РОЛЬ ПОЧКИ В РЕГУЛЯЦИИ СУТОЧНЫХ РИТМОВ ОРГАНИЗМА
https://doi.org/10.24884/1561-6274-2010-14-3-17-31
Аннотация
Обзор литературы касается организации циркадианных ритмов организма и места почки в их регуляции. Приводится описание центрального пейсмекера (супрахиазматические ядра гипоталамуса) и его взаимодействия с периферическими осцилляторами, в том числе – с почкой. Рассматриваются суточные флюктуации экскреторной функции почек, скорости клубочковой фильтрации и канальцевой реабсорбции. Обсуждаются современные взгляды на обеспечение циркадианных ритмов почечной функции в контексте последних достижений молекулярной биологии и генетики.
Об авторах
В. М. БрюхановРоссия
кафедра фармакологии
656038, г. Барнаул, пр. Ленина, д.40; Алтайский медицинский университет, кафедра фармакологии. Тел.: (3852) 36-61-13.
А. Я. Зверева
Россия
кафедра фармакологии
Список литературы
1. Арушанян ЭБ. Хронофармакология. Изд-во СГМА, Ставрополь, 2000; 14-18
2. Buijs RM, Kalsbeek A. Hypothalamic integration of central and peripheral clocks. Nat Rev Neurosci 2001; 2: 521-526
3. Hastings MH, Reddy AB, Maywood ES. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 2003; 4: 649-661
4. Hastings M, O’Neill J, Maywood ES. Circadian clocks: regulators of endocrine and metabolic rhythms. J Endocrinol 2007; 195 (2): 187-198
5. Aschoff J. Circadian timing. Ann N Y Acad Sci 1984; 423: 442-468
6. Welsh DK, Logothetis DE, Meister M, Reppert SM. Invidual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 1995; 14: 697-706
7. Czeisler CA, Klerman EB. Circadian and sleep-depend regulation of hormone release in humans. Rec Progr Horm Res 1999; 54: 97-130
8. Vitaterna MH, Takahashi JS, Turek FW. Overview of circadian rhythms.Alcohol Res Health 2001; 25 (2): 85-93
9. Mrosovsky N, Reebs SG, Honrado GI, Salmon PA. Behavioral entrainment of circadian rhythms. Experientia 1989; 45: 696-702
10. Pittendrigh CS. Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol 1993; 55: 16-54
11. Woelfe MA, Ouyang Y, Rhanvijhitsiri K, Johnson CH. The adaptive value of circadian clocks; an experimental assessment in cyanobacteria. Curr Biol 2004; 14: 1481-1486
12. Dodd AN, Salathia N, Hall A et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 2005; 309: 630-633
13. Арушанян ЭБ, Батурин ВА, Попов АВ. Супрахиазматическое ядро гипоталамуса как регулятор циркадианной системы млекопитающих. Успехи физиол наук 1988; 19 (2): 67-86
14. Арушанян ЭБ. Водитель циркадианного ритма – супрахиазматические ядра гипоталамуса как возможная мишень для действия психотропных средств. Экспер клин фармакол 1998; 61 (3): 67-73
15. Klein DC, Moore RY, Reppert SM. Suprachiasmatic nucleus: the mind’s clock. Univ Press, New York-Oxford, 1991; 46-57
16. Leak RK, Card JP, Moore RY. Suprachiasmatic pacemaker organization analyzed by viral transynaptic transport. Brain Res 1999; 819: 23-32
17. Hastings MH, Herzog ED. Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei. J Biol Rhythms 2004; 19: 400-413
18. Арушанян ЭБ, Бейер ЭВ, Попов АВ. Влияние повреждения супрахиазматических ядер гипоталамуса у крыс на перестройку динамики показателей кардиоинтервалограммы, вызываемую пропранололом. Экспер клин фармакол 1995; 58 (4): 29-32
19. Rusak B, Zucker I. Neural regulation of circadian rhythm. Physiol Rev 1979; 59: 449-526
20. Edgar DM, Dement WC, Fuller CF. Effects of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J Neurosci 1993; 13 (3): 1065-1079
21. Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science 1990; 247: 975-978
22. Viswanathan N, Davis FC. Suprachiasmatic nucleus grafts restore circadian function in aged hamsters. Brain Res 1995; 686 (1): 10-16
23. Weaver DR. The suprachiasmatic nucleus: a 25-year retrospective. J Biol Rhythms 1998; 13: 100-112
24. Liu C, Weaver DR, Strogatz SH, Reppert SM. Cellular construction of a circadian clock: period determination in the suprachiasmatic nuclei. Cell 1997; 91: 855-860
25. Liu C, Reppert SM. GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron 2000; 25: 123-128
26. Liu AC, Welsh DK, Ko CH et al. Intercellular coupling confers robustness against mutations in the SCN circadian network. Cell 2007; 129: 605-616
27. Herzog ED, Takahashi JS, Block GD. Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nat Neurosci 1998; 1: 708-713
