Preview

Nephrology (Saint-Petersburg)

Advanced search

ACCUMULATION IN THE KIDNEY OF EXOGENOUS PROTEIN AFTER ITS ABSORPTION IN THE INTESTINE DURING THE DEVELOPMENT OF EXPERIMENTAL RENAL FAILURE IN RATS

https://doi.org/10.24884/1561-6274-2007-11-1-7-16

Abstract

THE AIM of the investigation was to study the possibilities of accumulation of the green fluorescent protein (GFP) in the rat kidney under conditions of experimental chronic renal failure (CRF). MATERIALS AND METHODS. The experimental group consisted of 13 Wistar rats subjected to subtotal nephrectomy (SNE). In eight days after operation GFP was introduced to the animals through stomach probe. The control group consisted of 12 rats with intact kidneys. The concentration of creatinine, blood plasma urea, diurnal diuresis, concentration of albumin and urine creatinine with calculation of the albumine/cratinine ratio (ACR), concentration index (Ucr/Pcr) and creatinine clearance (Ccr ) were determined in both groups. In addition, light-optical and electron-microscopic investigations were carried on. Confocal microscopy was used for the assessment of accumulation of GFP in the erythrocytes andcell populations of the nephron. RESULTS. It has been found that GFP is absorbed by erythrocytes and, on coming into the systemic circulation, is accumulated in the cell vesicles of the proximal tubules (PT). Morphological and functional changes in the rats with the developing renal failure after SNE are followed by a considerable decrease of accumulation of GFP in PT as compared with the animals without dysfunction of the kidneys. CONCLUSION. The example of the model with GFP in animals with experimental CRF for the first time has demonstrated the fundamental possibility of enteral transport and accumulation of intact foreign proteins in the cells of the proximal nephron segment. The data obtained open new perspectives for studying the role of the kidneys in metabolism of exogenous proteins.

About the Authors

E. V. Seliverstova
Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН; Научно-исследовательский институт нефрологии Cанкт-Петербургского государственного медицинского университета имени акад. И.П. Павлова
Russian Federation


M. V. Burmakin
Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН; Научно-исследовательский институт нефрологии Cанкт-Петербургского государственного медицинского университета имени акад. И.П. Павлова
Russian Federation


E. I. Shakhmatova
Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН; Научно-исследовательский институт нефрологии Cанкт-Петербургского государственного медицинского университета имени акад. И.П. Павлова
Russian Federation


A. V. Smirnov
Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН; Научно-исследовательский институт нефрологии Cанкт-Петербургского государственного медицинского университета имени акад. И.П. Павлова
Russian Federation


V. A. Dobronravov
Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН; Научно-исследовательский институт нефрологии Cанкт-Петербургского государственного медицинского университета имени акад. И.П. Павлова
Russian Federation


V. G. Sipovsky
Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН; Научно-исследовательский институт нефрологии Cанкт-Петербургского государственного медицинского университета имени акад. И.П. Павлова
Russian Federation


O. N. Beresneva
Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН; Научно-исследовательский институт нефрологии Cанкт-Петербургского государственного медицинского университета имени акад. И.П. Павлова
Russian Federation


M. M. Parastaeva
Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН; Научно-исследовательский институт нефрологии Cанкт-Петербургского государственного медицинского университета имени акад. И.П. Павлова
Russian Federation


T. A. Kanashkina
Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН; Научно-исследовательский институт нефрологии Cанкт-Петербургского государственного медицинского университета имени акад. И.П. Павлова
Russian Federation


M. M. Mnuskina
Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН; Научно-исследовательский институт нефрологии Cанкт-Петербургского государственного медицинского университета имени акад. И.П. Павлова
Russian Federation


Yu. V. Natochin
Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН; Научно-исследовательский институт нефрологии Cанкт-Петербургского государственного медицинского университета имени акад. И.П. Павлова
Russian Federation


References

1. Смирнов АВ, Есаян АМ, Каюков ИГ и др. Современные подходы к замедлению прогрессирования хронической болезни почек. Нефрология 2004;8 (3): 89-99

2. Remuzzi G. Nephropathic nature of proteinuria. Curr Opin Nephrol Hypertens 1999; 8 (6):655-663

3. Наточин ЮВ, Григорьев АИ, Буравкова ЛБ и др. Антидиуретическая реакция почек человека и крысы при пероральном введении аргинин-вазопрессина и десмопрессина. Рос физиол журн им И.М.Сеченова 2003; 89 (2): 184-192

4. Natochin YuV, Reznik LV, Bakcheteeva VT, Lavrova EA. Renal function and renal platinum content in uninephrectomized rats following cisplatin administration. Renal Failure 1993; 15(2):157-162

