COMPARATIVE INVESTIGATION OF THE INFLUENCE OF HE-NE LASER AND L-ARGININE ON THE SMOOTH MUSCLE CELLS OF THE PORTAL VEIN AND MYOCARDIUM OF RATS WITH CRF
https://doi.org/10.24884/1561-6274-2007-11-4-80-87
Abstract
THE AIM of the investigation was to compare effects of low-intensity laser radiation (LILR) with wave length 632.8 nm and L-arginine simultaneously on mechanical activity of cardiomyocytes and contractility of smooth muscle cells (SMC) of the portal vein in Wistar rats with experimental chronic renal failure (CRF with the level of blood urea 13.8±3.1 mmol/l). MATERIAL AND METHODS. Effects of LILR and L-arginine on SMC of the portal vein and cardiomyocytes of Wistar rats with CRF (resection of 5/6 of kidney mass) were investigated. Mechanical activity of the heart papillary muscle and contractile activity of the portal vein were registered in isometric regimen. RESULTS. It was shown that laser irradiation and L-arginine (1.15 mmol/l) (in any succession of exposures) caused additional relaxation of the portal vein of control rats, but failed to influence the vein tone of rats with CRF that is evidence of lower activity of NO-synthase in the portal vein endothelium of rats with CRF. Effects of LILR and L-arginine were followed by practically complete recovery of mechanical activity of the myocardium in CRF rats up to the level of intact animals that suggests a possibility of additional synthesis of NO in the myocardium with increased content of the substrate in the incubation medium. CONCLUSION. The results of the comparative investigation of effects of LILR and L-arinine on the myocardium and SMC of the portal vein of the same rats with CRF-1 have shown that, as distinct from myocardium, the effect of LILR and L-arginine on SMC of the portal vein depends on the state of the vascular epithelium: the degree of disturbance of L-arginine metabolism and activity of NOS.
About the Authors
N. N. PetrishchevRussian Federation
A. V. Smirnov
Russian Federation
T. A. Barabanova
Russian Federation
A. A. Zhloba
Russian Federation
S. G. Chefu
Russian Federation
References
1. Vaziri ND. Effect of cronic renal failure on nitric oxide metabolism. Am J Kidney Dis 2001; 38 [4 Suppl 1]: S74-S79
2. Kim SW, Lee J, Paek YW et al. Decreased nitric oxide synthesis in rats with chronic renal failure. J Korean Med Sci 2000; 15 (4): 425-430
3. Барабанова ВВ, Береснева ОН, Мирошниченко ЕЛ и др. Функциональная активность воротной вены как отражение метаболических изменений при экспериментальной хронической почечной недостаточности. Физиол Журн СССР им. И. М. Сеченова 1993; 79 (1): 64-72
4. Potter GS, Johnson RJ, Fink GD. Role of endothelin in hypertension of experimental chronic renal failure. Hypertension 1997; 30 (6): 1578-1584
5. Барабанова ВВ, Чефу СГ. Действие низкоинтенсивного лазерного излучения (λ=632,8 нм, плотность мощности 15 мВт/см 2 ) на функциональную активность сосудистых гладкомышечных клеток воротной вены и миокард крыс с экспериментальной хронической почечной недостаточностью. Нефрология 2003; 7 (Прил 1): 139-140
6. Барабанова ТА, Пенчул НА. Экспериментальная хроническая почечная недостаточность, фуросемид и сократимость миокарда. Нефрология 1998; 2(3): 80-84
7. Петрищев НН, Смирнов АВ, Барабанова ВВ и др. Действие низкоинтенсивного лазерного излучения с длиной волны 632, 8 нм на сердечно-сосудистую систему крыс с экспериментальной хронической почечной недостаточностью. Нефрология 2004; 8 (Прил 2): 282
8. Brill AG, Brill GE, Shenkman B et al. Low power laser irradiation of blood inhibits platelet function: role of cyclic GMP. SPIE 1998; 3569: 4-9
9. Петрищев НН, Барабанова ВВ, Михайлова ИА, Чефу СГ. Влияние излучения He-Ne лазера на функциональную активность гладкомышечных клеток воротной вены. РосФизиол Журн им. И.М. Сеченова 2001; 87 (5): 659-664
