maternal feed restriction impairs growth but increases adiposity of the fetal guinea pig. Am J Physiol Regul Integ Comp Physiol 2005; 288: R119–126

21. Yajnik CS, Fall CH, Coyaji KJ at al. Neonatal anthropometry: the thin-fat Indian baby. The Puny Maternal Nutrition Study. Int J Obes Retard Metab Disord 2003; 27: 173–180

22. Guan H, Arany E, van Beek JP at al. Adipose tissue gene expression profiling reveals distinct molecular pathways that define visceral adiposity in offspring of maternal protein-restricted rats. Am J Physiol Endocrinol Metab 2005; 288: E663–673

23. Dispham J, Gardner DS, Gnanalingham MG at al. maternal nutritional programming of fetal adipose tissue development: Differential effects on messenger ribonucleic acid abundance for uncoupling proteins and peroxisome proliferation-activated and prolactin receptors. Endocrinology 2005; 146: 3943–3949

24. Rennie KL, Johnson L, Jebb SA. Behavioral determinants of obesity. Best Pract Res clin Endocrinol Metab 2005; 19: 343–358

25. Desai M, Gayle D, Babu J, Ross MG. Programmed obesity in intrauterine growth-restricted newborns: Modulation by newborn nutrition. Am J Physiol Regul Integr Comp Physiol 2005; 288: R91–96

26. Polkowska J, Gladysz A. Effect of food manipulation on the neuropeptide Y neuronal system in the diencephalon of ewes. J Chem Neuroanat 2001; 21: 149–159

27. Personen U, Huupponen R, Rouru J, Koulu M. hypothalamic neuropeptide expression after food restriction in Zucker rats: Evidence of persistent neuropeptide Y gene activation. Brain Res Mol Brain Res 1992; 16: 255–260

28. Kojima M, Kangawa K. Grelin: Structure and function. Physiol Rev 2005; 85: 495–522

29. Hang F, Chen Y, Heiman M, Dimarchi R. Leptin: Structure, function and biology. Vitamins & Hormones 2005; 7: 345–372

30. Korner J, Savontaus E, Chua SC at al. Leptin regulation of AgRP and NPY mRNA in the rat hypothalamus. J. Neuroendocrinol 2001; 13: 959–966

31. Dallongeville J, Hecquet B, Libel P at al. Short term response of circulating leptin to feeding and fasting in man : Influence of circadian cycle. Int J Obes Relat Metab Disord 1998; 22: 728–733

32. Roberts TJ, Caston-Balderrama A, Nijland MJ, Ross MG. Central neuropeptide Y stimulates ingestive behavior and increases urine output in the ovine fetus. Am J Physiol Endocrinol Metab 2000; 279: E494–500

33. El Haddad MA, Ismail Y, Guerra C at al. Effect of oral sucrose on ingestive behavior in the near-term ovine fetus. J Obstet Gynecol 2002; 187: 898–901

34. Ross MG, El Haddad M, Desai M at al. Unopposed orexic pathways in the developing fetus. Physiol Behav 2003; 79: 79–88

35. Davidowa H, Li Y, Plagemann A. Altered neuronal responses to feeding-relevant peptides as sign of developmental plasticity in the hypothalamic regulatory system of body weight. Zh Vyssh Nerv Deiat im I.P.Pavlova 2003; 53: 663–670

36. Mc Millen JC, Muhlhausler BS, Duffield JA, Yuen BS. Рrenatal programming of postnatal obesity: Fetal nutrition and the regulation of leptin synthesis and secretion before birth. Proc Nutr Soc 2004; 63: 405–412

37. Eckert JE, Gatford KL, Luxford BG at al. Leptin expression in offspring is programmed by nutrition in pregnancy. J Endocrinol 2000; 165: R1–6

38. Vickers MH, Gluckman PD, Coveny AH at al. neonatal leptin treatment reverses developmental programming. Endocrinology 2005; 146: 4211–4216

39. Leslie Myatt Placental adaptive responses and fetal programming. J Physiol 2006; 572 (1): 25–30

40. Wallace JM, Aitken RP, Milne IS, & hay WW Jr Nutritionally mediated placental growth restriction in the growing adolescent: consequences for the fetus. Biol Reprod 2004; 71: 1055–1062

41. Reik W, Constancia M, Fowden A at al. regulation of supply and demand for maternal nutrients in mammals by imprinted genes. J Physiol 2003; 547: 35–44

42. Mizuno Y, Sotomaru Y, Katsuzawa Y at al. Asb4, Ata3, and Dcn are novel imprinted genes identified by high-throughput screening using RIKEN cDNA microarray. Biochem Biophys Res Commun 2002; 290: 1499–1505

43. Dao D, Frank D, Qian N at al. IMPT1, an imprinted gene similar to polyspecific transporter and multi-drug resistance genes. Hum Mol Genet 1998; 7: 597–608

44. Welberg LA, Seckl JR & Holms MC. Inhibition of 11betahydroxysteroid dehydrogenase, the foeti-placental barrier to maternal glucocorticoidss, permanently programs amygdale GR mRNA expression and anxiety-like behaviour in the offspring. Eur J Neurosci 2000; 12: 1047–1054

45. Pepe GJ, Burch MG & Albrecht ED. Localization and developmental regulation of 11beta-hydroxysteroid dehydrogenase-1 and -2 in the baboon syncytiotrophoblast. Endocrinology 2001; 142: 68–80

