СОВРЕМЕННЫЕ МЕТОДЫ МОДЕЛИРОВАНИЯ ОКСАЛАТНОГО НЕФРОЛИТИАЗА
https://doi.org/10.24884/1561-6274-2008-12-4-28-35
Аннотация
Настоящий обзор литературы посвящен современным методам моделирования оксалатного нефролитиаза. На сегодняшний день наиболее актуальными являются этиленгликолевая и гидроксипролиновая модели оксалатного нефролитиаза в различных вариациях. Кроме того, существуют методики, в которых в качестве основных реагентов выступают растворы оксалат-иона в сочетании с нефротоксичными веществами. Иногда нефролитиаз моделируют при помощи имплантированных под кожу мининасосов, которые напрямую дозируют в кровоток экспериментальных животных раствор щавелевой кислоты; а также путем резекции части тонкого кишечника. При моделировании оксалатного нефролитиаза важное внимание уделяется подбору лабораторных животных. Чаще всего используют нормальных крыс различных линий, а также крыс с врожденной гиперкальциурией. При этом предпочтительно использование самцов животных, поскольку у них вероятность развития нефролитиаза выше, чем у самок.
Об авторах
А. Ю. ЖариковРоссия
кафедра фармакологии
В. М. Брюханов
Россия
кафедра фармакологии
Я. Ф. Зверев
Россия
кафедра фармакологии
656038, г.Барнаул, пр.Ленина, 40; тел. (3852) 26-08-35
В. В. Лампатов
Россия
кафедра фармакологии
Список литературы
1. Вощула ВИ. Мочекаменная болезнь: этиотропное и патогенетическое лечение, профилактика: Монография. Мн.: ВЭВЭР, 2006; 268
2. Debray C, Vaille C, Fiehrer A et al. Experimental disease due to paired stresses. Humoral and visceral disturbances induced by tween 80 in rats with experimental oxalate nephritis caused by ethylene glycol. J Physiol (Paris)1964; 56: 707-726
3. Vaille C, Debray C, Martin E et al. On experimental ethylene glycol renal lithiasis in young rats before weaning. Ann Pharm Fr 1963; 21: 201-206
4. Baker PR, Cramer SD, Kennedy M et al. Glycolate and glyoxylate metabolism in HepG2 cells. Am J Physiol Cell Physiol 2004; 287 (5): C1359-1365
5. Poore RE, Hurst CH, Assimos DG, Holmes RP. Pathways of hepatic oxalate synthesis and their regulation. Am J Physiol 1997; 272 (1): 289-294
6. Thamilselvan S, Hackett RL, Khan SR. Lipid peroxidation in ethylene glycol induced hyperoxaluria and calcium oxalate nephrolithiasis. J Urol 1997; 157 (3): 1059-1063
7. Okada Y, Kawamura J, Nonomura M et al. Experimental and clinical studies on calcium urolithiasis: (I) Animal model for calcium oxalate urolithiasis using ethylene glycol and 1-alpha (OH) D3. Hinyokika Kiyo 1985; 31 (4): 565-577
8. de Water R, Boeve ER, van Miert PP et al. Experimental nephrolithiasis in rats: the effect of ethylene glycol and vitamin D3 on the induction of renal calcium oxalate crystals. Scanning Microsc 1996; 10 (2): 591-601
9. Брюханов ВМ, Зверев ЯФ, Лампатов ВВ и др. Функция почек в условиях экспериментального оксалатного нефролитиаза. Нефрология 2008; 1: 69-74
10. Жариков АЮ, Азарова ОВ, Талалаева ОС и др. Развитие мочекаменной болезни у крыс на фоне длительного применения препарата марены сердцелистной. VI Сибирский физиологический съезд. Тезисы докладов 2008; 1: 135.