28. Honma S, Shirakawa T, Katsuno Y et al. Circadian periods of single suprachiasmatic neurons in rats. Neurosci Lett 1998; 250: 157-160
29. Abe M, Herzog ED, Block GD. Lithium lengthens the circadian period of individual suprachiasmatic nucleus neurons. Neuroreport 2000; 11: 3261-3264
30. Aton SJ, Colwell CS, Harmar AJ et al. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 2005; 8: 476-483
31. Qiu X, Kumbalasiri T, Carlson SM et al. Induction of photosensitivity by heterologous expression of melanopsin. Nature 2005; 433: 745-749
32. Berson DM. Phototransduction in ganglion-cell photoreceptors. Pflugers Arch 2007; 454: 849-855
33. Hankins MW, Peirson SN, Foster RG. Melanopsin: an exciting photopigment. Trends Neurosci 2008; 31: 27-36
34. Dkhissi-Benyahya O, Gronfier C, De Vanssay W et al. Modeling the role of midwavelength cones in circadian responses to light. Neuron 2007; 53: 677-687
35. Panda S. Multiple photopigments entrain the mammalian circadian oscillator. Neuron 2007; 53: 619-621
36. Antle MC, Silver R. Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci 2005; 28: 145-151
37. Maywood ES, O’Neill JS, Chesham JE, Hastings MH. Minireview: the circadian clockwork of the suprachiasmatic nuclei – analysis of a cellular oscillator that drives endocrine rhythms. Endocrinology 2007; 148: 5624-5634
38. Hattar S, Lucas RJ, Mrosovsky N et al. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 2003; 424: 76-81
39. Panda S, Provencio I, Tu DC et al. Melanposin is required for non-image-forming photic responses in blind mice. Science 2003; 301: 525-527
40. Gillette MU, Tischkau SA. Suprachiasmatic nucleus: the brain’s circadian clock. Recent Prog Horm Res 1999; 54: 33-58
41. Yan L, Takekida S, Shigeyoshi Y, Okamura H. Per 1and Per 2gene expression in the rat suprachiasmatic nucleus: circadian profile and the compartment-specific response to light. Neuroscience 1999; 94: 141-150
42. Herzog ED, Schwartz WJ. Functional genomics of sleep and circadian rhythm. Invited review: a neural clockwork for encoding circadian time. L Appl Physiol 2002; 92 (1): 401-408
43. Maywood ES, Reddy AB, Wong GK et al. Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Current Biol 2006; 16: 599-605
44. Moore RY, Speh JC. GABA is the principal neurotransmitter of the circadian system. Neurosci Lett 1993; 150: 112-116
45. Itri J, Michel S, Waschek JA, Colwell CS. Circadian rhythm in inhibitory synaptic transmission in the mouse suprachiasmatic nucleus. J Neurophysiol 2004; 92: 311-319
46. Hannibal J, Ding JM, Chen D et al. Pituitary adenylate cyclase-activating peptide (PACAP) in the retinohypothalamic tract: a potential daytime regulator of the biological clock. J Neurosci 1997; 17: 2637-2644
47. Hamada T, Yamanouchi S, Watanabe A et al. Involvement of glutamate release in substance P-induced phase delays of suprachiasmatic neuron activity rhythm in vitro. Brain Res 1999; 836: 190-193
48. Pickard GE, Smith BN, Belenky M et al. 5-HT1B receptor-mediated presynaptic inhibition of retinal input to the suprachiasmatic nucleus. J Neurosci 1999; 19: 4034-4045
49. Quintero JE, McMahon DG. Serotonin modulates glutamate responses in isolated suprachiasmatic nucleus neurons. J Neurophysiol 1999; 82: 533-539
50. Kalsbeek A, Buijs RM. Output pathways of the mammalian suprachiasmatic nucleus: coding circadian time by transmitter selection and specific targeting. Cell Tissue Res 2002; 309: 109-118
51. Saper CB, Lu J, Chou TC, Gooley J. The hypothalamic integrator for circadian rhythms. Trends Neurosci 2005; 28: 152-157
52. Kalsbeek A, Palm IF, La Fleur SE et al. SCN outputs and the hypothalamic balance of life. J Biol Rhythms 2006; 21: 458-469
53. Hastings MH. Neuroendocrine rhythms. Pharmacol Ther 1991; 50: 35-71
54. Li XM, Liu XH, Filipski E et al. Relationship of atypical melatonin rhythm with two circadian clock outputs in B6D2 F(1)mice. Am J Physiol Regul Integr Comp Physiol 2000; 278 (4): R924-R930
55. Mutoh T, Shibata S, Korf H-W, Okamura H. Melatonin modulates the light-induced sympathoexcitation and vagal suppression with participation of the suprachiasmatic nucleus in mice. J Physiol 2003; 547 (Pt 1): 317-332
56. Wyatt JK, Dijk DJ, Ritz-de Cecco A et al. Sleep-facilitating effect of exogenous melatonin in healthy young men and women is circadian-phase dependent. Sleep 2006; 29: 609-618
57. Goldman BD. Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J Biol Rhythms 2001; 16: 283-301