46. Charnock-Jones DS, Kaufmann P & Mayhew TM. Aspects of human fetoplacental vasculogenesis and angiogenesis, 1. Molecular regulation. Placenta 2004; 25:103–113

47. Kaufmann P, Mayhew TM & Charnock-Jones DS. Aspects of human fetoplacental vasculogenesis and angiogenesis. Changes during normal pregnancy. Placenta 2004; 25: 114–126

48. Woods LL, Weeks DA. Naturally occurring intrauterine growth retardation and adult blood pressure in rats. Pediatric Res 2004; 56: 763–767

49. Ross MG, Desai M, Guerra C, Wang S. programmed syndrome of hypernatremic hypertension in ovine twin lambs. Am J Obstet Gynecol 2005; 192:1196–1204

50. Lewis RM, Forhead AJ, Petry CJ at al. long-term programming of blood pressure in adult rats induced by fetal exposure to maternal low protein diets. Br J Nutr 2002; 88: 283–290

51. Jackson AA, Dunn RL, Marchand MC, Langley-Evans SC Increased systolic blood pressure in rats induced by maternal lowprotein diet is reversed by dietary supplementation with glycine. Clin Sci (Lond) 2002; 103: 633–639

52. Huxley RR, Shiell AW, Law CM. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systemic review of the literature. J Hypertens 2000: 18: 815–831

53. Christensen K, Vaupel JW, Holm NV, Yashin AI. Mortality among twins after age 6: foetal origins hypothesis versus twin method. Br Med J 1995; 310: 432–436

54. Keijzer-Veen MG, Finken MJ, Nauta J at al. Is blood pressure increased 19 years after intrauterine growth restriction and preterm birth? A prospective follow-up study in the Netherlands. Pediatrics 2005; 116: 725–731

55. Schluchter MD. Publication bias and heterogeneity in the relationship between systolic blood pressure, birth weight and catch-up growth – a meta- analysis. J Hypertens 2003; 21: 273–279

56. Valerie A. Luyckx & Barry M. Brenner Low birth weight, nephron number, and kidney disease. Kidney International 2005; 68 [Suppl 97]: S68–S77

57. Leeson CP, Kattenhorn M, Morley R at al. Impact of low birth weight and cardiovascular risk factors on endothelial function in early adult life. Circulation 2001; 103: 1264–1268

58. Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol 2008; 75: 346–359

59. Johnston LB, Dahlgren J, Leger J at al. Association between insulin-like growth factor 1 (IGF-1) polymorphisms, circulating IGF-1, and pre- and postnatal growth in two European small for gestation age populations. J Clin Endocrinol Metab 2003; 88: 4805–4810

60. Jensen RB, Chellakooty M, Vielwerth S at al. Intrauterine growth retardation and consequence for endocrine and cardiovascular disease in adult life: does insuline-like growth factor play a role? Horm Res 2003; 60[Suppl 3]: 136–148

61. Ricardo Sesso & maria C.P Franco. Abnormalities in Metalloproteinase pathways and IGF-1 Axis: a Link between Birth Weight, Hypertension, and Vascular Damage in Childhood. American journal of hypertension 2010; 23 (1): 6–11

62. Day IN, Chen XH, Gaunt TR at al. Late life metabolic syndrome, early growth and common polymorphism in the growth hormone and placental lactogen gene cluster. J Clin Endocrinol Metab 2004; 89: 5569–5576

63. Klebanoff MA, Graubard BI, Kessel SS, Berendes HW. Lowbirth weight across generations. JAMA 1984; 252: 2423–2427.

64. Stein AD, Lumey LH. The relationship between maternal and offspring birth weights after maternal prenatal famine exposure: the Dutch Famine Birth Cohort Study. Hum Biol 2000; 72: 641–654

65. Ibanez L, Potau N, Enriquez G, de Zegher F. Reduced uterine and ovarian size in adolescent girls born small for gestational age. Pediatr Res 2000; 47: 575–577

66. Reik W, Santos F, Dean W. Mammalian epigenomics: reprogramming the genome for development and therapy. Theriogenology 2003; 59: 21–32

67. Harding JE, Bloomfield FH. Prenatal treatment of intrauterine growth restriction: lessons from the sheep model. Pediatr Endocrinol Rev 2004; 2: 182–192

68. Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD. Foetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol 2000; 279: E83–E87

69. Vickers MH, Breier BH, McCarthy D, Gluckman PD. Sedentary behavior during postnatal life is determined by the prenatal environment and exacerbated by postnatal hypercaloric nutrition. Am J Physiol 2003; 285: R271–R273

70. Vickers MH, Gluckman PD, Coveny AH et al. Neonatal leptin treatment reverses developmental programming. Endocrinology 2005; 146: 4211–4216


Для цитирования:


Смирнова Н.Н., Куприенко Н.Б. ФЕТАЛЬНОЕ ПРОГРАММИРОВАНИЕ ПАТОЛОГИИ ВЗРОСЛЫХ. Нефрология. 2012;16(2):111-117. https://doi.org/10.24884/1561-6274-2012-16-2-111-117

For citation:


Smirnova N.N., Kuprienko N.B. FETAL PROGRAMMING OF PATHOLOGY IN ADULTS. Nephrology (Saint-Petersburg). 2012;16(2):111-117. (In Russ.) https://doi.org/10.24884/1561-6274-2012-16-2-111-117

Просмотров: 57


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)