11. Зверев ЯФ, Брюханов ВМ, Талалаева ОС. О роли процессов свободно-радикального окисления в развитии экспериментального нефролитиаза. Нефрология 2008; 1: 58-63
12. Chen DH, Kaung HL, Miller CM et al. Microarray analysis of changes in renal phenotype in the ethylene glycol rat model of urolithiasis: potential and pitfalls. BJU Int 2004; 94 (4): 637-650
13. Hadjzadeh MA, Khoei A, Hadjzadeh Z, Parizady M. Ethanolic extract of nigella sativa L seeds on ethylene glycol-induced kidney calculi in rats. Urol J2007; 4 (2): 86-90
14. Karadi RV, Gadge NB, Alagawadi KR Savadi RV. Effect of Moringa oleifera Lam. root-wood on ethylene glycol induced urolithiasis in rats. J Ethnopharmacol 2006; 105 (1-2): 306-311
15. Green ML, Hatch M, Freel RW. Ethylene glycol induces hyperoxaluria without metabolic acidosis in rats. Am J Physiol Renal Physiol 2005; 289: F536-F543
16. Khan SR. Experimental calcium oxalate nephrolithiasis and the formation of human urinary stones. Scanning Microsc 1995; 9 (1): 89-100
17. Khan SR, Hackett RL. Calcium oxalate urolithiasis in the rat: is it a model for human stone disease? A review of recent literature. Scan Electron Microsc 1985; Pt. 2: 759-774
18. Khan SR. Animal models of kidney stone formation: an analysis. World J Urol 1997; 15 (4): 236-243
19. Khan SR. Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies. Clin Exp Nephrol 2004; 8 (2): 75-88
20. Khan SR. Role of renal epithelial cells in the initiation of calcium oxalate stones. Nephron Exp Nephrol 2004; 98 (2): e55-e60
21. Khan SR. Renal tubular damage/dysfunction: key to the formation of kidney stones. Urol Res 2006; 34 (2): 86-91
22. Muthukumar A, Selvan R. Renal injury mediated calcium oxalate nephrolithiasis: role of lipid peroxidation. Ren Fail 1997; 19 (3): 401-408
23. Scheinman SJ. Nephrolithiasis. Semin Nephrol 1999; 19 (4): 381-388
24. de Bruijn WC, Boeve ER, van Run PR et al. Etiology of experimental calcium oxalate monohydrate nephrolithiasis in rats. Scanning Microsc 1994; 8 (3): 541-549
25. de Bruijn WC, Boevй ER, van Run PR et al. Etiology of calcium oxalate nephrolithiasis in rats. I. Can this be a model for human stone formation? Scanning Microsc 1995; 9 (1): 103-114
26. de Bruijn WC, Boeve ER, van Run PR et al. Etiology of calcium oxalate nephrolithiasis in rats. II. The role of the papilla in stone formation. Scanning Microsc 1995; 9 (1): 115-124
27. de Water R, Noordermeer C, van der Kwast TH et al. Calcium oxalate nephrolithiasis: effect of renal crystal deposition on the cellular composition of the renal. Am J Kidney Dis 1999; 33 (4): 761-771
28. Laroubi A, Touhami M, Farouk L et al. Prophylaxis effect of Trigonella foenum graecum L. seeds on renal stone formation in rats. Phytother Res 2007; 21 (10): 921-925
29. Touhami M, Laroubi A, Elhabazi K et al. Lemon juice has protective activity in a rat urolithiasis model. BMC Urol 2007; 7:18
30. Atmani F, Slimani Y, Mimouni M et al. Prophylaxis of calcium oxalate stones by Herniaria hirsuta on experimentally induced nephrolithiasis in rats. BJU Int 2003; 92 (1): 137-140
31. Yamaguchi S, Wiessner JH, Hasegawa AT et al. Study of a rat model for calcium oxalate crystal formation without severe renal damage in selected condition. Int J Urol 2005; 12 (3): 290-298
32. Halabe A, Wong NL, Sutton RA. The effect of verapamil and thiazide in the prevention of renal stone formation. Urol Res 1990; 18 (2): 155-158
33. Meimaridou E, Lobos E, Hothersall JS. Renal oxidative vulnerability due to changes in mitochondrial-glutathione and energy homeostasis in a rat model of calcium oxalate urolithiasis. Am J Physiol Renal Physiol 2006; 291 (4): F731-740
34. Gambaro G, Valente ML, Zanetti E et al. Mild tubular damage induces calcium oxalate crystalluria in a model of subtle hyperoxaluria: Evidence that a second hit is necessary for renal lithogenesis. J Am Soc Nephrol 2006; 17 (8): 2213-2219
35. Corley RA, Wilson DM, Hard GC et al. Dosimetry considerations in the enhanced sensitivity of male Wistar rats to chronic ethylene glycol-induced nephrotoxicity. Toxicol Appl Pharmacol 2008; 228 (2): 165-178
36. Bushinsky DA, Asplin JR, Grynpas MD et al. Calcium oxalate stone formation in genetic hypercalciuric stone-forming rats. Kidney Int 2002; 61 (3): 975-987