58. Malpaux B, Migaud M, Tricoire H, Chemineau P. Biology of mammalian photoperiodism and the critical role of the pineal gland and melatonin. J Biol Rhythms 2001; 16: 336-347
59. Iuvone PM, Tosini G, Pozdeyev N et al. Circadian clocks, clock networks, arylalkylamine N-acetyltransferase and melatonin in the retina. Prog Retin Eye Res 2005; 24: 433-456
60. Zawilska JB, Lorenc A, Bereziсska M et al. Photoperiod-dependent changes in melatonin synthesis in the turkey pineal gland and retina. Poult Sci 2007; 86: 1397-1405
61. Konopka RJ, Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 1971; 68: 2112-2116
62. Bargiello TA, Jackson FR, Young MW. Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature 1984; 312: 752-754
63. Myers MP, Wager-Smith K, Wesley CS et al. Positional cloning and sequence analysis of the Drosophila clock gene, timeless. Science 1995; 270: 805-808
64. Allada R, White NE, So WV et al. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 1998; 93: 791-804
65. Kloss B, Price JL, Saez L et al. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iе. Cell1998; 94: 97-107
66. Rutila JE, Suri V, Le M et al. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 1998; 93: 805-814
67. Blau J, Young MW. Cycling vrille expression is required for a functional Drosophila clock. Cell 1999; 99: 661-671
68. Albrecht U, Sun ZS, Eichele G, Lee CC. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 1997; 91: 1055-1064
69. King DP, Zhao Y, Sangoram AM et al. Positional cloning of the mouse circadian Clock gene. Cell 1997; 89: 641-653
70. Sun ZS, Albrecht U, Zhuchenko O et al. Rigui: a putative mammalian ortholog of the Drosophila period gene. Cell 1997; 90: 1003-1011
71. Tei H, Okamura H, Shigeyoshi Y et al. Circadian oscillation of a mammalian homolog of the Drosophila period gene. Nature 1997; 389: 512-516
72. Zylka MJ, Shearman LP, Levine JD et al. Molecular analysis of mammalian timeless. Neuron 1998; 21: 1115-1122
73. Albrecht U. Functional genomics of sleep and circadian rhythm. Invited review: regulation of mammalian circadian clock genes. J Applied Physiol 2002; 92 (3): 1348-1355
74. Oishi K, Fukui H, Ishida N. Rhythmic expression of BMAL1 mRNA is altered in clock mutant mice: differential regulation in the suprachiasmatic nucleus and peripheral tissues. Biochem Biophys Res Commun 2000; 268 (1): 164-171
75. Van der Horst GTJ, Muijtjens M, Kobayashi K et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 1999; 398: 627-630
76. Vitaterna MH, Selby CP, Todo T et al. Differential regulation of mammalian Period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci USA 1999; 96: 12114-12119
77. Bae K, Jin X, Maywood ES et al. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 2001; 30: 525-536
78. Zheng B, Albrecht U, Kaasik K et al. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 2001; 105: 683-694
79. Daan S, Albrecht U, van der Horst GTJ et al. Assembling a clock for all seasons: are there M and E oscillators in the genes? J Biol Rhythms 2001; 16: 105-116
80. Preitner N, Damiola F, Lopez-Molina L et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002; 110: 251-260
81. Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature 2002; 418: 935-941
82. Ueda HR, Hayashi S, Chen W et al. System-level identification of transcriptional circuits underlying mammalian circadian clock. Nat Genet 2005; 37: 187-192
83. Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet 2006; 15: R271-R277
84. Duez H, Staels B. The nuclear receptors Rev-erbs and RORs integrate circadian rhythms and metabolism. Diab Vasc Dis Res 2008; 5: 82-88
85. Dickmeis T. Glucocorticoids and the circadian clock. J Endocrinol 2009; 200 (1): 3-22
86. Gallego M, Virshup DM. Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 2007; 8: 139-148
87. Lucas RJ, Stirland JA, Darrow JM et al. Free running circadian rhythms of melatonin, luteinizing hormone, and cortisol in Syrian hamsters bearing the circadian tau mutation. Endocrinology 1999; 140: 758-764
88. Lowrey PL, Shimomura K, Antoch MP et al. Positional synthetic cloning and functional characterization of the mammalian circadian mutation tau. Science 2000; 288: 483-492
89. Dey J, Carr AJ, Cagampang FR et al. The tau mutation in the Syrian hamster differentially reprograms the circadian clock in the SCN and peripheral tissues. J Biol Rhythms 2005; 20: 99-110