5. Brown D, McCluskey RT, Ausiello DA. The cell biology of Heymann nephritis: a model of human membranous glomerulonephritis. Am J Kidney Dis 1987;10(1):74-76

6. Dubois EL, Horowitz RE, Demopoulos HB, Teplitz R. NZB/NZW mice as a model of systemic lupus erythematosus. JAMA 1966; 24;195(4):285-289

7. Бурмакин МВ, Селиверстова ЕВ, Наточин ЮВ. Накопление желтого флюоресцентного белка в почке после его всасывания в кишечнике у крыс. Рос физиол ж им. И.М. Сеченова 2005; 91: 1195-1204

8. Tsien RY. The green fluorescent protein. Annu Rev Biochem 1998; 67: 509–544

9. Ormrod D, Miller T. Experimental uremia. Description of a model producing varying degrees of stable uremia. Nephron 1980; 26(5): 249-254

10. Schwartz MM, Bidani AK, Lewis EJ. Glomerular epithelial cell function and pathology follaving extreme ablation of renal mass. Am J Pathol 1987;126(2): 315-324

11. Schwartz MM, Bidani AK. Role of glomerular epithelial cell injury in the pathogenesis of glomerular scarring in thе rat remnant kidney model. Am J Physiol 1993; 265(3pt2): 391-398

12. Lillie RD. Histopathologic Technic and Pracrical Histochemistry, 3-editon, McGraw-Hill Book Company, New-York, 1965; 65-75

13. Young B, Heath JW. Uriunary System. Churchill Livingstone, Wheather’s Functional Histology,4-th edition. Edinbourgh, 2004: 286-310

14. Floege J, Burne MW, Alpers CE et al. Glomerular cell proliferation and PDFG expression precede glomerulosclerosis in the remnant kidney model. Kidney Int 1992; 42: 297-309

15. Webb KE Jr. Intestinal absorption of protein hydrolysis products: a review. J Anim Sci 1990;68(9):3011-3022

16. Adibi SA. Renal assimilation of oligopeptides: physiological mechanisms and metabolic importance. Am J Physiol 1997; 272(5, Pt. 1): E723-E736

17. Caspary WF. Physiology and pathophysiology of intestinal absorption. Am J Clin Nutrition 1992; 55 [Suppl 1]: 299S-308S

18. Conigrave AD, Young JA. Function of intestine. In: R.Greger, U.Windhorst (eds.) Comprehensive Human Physiology: from Cellular Mechanisms to Integration. Vol. 2. Springer, Berlin, 1996;259–1287

19. Leibach FH, Ganapathy V. Peptide transporters in the intestine and the kidney. Annu Rev Nutr 1996; 16: 99-119

20. Shimizu M. Food-derived peptides and intestinal functions. Biofactors 2004; 21(1-4):43-47

21. Наточин ЮВ, Пруцкова НП, Шахматова ЕИ и др. Исследование возможности всасывания интактных нанопептидов в изолированной тонкой кишке in vivo. ДАН 2003, 388 (4): 558-651

22. Zaloga GP, Siddiqui RA. Biologically active dietary peptides. Mini Rev Med Chem 2004;4(8):815-821

23. Hayashida K, Takeuchi T, Shimizu H et al. Bovine lactoferrin has a nitric oxide-dependent hypotensive effect in rats.Am J Physiol Regul Integr Comp Physiol 2004;286(2):R359-365

24. Roberts PR,Burney JD, Black KW, Zaloga GP. Effect of chain length on absorption of biologically active peptides from the gastrointestinal tract.Digestion 1999;60(4):332-337

25. Cloutier M, Gingras D, Bendayan M. Internalization and transcytosis of pancreatic enzymes by the intestinal mucosa. J Histochem Cytochem 2006;54(7):781-94

26. Kimm MH, Curtis GH, Hardin JA, Gall DG. Transport of bovine serum albumin across rat jejunum: role of the enteric nervous sytem.Am J Physiol 1994; 266 (Gastrointest. Liver Physiol. 29): G186-G193

27. Crowe SE, Soda K, Stanisz AM, Perdue MH. Intestinal permeability in allergic rats: nerve involvement in antigen-induced changes. Am J Physiol1993; 264 (Gastrointest. Liver Physiol. 27): G617-G623

28. Kersting S, Bruewer M, Schuermann G et al. Antigen transport and cytoskeletal characteristics of a distinct enterocyte population in inflammatory bowel diseases. Am J Pathol 2004;165(2):425-37

29. Bijlsma PB, Kiliaan AJ, Scholten G et al. Carbachol but not forskolin can increase mucosal-to-serosal transport of intact protein in rat ileum in vitro. Am J Physiol 1996; 271 (Gastrointest. Liver Physiol. 34): G147-G155

30. Kiliaan AJ, Saunders PR, Bijlsma PB et al. Stress stimulates transepithelial macromolecular uptake in rat jejunum. Am J Physiol 1998;275(5 Pt 1):G1037-1044.

