Preview

Nephrology (Saint-Petersburg)

Advanced search

PHARMACOLOGICAL CORRECTION OF DOXORUBICIN-INDUCED OXIDATIVE STRESS IN KIDNEYS OF RATS

https://doi.org/10.24884/1561-6274-2005-9-1-69-74

Abstract

THE AIM of the investigation was Doxorubicin (DOX) as a widely used anthracycline antibiotic. Administration of DOX is limited due to cardio and renal toxicity because of oxidative stress. Our aim was to investigate early nephrotoxic effects of a single dose of DOX and impact of pretreatment with melatonin, glycine and unithiol. MATERIAL AND METHODS. The animals (35 rats) were divided into 5 groups. One group (Cgroup, n=7) was a control, one group (DOXgroup, n=7) received DOX (7.5 mg/kg, i.p.), one group (Mgroup, n=7) was pretreated with melatonin (1mg/kg, i.v.), one group (Ggroup, n=7) was pretreated with glycine (50 mg/kg, i.v.), one group (Ugroup, n=7) was pretreated with unithiol (5 mg/kg, i.v.).The rats were decapitated within 24 hours. The content of glutathione (GSH), glutathione reductase, NAD(P)H:quinone oxidoreductase, glutathioneStransferase and protein carbonyl group in the homogenate of renal mass were detected. RESULTS. Less concentration of GSH was detected in the renal tissue in the DOXgroup as compared with the Cgroup of rats. There were lower levels of GSH in DOXgroup as compared with Mgroup. Activity of glutathione reductase was lower in the DOXgroup than in the Cgroup. There was no difference in the content of protein carbonyl groups. Pretreatment with melatonin and glycin resulted in normalization of GSH levels. CONCLUSION. It was shown that pretreatment with melatonin and glycin reduced the DOX induced renal damage in rats by means of restoration of GSH in the renal tissue.

About the Authors

Yu. V. Saenko
Ульяновский государственный университет
Russian Federation


S. M. Napalkova
Ульяновский государственный университет
Russian Federation


A. M. Shutov
Ульяновский государственный университет
Russian Federation


G. T. Brynskikh
Ульяновский государственный университет
Russian Federation


References

1. Sessa C. Anticancer agents. In: Cavalli F, Hansen HH, Kaye SB et al, eds. Textbook of Medical Oncology. Martin Dunitz, London, 1997;464489

2. Skladanowski A, Konopa J. Adriamycin and daunomycin induce programmed cell death (apoptosis) in tumor cells. Biochem Pharmacol 1993;46:375382

3. Arola OJ, Saraste A, Pulkki K. Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Res 2000;60:17891792

4. Mazue G, Iatropoulos M, Imondi A et al. Anthracyclines: a review of general and special toxicity studies. Int J Oncol 1995;7:713726

5. Davies KJ, Doroshow JH. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem 1986;261:30603067

6. Minotti G, Cairo G, Monti E. Role of iron in anthracycline cardiotoxicity: new tunes for an old song? FASEB J 1999;13:199 212

7. Schafer QF, Buettiner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/ glutathione couple. Free Rad Biol Med 2001;30:11911212

8. Liu X, Chen Z, Chua CC et al. Melatonin as an effective protector against doxorubicininduced cardiotoxicity. Am J Physiol Heart Circ Physiol 2002;283:H254H263

9. Dziegiel P, Suder E, Surowiak P et al. Role of exogenous melatonin in reducing the nephrotoxic effect of daunorubicin and doxorubicin in the rat. J Pineal Res 2002;33:95100

10. Senthilkumar R, Sengottuvelan M, Nalini N. Protective effect of glycine supplementation on the levels of lipid peroxidation and antioxidant enzymes in the erythrocyte of rats with alcoholinduced liver injury. Cell Biochem Funct 2004;22:123128

11. Shaikh ZA, Tang W. Protection against chronic cadmium toxicity by glycine. Toxicology 1999;132:139146

12. Сабирова РА, Иноятова ФХ, Гаппаров ОС. Влияние SHсоединений на особенности изменения активности фер ментов антиоксидантной защиты в различных тканях при остром панкреатите. Эксп Клин Фармакология 2000;3:3335