90. Panda S, Antoch M, Miller B et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002; 109: 307-320
91. Storch KF, Paz C, Signorvitch J et al. Extensive and divergent circadian gene expression in liver and heart. Nature 2002; 417: 78-83
92. Yang S, Wang K, Valladares O et al. Genome-wide expression profiling and bioinformatics analysis of diurnally regulated genes in the mouse prefrontal cortex. Genome Biol 2007; 8 (11): R247
93. Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 1998; 93: 929-937
94. Yagita K, Tamanini F, van der Horst GT, Okamura H. Molecular mechanisms of the biological clock in cultured fibroblasts. Science 2001; 292: 278-281
95. Yamazaki S, Numano R, Abe M et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 2000; 288: 682-685
96. Balsalobre A, Brown SA, Marcacci L et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 2000; 289: 2344-2347
97. Kormann B, Schaad O, Bujard H et al. System-driven and oscillator-dependent circadioan transcription in mice with a conditionally active liver clock. PLoS Biol 2007; 5 (2): e34
98. Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci USA 2008; 105: 15172-15177
99. Oster H, Damerow S, Kiessling S et al. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab 2006; 4 (2): 163-173
100. Akhtar RA, Reddy AB, Maywood ES et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Current Biol 2002; 12: 540-550
101. Yoo SH, Yamazaki S, Lowrey PL et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. PNAS 2004; 101: 5339-5346
102. Wilkinson CW. Circadian clocks: showtime for the adrenal cortex. Endocrinology 2008; 149 (4): 1451-1453
103. Girotti M, Weinberg MS, Spencer RL. Diurnal expression of functional and clock-related genes throughout the rat HPA axis: system-wide shifts in response to a restricted feeding schedule. Am J Physiol Endocrinol Metab 2009; 296 (4): E888-E897
104. Bittman EL, Doherty L, Huang L, Paroskie A. Period gene expression in mouse endocrine tissues. Am J Physiol Regul Integr Comp Physiol 2003; 285: R561-R569
105. Ishida A, Mutoh T, Ueyama T et al. Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab 2005; 2: 297-307
106. Lemos DR, Downs JL, Urbanski HF. Twenty-four-hour rhythmic gene expression in the rhesus macaque adrenal gland. Mol Endocrinol 2006; 20: 1164-1176
107. Torres-Farfan C, Rocco V, Monsу C et al. Maternal melatonin effects on clock gene expression in a nonhuman primate fetus.Endocrinology 2006; 147: 4618-4626
108. Torres-Farfan C, Serуn-Ferrй M, Dinet V, Korf HW. Immunocytochemical demonstration of day/night changes of clock gene protein levels in the murine adrenal gland: differences between melatonin-proficient (C3H) and melatonin-deficient (C57BL) mice. J Pineal Res 2006; 40: 64-70
109. Fahrenkrug J, Hannibal J, Georg B. Diurnal rhythmicity of the canonical clock genes Per1, Per2 and Bmal1in the rat adrenal gland is unaltered after hypophysectomy.J Neuroendocrinol 2008; 20: 323-329
110. Valenzuela FJ, Torres-Farfan C, Richter HG et al. Clock gene expression in adult primate suprachiasmatic nuclei and adrenal: is the adrenal a peripheral clock responsive to melatonin? Endocrinology 2008; 149: 1454-1461
111. Buijs RM, Wortel J, Van Heerikhuize JJ et al. Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci 1999; 11: 1535-1544
112. Malek ZS, Sage D, Pйvet P, Raison S. Daily rhythm of tryptophan hydroxylase-2 messenger ribonucleic acid within raphe neurons is induced by corticoid daily surge and modulated by enhanced locomotor activity. Endocrinology 2007; 148: 5165-5172
113. Pons M, Cambar J, Waterhouse JM. Renal hemodynamic mechanisms and blood pressure rhythms. Ann N Y Acad Sci 1996; 783: 95-112
114. Manchester RC. The diurnal rhythm in water and mineral exchange. J Clin Invest 1933; 12 (6): 995-1008
115. Stanbury SW, Thomson AE. Diurnal variation in electrolyte excretion.Clin Sci (Lond) 1951; 10: 267-293
116. Wesson LG, Lauler DP. Diurnal cycle of glomerular filtration rate and sodium and chloride excretion during responses to altered salt and water balance in man. J Clin Invest 1961; 40: 1967-1977
117. Minors DS, Mills JN, Waterhouse JM. The circadian variations of the rates of the excretion of urinary electrolytes and of deep body temperature. Int J Chronobiol 1976; 4 (1): 1-28