37. Khan SR, Glenton PA, Byer KJ. Modeling of hyperoxaluric calcium oxalate nephrolithiasis: experimental induction of hyperoxaluria by hydroxy-L-proline. Kidney Int 2006; 70 (5): 914-923
38. Khan SR, Glenton PA, Byer KJ. Dietary oxalate and calcium oxalate nephrolithiasis. J Urol 2007; 178 (5): 2191-2196
39. Kumar S, Sigmon D, Miller T et al. A new model of nephrolithiasis involving tubular dysfunction/injury. J Urol 1991; 146 (5): 1384-1389
40. Doddola S, Pasupulati H, Koganti B et al. Evaluation of Sesbania grandiflora for antiurolithiatic and antioxidant properties. Nat Med (Tokyo) 2008; 62 (3): 300-307
41. Park HK, Jeong BC, Sung MK et al. Reduction of oxidative stress in cultured renal tubular cells and preventive effects on renal stone formation by the bioflavonoid quercetin. J Urol 2008; 179 (4): 1620-1626
42. Marengo SR, Chen DH, Evan AP et al. Continuous infusion of oxalate by minipumps induces calcium oxalate nephrocalcinosis. Urol Res 2006; 34 (3): 200-210
43. Marengo SR, Chen DH, MacLennan GT et al. Minipump induced hyperoxaluria and crystal deposition in rats: a model for calcium oxalate urolithiasis. J Urol 2004; 171 (3): 1304-1308
44. O’Connor RC, Worcester EM, Evan AP et al. Nephrolithiasis and nephrocalcinosis in rats with small bowel resection. Urol Res 2005; 33 (2): 105-115
45. Worcester EM, Chuang M, Laven B et al. A new animal model of hyperoxaluria and nephrolithiasis in rats with small bowel resection. Urol Res 2005; 33 (5): 380-382
46. Hennequin C, Tardivel S, Medetognon J et al. A stable animal model of diet-induced calcium oxalate crystalluria. Urol Res 1998; 26 (1): 57-63
47. Bushinsky DA, Frick KK, Nehrke K. Genetic hypercalciuric stone-forming rats. Curr Opin Nephrol Hypertens 2006; 15 (4): 403-418
48. Bushinsky DA. Genetic hypercalciuric stone-forming rats. Curr Opin Nephrol Hypertens 1999; 8 (4): 479-488
49. Hoopes RR Jr, Middleton FA, Sen S et al. Isolation and confirmation of a calcium excretion quantitative trait locus on chromosome 1 in genetic hypercalciuric stone-forming congenic rats. J Am Soc Nephrol 2006; 17 (5): 1292-1304
50. Hoopes RR Jr, Reid R., Sen S et al. Quantitative trait loci for hypercalciuria in a rat model of kidney stone disease. J Am Soc Nephrol 2003; 14 (7): 1844-1850
51. Bushinsky DA, Grynpas MD, Asplin JR. Effect of acidosis on urine supersaturation and stone formation in genetic hypercalciuric stone-forming rats. Kidney Int 2001; 59 (4): 1415-1423
52. Evan AP, Bledsoe SB, Smith SB, Bushinsky DA. Calcium oxalate crystal localization and osteopontin immunostaining in genetic hypercalciuric stone-forming rats. Kidney Int 2004; 65 (1): 154-161
53. Khan SR, Glenton PA. Calcium oxalate crystal deposition in kidneys of hypercalciuric mice with disrupted type IIa sodium-phosphate cotransporter. Am J Physiol Renal Physiol 2008; 294 (5): F1109-1115
54. Okada A, Nomura S, Higashibata Y et al. Successful formation of calcium oxalate crystal deposition in mouse kidney by intraabdominal glyoxylate injection. Urol Res 2007; 35 (2): 89-99
55. Clark JS, Vandorpe DH, Chernova MN et al. Species differences in Cl- affinity and in electrogenicity of SLC26A6-mediated oxalate/Cl- exchange correlate with the distinct human and mouse susceptibilities to nephrolithiasis. J Physiol 2008: 586 (5): 1291-1306
56. Mandel NS, Henderson JD, Hung LY et al. A porcine model of calcium oxalate kidney stone disease. J Urol 2004; 171 (3): 1301-1303
57. Fan J, Chandhoke PS, Grampsas SA. Role of sex hormones in experimental calcium oxalate nephrolithiasis. J Am Soc Nephrol 1999; 10: S376-380
58. Iguchi M, Takamura C, Umekawa T et al. Inhibitory effects of female sex hormones on urinary stone formation in rats. Kidney Int 1999; 56 (2): 479-485
Рецензия
Для цитирования:
Жариков А.Ю., Брюханов В.М., Зверев Я.Ф., Лампатов В.В. СОВРЕМЕННЫЕ МЕТОДЫ МОДЕЛИРОВАНИЯ ОКСАЛАТНОГО НЕФРОЛИТИАЗА. Нефрология. 2008;12(4):28-35. https://doi.org/10.24884/1561-6274-2008-12-4-28-35
For citation:
Garicov A.U., Bruhanov V.M., Zverev Y.F., Lampatov V.V. CURRENT METHODS OF MODELING OF OXALATE NEPHROLYTHIASIS. Nephrology (Saint-Petersburg). 2008;12(4):28-35. (In Russ.) https://doi.org/10.24884/1561-6274-2008-12-4-28-35