10. Барила ГГ. Некоторые клинические и биохимические данные эффективности лечения больных ишемической болезнью сердца лучами лазера. II съезд кардиологов УССР. Тезисы докладов. Киев, 1983: 30-31
11. Реутов ВП, Сорокина ЕГ, Охотин ВЕ, Косицин НС. Циклические превращения оксида азота в организме млекопитающих. Наука, М., 1998
12. Веренинов АА, Марахова ИИ. Транспорт ионов у клеток в культуре.Наука, М., 1986
13. Lincoln TM, Komalavilas Р, Сornwell TL. Pleiotropic regulation of vascular smooth muscle tone by cyclic GMP-dependent protein kinase. Hypertension 1994; 23 (6 Pt 2): 1141-1147
14. Efron DT, Barbul A. Arginine and nutrition in renal disease. J Ren Nutr 1999; 9(3): 142-144
15. Goumas G, Tentolouris C, Tousoulis D et al. Therapeutic modification of the L-arginine-eNOS pathway in cardiovascular diseases. Atherosclerosis 2001; 154(2):255-267
16. Wu G, Meininger CJ. Arginine nutrition and cardiovascular function. J Nutr 2000; 130(11): 2626-2629
17. Bouby N, Hassler C, Parvy P, Bankir L. Renal synthesis of arginine in chronic renal failure: in vivo and in vitro studies in rats with 5/6 nephrectomy. Kidney Int 1993; 44 (4): 676-683
18. Harris C, Meyer TW, Brenner BM. Nephron adaptation to renal injury. The kidney. Philadelphia, London, Tokio, 1986: 1555-1565
19. Ormrod D, Miller T. Experimental uremia. Nephron 1980; 26 (5): 249-254
20. Блаттнер Р, Классен Х, Денерт Х, Деринг Х. Эксперименты на изолированных препаратах гладких мышц: пер. с англ. Мир, М, 1983
21. Hladovec J, Prerovsky I, Stanec V, Fabian J. Circulating endothelial cells in acute myocardial infarction and angina pectoris. Klin Wochenshr 1978; 56: 1033-1036
22. Петрищев НН, Беркевич ОА, Власов ТД и др. Диагностическая ценность определения десквамированных эндотелиальных клеток в крови. Клинич Лаб Диагностика 2001; (1): 50-52
23. Барабанова ТА, Петрищев НН, Смирнов АВ. Влияние излучения He-Ne лазера на механическую активность миокарда крыс при экспериментальной хронической почечной недостаточности. Нефрология 2003; 7 (1): 91-97
24. Vaziri ND, Ni Z, Oveisi F et al. Enhanced nitric oxide inactivation and protein nitration by reactive oxygen species in renal insufficiency. Hypertension 2002; 39 (1): 135-141
25. Шестакова МВ, Кутырина ИМ, Рагозин АК. Роль сосудистого эндотелия в регуляции почечной гемодинамики. Тер Арх 1994; 66 (2): 83-86
26. Aiello S, Noris M, Remuzzi G. Mario Negri. Nitric oxide / L-arginine in uremia. Miner Electrolyte Metab 1999; 25(4-6): 384-390
27. Dhanakoti SN, Brosnan JT, Herzberg GR, Brosnan ME. Renal arginine synthesis: studies in vitro and in vivo. Am J Physiol 1990; 259(3 Pt 1): E437-Е442
28. Mora J, Martuscelli J, Ortiz Pineda J, Soberon G. The regulation of urea-biosynthesis enzymes in vertebrates. Biochem J 1965; 96: 28-35
29. Leskinen H, Vuolteenaho O, Leppaluoto J, Ruskoaho H. Role of nitric oxide on cardiac hormone secretion: effect of NG-nitro-L-arginine methyl ester on atrial natriuretic peptide and brain natriuretic peptide release. Endocrinology 1995; 136(3): 1241-1249
30. Cotton JM, Kearney MT, MacCarthy PA et al. Effects of nitric oxide synthase inhibition on basal function and the force-frequency relationship in the normal and failing human heart in vivo. Circulation 2001; 104(19): 2318-2323
31. Weiss HR, Sadoff JD, Scholz PM, Klabunde RE. Nitric oxide reduces myocardial contractility in isoproterenol-stimulated rat hearts by a mechanism independent of cyclic GMP or cyclic AMP. Pharmacology 1997; 55(4): 202-210
32. Lang RE, Thocken H, Gauten D. Atrial natriuretic factor – circulating hormone stimulated by volume loading. Nature 1985; 314: 264-266
Review
For citations:
Petrishchev N.N., Smirnov A.V., Barabanova T.A., Zhloba A.A., Chefu S.G. COMPARATIVE INVESTIGATION OF THE INFLUENCE OF HE-NE LASER AND L-ARGININE ON THE SMOOTH MUSCLE CELLS OF THE PORTAL VEIN AND MYOCARDIUM OF RATS WITH CRF. Nephrology (Saint-Petersburg). 2007;11(4):80-87. (In Russ.) https://doi.org/10.24884/1561-6274-2007-11-4-80-87