118. Bowden RE, Ware JH, DeMets DL, Keiser HR. Urinary excretion of immunoreactive prostaglandin E: a circadian rhythm and the effect of posture. Prostaglandins 1977; 14 (1): 151-161
119. Abe K, Sato M, Kasai Y et al. A circadian variation in the excretion of urinary kinin, kallikrein and prostaglandin E in normal volunteers. Jpn Circ J 1981; 45 (9): 1098-1103
120. Minors DS, Waterhouse JM. Circadian rhythms of urinary excretion: the relationship between the amount excreted and the circadian changes. J Physiol 1982; 327: 39-51
121. Ueno M, Kawasaki T, Uezono K et al. Relationship of urinary kallikrein excretion to renal water and sodium excretion. Metabolism 1983; 32 (5): 433-437
122. Ballauff A, Rascher W, Tolle HG et al. Circadian rhythms of urine osmolality and renal excretion rates of solutes influencing water metabolism in 21 healthy children. Miner Electrolyte Metab 1991; 17 (6): 377-382
123. Steele A, deVeber H, Quaggin SE et al. What is responsible for the diurnal variation in potassium excretion? Am J Physiol 1994; 267 (Pt 2): R554-R560
124. Zuber AM, Centeno G, Pradervand S et al. Molecular clock is involved in predictive circadian adjustment of renal function. Proc Natl Acad Sci USA 2009; 106 (38): 16523-16528
125. Goldman R. Studies in diurnal variation of water and electrolyte excretion; nocturnal diuresis of water and sodium in congestive cardiac failure and cirrhosis of the liver. J Clin Invest 1951; 30: 1191-1199
126. Bultasova H, Veselkova A, Brodan V, Pinsker P. Circadian rhythms of urinary sodium, potassium and some agents influencing their excretion in young bordeline hypertensives. Endocrinol Exp 1986; 20 (4): 359-369
127. Dyer AR, Martin GJ, Burton WN et al. Blood pressure and diurnal variation in sodium, potassium, and water excretion. J Hum Hypertens 1998; 12: 363-371
128. Пишак ВП, Кривич НВ. Биологические ритмы экскреторной фукции почек у болных гипотиреозом. БЭБиМ 1998; 125 (6): 684-687
129. Koopman MG, Koomen GC, van Acker BA, Arisz L. Urinary sodium excretion in patients with nephrotic syndrome, and its circadian variation. Q J Med 1994; 87 (2): 109-117
130. Eastell R, Calvo MS, Burritt MF et al. Abnormalities in circadian patterns of bone resorption and renal calcium conservation in type I osteoporosis. J Clin Endocrinol Metab 1992; 74 (3): 487-494
131. Schmitt CP, Homme M, Schaefer F. Structural organization and biological relevance of oscillatory parathyroid hormone secretion. Pediatr Nephrol 2005; 20: 346-351
132. Raes A, Dehoorne J, Hoebeke P et al. Abnormal circadian rhythm of diuresis or nocturnal polyuria is related to increased sodium retention during daytime. J Urol 2006; 176: 1147-1151
133. De Guchtenaere A, Vande Walle C, Van Sintjan P et al. Nocturnal polyuria is related to absent circadian rhythm of glomerular filtration rate. J Urol 2007; 178 (6): 2626-2629
134. Challet E. Minireview: entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 2007; 148 (12): 5648-5655
135. Cambar J, Lemoigne F, Toussaint C, Dost C. Nycthemeral variations of blood and urine urea, creatinine and total proteins in rats. C R Seances Soc Biol Fil 1978; 172 (5): 894-901
136. Cambar J, Toussaint C, Nguen BaC. Circadian rhythmus of the excretion of electrolytes and urinary proteins in rats. C R Seances Soc Biol Fil 1978; 172 (1): 103-109
137. Cambar J, Toussaint C, Le Moigne et al. Circadian rhythms in rat and mouse urinary electrolytes and nitrogen derivatives excretion. J Physiol (Paris) 1981; 77 (8): 887-890
138. Shirley DG, Walter SJ, Zewde T. Measurement of renalfunction in unrestrained conscious rats. J Physiol 1989; 408: 67-76
139. Pons M, Tranchot J, L’Azou B, Cambar J. Circadian rhythms of renal hemodynamics in unanesthetized, unrestrained rats. Chronobiol Int 1994; 11 (5): 301-308
140. Pons M, Forpomes O, Espagnet S, Cambar J. Relationship between circadian changes in renal hemodynamics and circadian changes in urinary glycosaminoglycan excretion in normal rats. Chronobiol Int 1996; 13 (5): 349-358
141. Moore-Ede MC, Herd JA. Renal electrolyte circadian rhythms: independence from feeding and activity patterns. Am J Physiol 1977; 232 (2): F128-F135
142. Ikonomov O, Stoynev A, Vrabchev N. Simultaneous study of the circadian rhythms of food intake, water intake and renal excretion and analysis of their interrelations in rats. Acta Physiol Pharmacol Bulg1981; 7 (1): 77-84