31. Dickenson BL, Badizadegan K, Wu Z et al. Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line.J Clin Invest 1999; 104: 903-911

32. Mostov KE. Transepithelial transport of immunoglobulins. Annu Rev Immunol 1994;12: 63-84

33. Talukder MJR, Takeuchi T, Harada E. Transport of colostral macromolecules into the cerebrospinal fluid via plasma in newborn calves. J Dairy Sci 2002; 85: 514–524

34. Harada E, Itoh Y, Sitizyo K et al.Characteristic transport of lactoferrin from the intestinal lumen into the bile via the blood in piglets. Comparative Biochem Physiol 1999; 124 A: 321–327

35. Gonnella PA, Siminoski K, Murphy RA & Neutra MR. Transepithelial transport of epidermal growth factor by absorptive cells of suckling rat ileum. J Clin Invest 1987; 80: 22–32

36. Bevilacqua C, Montagnac G, Benmerah A et al. Food allergens are protected from degradation during CD23-mediated transepithelial transport. Int Arch Allergy Immunol 2004;135(2):108-116

37. Yu LC, Montagnac G, Yang PC et al. Intestinal epithelial CD23 mediates enhanced antigen transport in allergy: evidence for novel splice forms. Am J Physiol Gastrointest Liver Physiol 2003; 285(1):G223-234

38. Kiliaan AJ, Saunders PR, Bijlsma PB et al. Stress stimulates transepithelial macromolecular uptake in rat jejunum. Am J Physiol Gastrointest Liver Physiol 1998; 275: G1037-G1044

39. Yammani RR, Seetharam S, Seetharam B. Cubilin and megalin expression and their interaction in the rat intestine: effect of thyroidectomy. Am J Physiol Endocrynol Metab 2001; 281: E900-E907

40. Christensen EI, Birn H. Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule. Am J Physiol 2001; 280: F262–F573

41. Hammand SM, Barth JL, Knaak C, Argraves WS. Megalin acts in concert with cubilin to mediate endocytosis of high density lipoproteins. J Biol Chem 2000;275:12003–12008

42. Leheste JR, Rolinski B, Vorum H. Megalin knockout mice as an animal model of low molecular weight proteinuria. Am J Pathol 1999; 155: 1361–1370

43. Toeller M, Buyken AE. Protein intake—new evidence for its role in diabetic nephropathy. Nephrol Dial Transplant 1998;13(8):1926-1927

44. Pedrini MT, Levey AS, Lau J et al. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Ann Intern Med 1996;124(7):627-632

45. Кучер АГ, Есаян АМ, Шишкина ЛИ и др. Влияние нагрузок растительным и животным белком на функциональное состояние почек у здоровых людей. Нефрология 1997;1(2):79-84

46. Dobronravov V, Smirnov A, Parastaeva M et al. Influence of low-and high-soy protein diet on the progression of experimental chronic renal failure. Nephrol Dial Transplant 2005; 20 [Suppl 5]: 70

47. Fukui M, Nakamura T, Ebihara I et al. Low-protein diet attenuates increased gene expression of platelet-derived growth factor and transforming growth factor-beta in experimental glomerular sclerosis. J Lab Clin Med 1993;121(2):224-234

48. Zatz R, Brenner BM. Pathogenesis of diabetic microangiopathy. The hemodynamic view. Am J Med 1986 ;80(3):443-453

49. Наточин ЮВ. Физиология почки. В: Физиология водно+солевого обмена и почки.СПб.: Наука, 1993; 202-416

50. Gekle M, Mildenberger S, Freudinger R, Silbernagl S. Long-term protein exposure reduces albumin binding and uptake in proximal tubule-derived opossum kidney cells. J Am Soc Nephrol 1998; 9(6):960-968

51. Fung F, Sherrard DJ, Gillen DL et al. Increased risk for cardiovascular mortality among malnourished end-stage renal disease patients. Am J Kidney Dis 2002;40(2):307-314


Review

For citations:


Seliverstova E.V., Burmakin M.V., Shakhmatova E.I., Smirnov A.V., Dobronravov V.A., Sipovsky V.G., Beresneva O.N., Parastaeva M.M., Kanashkina T.A., Mnuskina M.M., Natochin Yu.V. ACCUMULATION IN THE KIDNEY OF EXOGENOUS PROTEIN AFTER ITS ABSORPTION IN THE INTESTINE DURING THE DEVELOPMENT OF EXPERIMENTAL RENAL FAILURE IN RATS. Nephrology (Saint-Petersburg). 2007;11(1):7-16. (In Russ.) https://doi.org/10.24884/1561-6274-2007-11-1-7-16

Views: 408


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)