ON THE ROLE OF PROCESSES OF FREE RADICAL OXIDATION IN THE DEVELOPMENT OF EXPERIMENTAL NEPHROLITHIASIS
https://doi.org/10.24884/1561-6274-2008-12-1-58-63
Abstract
THE AIM of the investigation was to study the process of free-radical oxidation in the kidneys and blood of rats with experimental urolithiasis. MATERIAL AND METHODS. Experiments were carried out in male Wistar rats given 1% solution of ethylene glycol in drinking water during 21 days. The presence of calcium oxalate crystals in kidney slices was determined histochemically Biochemical methods were used to assess the oxidant (thiobarbiturate reactive products, total oxidant activity) and antioxidant (catalase, superoxiddismutase, glutathione peroxidase, total antioxidant activity) status of the kidneys and blood. RESULTS. Considerable number of Ca-positive crystals localized mainly on the surface of the renal papilla was determined in kidney slices of all rats receiving ethylene glycol. Progression of nephrolithiasis was accompanied by intense activation of free-radical oxidation both in the kidneys and in blood. Abatement of antioxidant defense was simultaneously observed due to the inhibition of activity of glutathione peroxidase. CONCLUSION. Thus, activation of free-radical oxidation in the kidneys and blood of animals takes place under conditions of experimental oxalate nephrolithiasis in rats. This process is followed by weakened activity of glutathione peroxidase as one of the main antioxidant enzymes.
About the Authors
Ya. F. ZverevRussian Federation
V. M. Bryukhanov
Russian Federation
O. S. Talalaeva
Russian Federation
V. V. Lampatov
Russian Federation
A. Yu. Zharikov
Russian Federation
S. V. Talalaev
Russian Federation
Ya. S. Bulgakova
Russian Federation
References
1. Тиктинский ОЛ, Александров ВП. Мочекаменная болезнь. Питер, СПб., 2000; 3-12
2. Coe FL, Evan A, Worcester E. Kidney stone disease. J Clin Invest 2005; 115 (10): 2598-2608
3. Daudon M. Epidemiology of nephrolithiasis in France. Ann Urol (Paris) 2005; 39 (6): 209-231
4. Matlaga BR, Coe FL, Evan AP, Lingeman JE. The role of Randall’s plaques in the pathogenesis of calcium stones. J Urol 2007; 177: 31-38
5. Кадыров ЗА, Истратов ВГ, Сулейманов СИ. Некоторые вопросы этиологии и патогенеза мочекаменной болезни. Урология 2006; 5: 98-101
6. Thamilselvan S, Selvan R. Effect of vitamin E and mannitol on renal calcium oxalate retention in experimental nephrolithiasis. Indian J Biochem Biophys 1997; 34 (3): 319-323
7. Thamilselvan S, Hackett RL, Khan SR. Cells of proximal and distal tubular origin respond differently to challenges of oxalate and calcium oxalate crystals. J Am Soc Nephrol 1999; 10 [Suppl 14]: S452-S456
8. Thamilselvan S, Khan SR, Menon M. Oxalate and calcium oxalate mediated free radical toxicity in renal epithelial cells: effect of antioxidants. Urol Res 2003; 31 (1): 3-9
9. Huang HS, Chen CF, Chien CT, Chen J. Possible biphasic changes of free radicals in ethylene glycol-induced nephrolithiasis in rats. BJU Int 2000; 85 (9): 1143-1149
10. Huang HS, Ma MC, Chen J, Chen CF. Changes in renal hemodynamics and urodynamics in rats with chronic hyperoxaluria and after acute oxalate infusion: role of free radicals. Neuronal Urodyn 2003; 22 (2): 176-182
11. Huang HS, Ma MC, Chen CF, Chen J. Lipid peroxidation and its correlations with urinary levels of oxalate, citric acid, and osteopontin in patients with renal calcium oxalate stones. Urology 2003; 62 (6): 1123-1128
12. Aihara K, Byer KJ, Khan SR. Calcium phosphate-induced renal epithelial injury and stone formation: involvement of reactive oxygen species. Kidney Int 2003; 64 (4): 1283-1291
13. Sumitra K, Pragasam V, Sakthivel R et al. Beneficial effect of vitamin E supplementation on the biochemical and kinetic properties of Tamm-Horsfall glycoprotein in hypertensive and hyperoxaluric patients. Nephrol Dial Transplant 2005; 20 (7): 1407-1415