143. Stoynev AG, Ikonomov OC. Effect of constant light and darkness on the circadian rhythms in rats: I. Food and water intake, urine output and electrolyte excretion. Acta Physiol Pharmacol Bulg 1983; 9 (3): 58-64
144. Luke DR, Wasan KM, Vadiei K. Circadian variation in renal function of the obese rat. Ren Physiol Biochem 1991; 14 (1-2): 71-80
145. Velasco Plaza A, G-Granda T, Cachero MT. Circadian rhythms of food and water intake and urine excretion in diabetic rats. Physiol Behav 1993; 54 (4): 665-670
146. Зверев ЯФ, Брюханов ВМ. Влияние циркадных ритмов на выраженность диуретического эффекта фуросемида у крыс. Нефрология 2006; 10 (2): 77-80
147. Кокощук ГI, Кушнiр IГ. Вплив постiйноп темряви на показники циркадiанного ритму екскреторноп функцiп нирок бiлих щурiв. Фiзiологiчний журнал 2005; 51 (1): 84-87
148. Кушнiр IГ. Вплив серотонiну на екскреторну функцiю нирок за умов змiненоп фотоперiодичностi. Клiн екс патол 2010; 9 (1): 27-29
149. Chen R, Seo D, Bell E et al. Strong resetting of the mammalian clock by constant light followed by constant darkness. J Neurosci 2008; 28 (46): 11839-11847
150. Wideman CH, Murphy HM. Constant light induces alterations in melatonin levels, food intake, feed efficiency, visceral adiposity, and circadian rhythms in rats. Nutr Neurosci 2009; 12 (5): 233-240
151. Vinogradova IA, Anisimov VN, Bukalev AV et al. Circadian disruption induced by light-at-night accelerates aging and promotes tumorogenesis in rats. Aging (Albany N Y) 2009; 1 (10): 855-865
152. Richter CP. «Dark-active» rat transformed into «light-active» rat by destruction of 24-hr clock: function of 24-hr clock and synchronizers. Proc Natl Acad Sci USA 1978; 75 (12): 6276-6280
153. Ikonomov OC, Stoynev AG, Shisheva AC, Tarkolev NT. Effect of constant light and darkness on the circadian rhythms in rats. II. Plasma renin activity and insulin concentration. Acta Physiol Pharmacol Bulg 1985; 11 (1): 55-61
154. Кушнiр IГ, Кокощук ГI. Вплив постiйного освiтлення на циркадiанний ритм екскреторноп дiяльностi нирки бiлих щурiв. Доповiдi НАНУ 2005; 3: 186-188
155. Кушнiр IГ, Кокощук ГI. Вплив пiдвищенного рiвня дофамiну на циркадiанний ритм екскреторноп функцii нирок у щурiв. Журн АМН Украiни 2009; 15 (3): 597-603
156. Зверев ЯФ, Брюханов ВМ. О функциональной роли центральных минералокортикоидных рецепторов и возможностях их фармакологической регуляции. Нефрология 2006; 10 (1): 14-25
157. Hilfenhaus M, Herting T. The circadian rhythm of renal excretion in the rat: relationship between electrolyte and corticosteroid excretion. Contrib Nephrol 1980; 19: 56-62
158. Gomez-Sanchez C, Holland OB, Higgins JR et al. Circadian rhythms of serum renin activity and serum corticosterone, prolactin, and aldosterone concentrations in the male rat on normal and low-sodium diet. Endocrinology 1976; 99: 567-572
159. Shiga T, Fujimura A, Ebihara A. Administration time-dependent change in the effect of spironolactone in rats. Jpn J Pharmacol 1994; 65 (3): 179-181
160. Smith DF, de Jong W. Renal lithium, sodium, potassium and water excretion and plasma renin activity in rats in the cold. Pharmakopsychiatr Neuropsychopharmakol 1975; 8 (3): 132-135
161. Macho L, Fickova M, Lichardus B et al. Changes of hormones regulating electrolyte metabolism after space flight and hypokinesia. Acta Astronaut 1992; 27: 51-54
162. Wade CE, Morey-Holton E. Alteration of renal function of rats following spaceflight. Am J Physiol 1998; 275 (Pt 2): R1058-R1065
163. Campen TJ, Vaughn DA, Fanestil DD. Mineralo- and glucocorticoid effects on renal excretion of electrolytes. Pflugers Arch 1983; 399: 93-101
164. Kenyon CJ, Saccoccio NA, Morris DJ. Aldosterone effects on water and electrolyte metabolism. J Endocrinol 1984; 100: 93-100
165. Bonvalet JP. Regulation of sodium transport by steroid hormones. Kidney Int 1998; 65: 549-556
166. Кокощук ГI, Кушнiр IГ. Вплив гiдрокортизону на циркадiанний ритм екскреторноп функцiп нирок бiлих щурiв за умов тривалоп темряви. Фiзiологiчний журнал 2006; 52 (4): 47-50
167. Teutsch G, Costerousse G, Deraedt R et al. 17б-alkynyl-11в,17-dihydroxyandrostane derivatives: a new class of potent glucocorticoids. Steroids 1981; 38: 651-665
168. Stewart PM, Corrie JE, Shackleton CH, Edwards CR. Syndrome of high NaCl intake on Na+and K+ transport in the rabbit distal convoluted tubule. Pflugers Arch 1989; 414: 500-508