13. Habig WG, Pabst MJ, Jakoby WB. Glutathione S transferase. The first enzymic step in mercapturic acid formation. J Biol Chem 1974;249:71307139

14. Fisher GR, Gutierrez PL. Free radical formation and DNA strand breakage during metabolism of diaziquone by NAD(P)H quinineacceptor oxidoreductase (DTdiaphorase) and NADPHcytochrome c reductase. Free Radic Biol Med 1991;10:359–370

15. Carlberg I, Mannervik B. Purification and characterization of the flavoenzyme glytathione reductase from rat liver. J Biol Chem 1975;250:54755480

16. Levin RL, Garland D, Oliver CN. et al. Determination carbonyl content in oxidatively modified proteins. Methods Enzym 1990;186:464478

17. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1972;82:7077

18. Bradford MM. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Annal Biochem1976;72:248 254

19. Herman EH, Ferrans VJ, Sanchez JA. Methods of reducing the cardiotoxicity of anthracyclines. In: Muggia FM, Green MD, Speyer JL., eds. Cancer Treatment and the Heart. The Johns Hopkins University, Baltimore,1992:115–169.

20. Basser RL, Green MD. Strategies for prevention of anthracycline cardiotoxicity. Cancer Treat Rev 1993;19:57–77

21. Sun X, Zhou Z, Kang JY. Attenuation of doxorubicin toxicity in metallothioneinoverexpressing transgenic mouse heart. Cancer Res 2001;61:33823387

22. Minotti G. Sources and role of iron in lipid peroxidation. Chem Res Toxicol 1993;6:134146

23. Powis G. Free radical formation by antitumor quinones. Free Rad Biol Med 1989;6:63101

24. Thornalley PJ, Dodd NJ. Free radical production from normal and adriamycintreated rat cardiac sarcosomes. Biochem Pharmacol 1985;34:669–674

25. Klatt P, Lamas S. Regulation of protein function by S glutathiolation in response to oxidative stress. Eur J Biochem 2000;267:49284944

26. Wang X. The expanding role of mitochondria in apoptosis. Genes Dev 2001;15:2922—2933

27. Reiter RJ. Melatonin: Lowering the high price of free radicals. News Physiol Sci 2000;15:246250

28. Okatani Y, Wakatsuki A, Kaneda C. Melatonin increases activities of glutathione peroxidase and superoxide dismutase in fetal rat brain. J Pineal Res 2000;28:8996

29. Anusevicius Z, Sarlauscas J, Cenas N. Twoelectron reduction of quinones by rat liver NAD(P)H:quinone oxidoreductase: quantitative structureactivity relationships. Arch Biochem Biophys 2002;404:254256

30. Beyer RE, SeguraAquilar J, Di Bernardo S et al. The role of DTdiaphorase in the maintenance of the reduced antioxidant form of coenzyme Q in membrane systems. Proc Natl Acad Sci USA 1996;93:25282532

31. Siegel D, Gustafson DL, Dehn DL et al. NAD(P)H:Quinone Oxidoreductase 1: role as a superoxide scavenger. Mol Pharmacol 2004;65:12381247

32. Radjendirane V, Joseph P, Lee YH et al. Disruption of the DT diaphorase (NQO1) gene in mice leads to increased menadione toxicity. J Biol Chem 1998;273:73827389

33. Nguen T, Sherratt PJ, Pickett C. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 2003;43:233 260.


Review

For citations:


Saenko Yu.V., Napalkova S.M., Shutov A.M., Brynskikh G.T. PHARMACOLOGICAL CORRECTION OF DOXORUBICIN-INDUCED OXIDATIVE STRESS IN KIDNEYS OF RATS. Nephrology (Saint-Petersburg). 2005;9(1):69-74. (In Russ.) https://doi.org/10.24884/1561-6274-2005-9-1-69-74

Views: 416


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)