14. Tungsanga K, Sriboonlue P, Futrakul P et al. Renal tubular cell damage and oxidative stress in renal stone patients and the effect of potassium citrate treatment. Urol Res 2005; 33 (1): 65-69
15. Khan SR, Hackett RL. Calcium oxalate urolithiasis in the rat: is it a model for human stone disease? A review of recent literature. Scan Electron Microsc 1985; Pt 2: 759-774
16. de Water R, Boeve ER, van Miert PP et al. Experimental nephrolithiasis in rats: the effect of ethylene glycol and vitamin D3 on the induction of renal calcium oxalate crystals. Scanning Microsc 1996; 10 (2): 591-601
17. Khan SR. Animal models of kidney stone formation: an analysis. World J Urol 1997; 15(4): 236-243
18. Green ML, Hatch M, Freel RW. Ethylene glycol induces hyperoxaluria without metabolic acidosis in rats. Am J Physiol Renal Physiol 2005; 289: F536-F543
19. Yamaguchi S, Wiessner JH, Hasegawa AT et al. Study of a rat model for calcium oxalate crystal formation without severe renal damage in selected conditions. Int J Urol 2005; 12 (3): 290-298
20. Kumar S, Sigmon D, Miller T et al. A new model of nephrolithiasis involving tubular dysfunction/injury. J Urol 1991; 146 (5): 1384-1389
21. de Bruijn WC, Boeve ER, van Run PR et al. Etiology of calcium oxalate nephrolithasis in rats. II. The role of the papilla in stone formation. Scanning Microsc 1995; 9 (1): 115-124
22. Khan SR. Experimental calcium oxalate nephrolithiasis and the formation of human urinary stones. Scanning Microsc 1995; 9 (1): 89-100
23. Bushinsky DA. Nephrolithiasis: site of the initial solid phase. J Clin Invest 2003; 111(5): 602-605
24. Рытикова ОС, Брюханов ВМ, Зверев ЯФ, Госсен ИЕ. Роль перекисного окисления липидов в патогенезе непродолжительной ишемии почки в эксперименте. Нефрология 2004; 8 (4): 115-116
25. Muthukumar A, Selvan R. Renal injury mediated calcium oxalate nephrolithiasis: role of lipid peroxidation. Ren Fail 1997; 19 (3): 401-408
26. Huang HS, Ma MC, Chen J, Chen CF. Changes in the oxidant-antioxidant balance in the kidney of rats with nephrolithiasis induced by ethylene glycol. J Urol 2002; 167 (6): 2584-2593
27. Selvan R. Calcium oxalate stone disease: role of lipid peroxidation and antioxidants. Urol Res 2002; 30 (1): 35-47
28. Khan SR. Role of renal epithelial cells in the initiation of calcium oxalate stones. Nephron Exp Nephrol 2004; 98 (2): e55-e60
29. Khan SR. Hyperoxaluria-induced oxidative stress and antioxidants for renal protection. Urol Res 2005; 33 (5): 349-357
30. Rashed T, Menon M, Thamilselvan S. Molecular mechanism of oxalate-induced free radical production and glutathione redox imbalance in renal epithelial cells: effect of antioxidants. Am J Nephrol 2004; 24 (5): 557-568
31. Huang HS, Chen J, Chen CF, Ma MC. Vitamin E attenuates crystal formation in rat kidneys: roles of renal tubular cell death and crystallization inhibitors. Kidney Int 2006; 70 (4): 699-710
32. Veena CK, Josephine A, Preetha SP et al. Renal peroxidative changes mediated by oxalate: the protective role of fucaidan. Life Sci 2006; 79 (19): 1789-1795
33. Thamilsulvan S, Menon M. Vitamin E therapy prevents hyperoxaluria-induced calcium oxalate crystal deposition in the kidney by improving renal tissue antioxidant status. BJU Int 2005; 96 (1): 117-126
34. Meimaridou E, Lobos E, Hothersall JS. Renal oxidative vulnerability due to changes in mitochondrial-glutathione and energy homeostasis in a rat model of calcium oxalate urolithiasis. Am J Physiol Renal Physiol 2006; 291: F731-F740
Review
For citations:
Zverev Ya.F., Bryukhanov V.M., Talalaeva O.S., Lampatov V.V., Zharikov A.Yu., Talalaev S.V., Bulgakova Ya.S. ON THE ROLE OF PROCESSES OF FREE RADICAL OXIDATION IN THE DEVELOPMENT OF EXPERIMENTAL NEPHROLITHIASIS. Nephrology (Saint-Petersburg). 2008;12(1):58-63. (In Russ.) https://doi.org/10.24884/1561-6274-2008-12-1-58-63