169. Muller JG, Parnova RG, Centeno G et al. Mineralocorticoid effects in the kidney: correlation between alphaENaC, GILZ, and Sgk-1 mRNA expression and urinary excretion of Na+ and K+ . J Am Soc Nephrol 2003; 14: 1107-1115
170. Ikonomov OC, Stoynev AG, Vrabchev NC et al. Circadian rhythms of food and 1% NaCl intake, urine and electrolyte excretion, plasma rennin activity and insulin concentration in adrenalectomized rats. Acta Physiol Hung 1985; 65 (2): 181-198
171. Кушнiр IГ, Кокощук ГI. Параметри циркадiанного ритму екскреторноп функцiї нирок адреналектомованних щурiв. Свiт мед бiол 2009; 1: 64-66
172. Marissal-Arvy N, Mormиde P. Excretion of electrolytes in Brown Norway and Fischer 344 rats: effects of adrenalectomy and mineralocorticoid and glucocorticoid receptor ligands. Exp Physiol 2004; 89 (6): 753-765
173. Арушанян ЭБ, Ботвев Орхий П. Неодинаковое влияние острого и хронического введения мелатонина на гипногенное действие гексенала. Фармакол и токсикол 1991: 54 (5): 7-9
174. Richardson BA, Studier EH, Stallone JN, Kennedy CM. Effects of melatonin on water metabolism and renal function in male Syrian hamsters (Mesocricetus auratus). J Pineal Res 1992; 13: 49-59
175. Tsuda T, Ide M, Iigo M. Influences of season and temperature, photoperiod, and subcutaneous melatonin infusion on the glomerular filtration rate of ewes. J Pineal Res 1995; 19: 166-172
176. Кушнiр IГ, Кокощук ГI. Вплив ципралексу та мелатонiну на циркадний ритм екскреторної функцiп нирок за умов тривалого постiйного освiтлення. Експерим клiн мед 2009; 2: 35-38
177. Ramнrez-Rodrнguez G, Meza I, Hernбndez ME et al. Melatonin induced cyclic modulation of vectorial water transport in kidney-derived MDCK cells. Kidney Int 2003; 63 (4): 1356-1364
178. Song Y, Chan CWY, Brown GM et al. Studies of the renal action of melatonin: evidence that the effects are mediated by 37 kDa receptors of the Mel 1a subtype localized primarily to the basolateral membrane of the proximal tubule. FASEB J 1997; 11 (1): 93-100
179. Nguen-Legros J, Chanut E, Versaux-Botteri C et al. Dopamine inhibits melatonin synthesis in photoreceptor cells through a D 2 -like receptor subtype in the rat retina: biochemical and histochemical evidence. J Neurochem 1996; 67 (6): 2514-2520
180. Tosini G, Dirden JC. Dopamine inhibits melatonin release in the mammalian retina: in vitroevidence. Neurosci Lett 2000; 286 (2): 119-122
181. Кушнiр IГ, Кокощук ГI. Циркадiанний ритм функцiональноп активностi нирок пiд впливом сiнемету та амiсульприду – модуляторiв рiвня дофамiну в структурах мозку. Нейронауки: теор клiн асп 2008; 4 (2): 44-47
182. Бойчук ТМ, Кушнiр IГ, Кокощук ГI. Модулююча роль симпатичноп нервовоп системи в регуляцiп циркадного ритму функцiп нирок. Експерим клiн мед 2009; 3: 32-35
183. Meyer-Bernstein EL, Morin LP. Differential serotonergic innervation of the suprachiasmatic nucleus and the intergeniculate leaflet and its role in circadian rhythm modulation. J Neurosci 1996; 16: 2097-2111
184. Bobrzynska KJ, Godfrey MH, Mrosovsky N. Serotonergic stimulation and non-photic phase-shifting in hamsters.Physiol Behav 1996; 59: 221-230
185. Cutrera RA, Saboureau M, Pevet P. Phase-shifting effect of 8-OH-DPAT, a 5-HT1A/5-HT7 receptor agonist, on locomotor activity in golden hamster in constant darkness. Neurosci Lett 1996; 210: 1-4
186. Koopman MG, Koomen GC, Krediet RT et al. Circadian rhythm of glomerular filtration rate in normal individuals. Clin Sci (Lond)1989; 77 (1): 105-111
187. Buijsen JGM, van Acker BAC, Koomen GC et al. Circadian rhythm of glomerular filtration rate in patients after kidney transplantation. Nephrol Dial Transplant 1994; 9 (9): 1330-1333
188. Pons M, Forpomes O, Espagnet S et al. Circadian changes in physiological urinary excretion of glycosaminoglycans in healthy rats. Pathol Biol (Paris) 1996; 44 (3): 189-195
189. Koopman MG, Koomen GC, van Acker BA, Arisz L. Circadian rhythm in glomerular transport of macromolecules through large pores and shunt pathway. Kidney Int 1996; 49 (5): 1242-1249
190. Vogel AJ, Koopman MG, Hart AAM et al. Circadian rhythm in systemic hemodynamics and renal function in healthy subjects and patients with nephritic syndrome. Kidney Int 2001; 59: 1873-1880
191. Pons M, Schnecko A, Witte K et al. Circadian rhythms in renal function in hypertensive TGR (mRen-2) 27 rats and their normotensive controls. Am J Physiol 1996; 271 (Pt 2): R1002-R1008
192. Witte K, Lemmer B. Development of inverse circadian blood pressure pattern in transgenic hypertensive rats. Chronobiol Int 1999; 16: 293-303
193. Uzu T, Kimura G. Diuretics shift circadian rhythm of blood pressure from nondipper to dipper in essential hypertension. Circulation 1999; 100: 1635-1638
194. Fukuda M, Goto N, Kimura G. Hypothesis on renal mechanism of non-dipper pattern of circadian blood pressure rhythm. Med Hypothesis 2006; 67: 802-806
195. Burnier M, Coltamai L, Maillard M, Bochud M. Renal sodium handling and nighttime blood pressure. Semin Nephrol 2007; 27: 565-571
196. Bankir L, Bochud M, Maillard M et al. Nighttime blood pressure and nocturnal dipping are associated with daytime urinary sodium excretion in African subjects. Hypertension 2008; 51: 891-898
197. Gatzka CD, Schobel HP, Klingbeil AU et al. Normalization of circadian blood pressure profiles after renal transplantation. Transplantation 1995; 59: 1270-1274
198. Брюханов ВМ, Зверев Я.Ф, Лампатов ВВ. Альдостерон. Физиология, патофизиология, клиническое применение антагонистов. Феникс, Ростов-на-Дону, 2007; 175-177
199. Forsling ML. Diurnal rhythms in neurohypophysial function. Exp Physiol 2000; 85 (Spec №): 179S-186S
200. Son GH, Chung S, Choe HK et al. Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. ProcNatl Acad Sci USA 2008; 105 (52): 20970-20975
201. Wu MS, Biemesderfer D, Giebisch G, Aronson PS. Role of NHE3 in mediating renal brush border Na+ - H+ exchange. J Biol Chem 1996; 271: 32749-32752
202. Amemiya M, Loffing J, Loetscher M et al. Expression of NHE 3 in the apical membrane of rat renal proximal tubule and thick ascending limb. Kidney Int 1995; 48: 1206-1215
203. Schultheis PJ, Clarke LL, Meneton P et al. Renal and intestinal absorptive defects in mice lacking the NHE 3 Na+/H+ exchanger. Nat Genet 1998; 19: 282-285
204. Schnermann J. Sodium transport deficiency and sodium balance in gene-targeted mice. Acta Physiol Scand 2001; 173: 59-66
205. Guyton AC. Blood pressure control-special role of the kidneys and body fluids. Science 1992; 252: 1813-1816
206. Lifton RP. Molecular genetics of human blood pressure variation. Science 1996; 272: 676-680
207. Ambьhl PM, Amemiya M, Danczkay M et al. Chronic metabolic acidosis increases NHE3 protein abundance in rat kidney. Am J Physiol 1996; 271: F917-F925
208. Ma SK, Kang JS, Bae EH et al. Effects of volume depletion and NaHCO3 loading on the expression of Na+/H+ exchanger isoform 3, Na+ : HCO3 - cotransporter type 1 and nitric oxide synthase in rat kidney. Clin Exp Pharmacol Physiol 2008; 35: 262-267
209. Rohman MS, Emoto N, Nonaka H et al. Circadian clock genes directly regulate expression of the Na+/H+ exchanger NHE3 in the kidney. Kidney Int 2005; 67: 1410-1419
210. Nishinaga H, Komatsu R, Dоi M et al. Circadian expression of Na+/H+ exchanger NHE3 in the mouse renal medulla. Biomed Res 2009; 30 (2): 87-93
211. Ведерникова ЕА, Максимов АВ, Негуляев ЮА. Функциональная характеристика и молекулярная топология потенциалнезависимых натриевых каналов. Цитология1999; 41 (8): 658-666
212. Брюханов ВМ, Зверев ЯФ. Побочные эффекты современных диуретиков. Метаболические и токсико-аллергические аспекты. ЦЭРИС, Новосибирск, 2003; 77-79
213. Зверев ЯФ, Брюханов ВМ, Лампатов ВВ. Заболевания и синдромы, обусловленные генетическими нарушениями почечного транспорта электролитов. Нефрология 2004; 8 (4): 11-24
214. Gumz ML, Popp MP, Wingo CS, Cain BD. Early transcriptional effects of aldosterone in a mouse inner medullary collecting duct cell line. Am J Physiol Renal Physiol 2003; 285: F664-F673
215. Gumz ML, Stow LR, Lynch IJ et al. The circadian clock protein Period 1 regulates expression of the renal epithelial sodium channel in mice. J Clin Invest 2009; 119 (8): 2423-2434
216. Moore-Ede MC. Physiology of the circadian timing system: predictive versus reactive homeostasis. Am J Physiol 1986; 250: R737-R752
Рецензия
Для цитирования:
Брюханов В.М., Зверева А.Я. РОЛЬ ПОЧКИ В РЕГУЛЯЦИИ СУТОЧНЫХ РИТМОВ ОРГАНИЗМА. Нефрология. 2010;14(3):17-31. https://doi.org/10.24884/1561-6274-2010-14-3-17-31
For citation:
Bryukhanov V.M., Zvereva A.J. THE KIDNEY ROLE IN REGULATION OF CIRCADE RITHMS OF THE ORGANISM. Nephrology (Saint-Petersburg). 2010;14(3):17-31. (In Russ.) https://doi.org/10.24884/1561-6274-2010-14-3-17-31