Preview

Нефрология

Расширенный поиск

Патогенез нарушений обмена фосфатов при хронической болезни почек: все ли так ясно, как кажется?

Полный текст:

Аннотация

Проанализированы современные представления о развитии и прогрессировании нарушений обмена фосфатов при ХБП, основанные на новых данных о патофизиологии и молекулярных механизмах взаимодействия фосфат-регулирующих систем.

Об авторах

В. А. Добронравов
Научно-исследовательский институт нефрологии Первого Санкт-Петербургского государственного медицинского университета им. акад. И.П. Павлова
Россия


Е. О. Богданова
Научно-исследовательский институт нефрологии Первого Санкт-Петербургского государственного медицинского университета им. акад. И.П. Павлова
Россия


Список литературы

1. Kestenbaum В, Sampson JN, Rudser KD. Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol 2005;16(2):520-528

2. Levin A, Bakris GL, Molitch M et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int 2007;71(1):31-38

3. Fang X, Ginsberg C, Sugatani T et al. Early chronic kidney disease-mineral bone disorder stimulates vascular calcification. Kidney Int 2014;85(1):142-150

4. Portale AA, Halloran BP, Murphy MM et al. Oral intake of phosphorus can determine the serum concentration of 1,25-di-hydroxyvitamin D by determining its production rate in humans. J Clin Invest 1986;77(1):7-12

5. Slatopolsky E. The intact nephron hypothesis: the concept and its implications for phosphate management in CKD-related mineral and bone disorder. Kidney Int 2011;79:3-8

6. Denda M, Finch J, Slatopolsky E. Phosphorus accelerates the development of parathyroid hyperplasia and secondary hyperparathyroidism in rats with renal failure. Am J Kidney Dis 1996;28(4):596-602

7. Martin DR, Ritter CS, Slatopolsky E et al. Acute regulation of parathyroid hormone by dietary phosphate. Am J Physiol Endocrinol Metab 2005;289(4):729-734

8. Hsu CY, Chertow GM. Elevations of serum phosphorus and potassium in mild to moderate chronic renal insufficiency. Nephrol Dial Transplant 2002 Aug;17(8):1419-1425

9. Murayama A, Takeyama K, Kitanaka S et al. Positive and negative regulations of the renal 25-hydroxyvitamin D3 1alpha-hydroxylase gene by parathyroid hormone, calcitonin, and 1alpha,25(OH)2D3 in intact animals. Endocrinology. 1999;140(5):2224-2231

10. Hasegawa H, Nagano N, Urakawa I et al. Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int 2010;78:975-980

11. Prié D, Friedlander G. Reciprocal control of 1,25-dihydroxyvitamin D and FGF23 formation involving the FGF23/ Klotho system. Clin J Am Soc Nephrol 2010;5(9):1717-1722

12. Andrukhova O, Zeitz U, Goetz R et al. FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2-SGK1 signaling pathway. Bone 2012;51(3):621-628

13. Добронравов ВА. Современный взгляд на патофизиологию вторичного гиперпаратиреоза: роль фактора роста фибробластов 23 и Klotho. Нефрология 2011; 15(4): 11-20

14. Hu MC, Kuro-o M, Moe OW. Klotho and chronic kidney disease. Contrib Nephrol 2013;180:47-63

15. Urakawa I, Yamazaki X, Shimada T et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006; 444(7120):770-774

16. Martin A, David V, Quarles LD. Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev 2012;92(1):131-155

17. Kuro-o М. Phosphate and Klotho. Kidney International 2011;79 (Suppl 121):20-23

18. Cha SK, Ortega B, Kurosu H et al. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc NatlAcad Sci U S A 2008;105(28):9805-9810

19. Drüeke T. Klotho, FGF23, and FGF receptors in chronic kidney disease: a yin-yang situation? Kidney Int 2010;78(11):1057-1060

20. Imura A, Tsuji X, Murata M et al. alpha-Klotho as a regulator of calcium homeostasis. Science 2007;316(5831):1615-1618

21. Hu MC, Shi M, Zhang J et al. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J 2010;24(9):3438-3450

22. Isakova T, Wahl P, Vargas GS et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 2011;79(12):1370-1378

23. Pavik I, Jaeger P, Ebner L. Secreted Klotho and FGF23 in chronic kidney disease Stage 1 to 5: a sequence suggested from a cross-sectional study. Nephrol Dial Transplant 2013;28(2):352-359

24. Aizawa H, Saito X Nakamura T et al. Downregulation of the Klotho gene in the kidney under sustained circulatory stress in rats. Biochem Biophys Res Commun 1998;249:865-871

25. Haruna X Kashihara N, Satoh M et al. Amelioration of progressive renal injury by genetic manipulation of Klotho gene. Proc Natl Acad Sci USA 2007; 104: 2331-2336

26. Wang Y, Sun Z. Klotho gene delivery prevents the progression of spontaneous hypertension and renal damage. Hypertension 2009; 54:810-817

27. Asai O, Nakatani K, Tanaka T et al. Decreased renal alpha-Klotho expression in early diabetic nephropathy in humans and mice and its possible role in urinary calcium excretion. Kidney Int 2012;81:539-547

28. Fliser D, Kollerits B, Never U et al. Fibroblast growth factor 23 (FGF-23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. JAm Soc Nephrol 2007; 18 (9): 2600-2608

29. Titan SM, Zatz R, Graciolli FG et al. FGF-23 as a predictor of renal outcome in diabetic nephropathy. Clin J Am Soc Nephrol 2010; 6 (2): 241-247

30. Gutierrez OM, Mannstadt M, Isakova T et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 2008; 359 (6): 584-592

31. Hu MC, Shi M, Zhang J et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol 2011; 22 (1): 124-136

32. Vervloet M, Larsson T. Fibroblast growth factor-23 and Klotho in chronic kidney disease. Kidney Int 2011; Suppl. 1: 130135

33. Mirza MA, Larsson A, Lind L et al. Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis 2009; 205 (2): 385-390

34. Mirza MA, Hansen T, Johansson L et al. Relationship between circulating FGF-23 and total body atherosclerosis in the community. Nephrol Dial Transplant 2009; 24 (10): 3125-3131

35. Yilmaz MI, Sonmez A, Saglam M et al. FGF-23 and vascular dysfunction in patients with stage 3 and 4 chronic kidney disease. Kidney Int 2010; 78 (7): 679-685

36. Kirkpantur A, Balci M, Gurbuz CA et al. Serum fibroblast growth factor-23 (FGF-23) levels are independently associated with left ventricular mass and myocardial performance index in maintenance haemodialysis patients. Nephrol Dial Transplant 2011; 26 (4): 1346-1354

37. Kusaba T, Okigawa M, Matui A et al. Klotho is associated with VEGF receptor-2 and the transient receptor potential canoni-cal-1 Ca channel to maintain endothelial integrity. Proc NatlAcad Sci USA 2010; 107 (45): 19308-19313

38. Nagai R, Saito X Ohyama Y et al. Endothelial dysfunction in the klotho mouse and downregulation of klotho gene expression in various animal models of vascular and metabolic diseases. Cell Mol Life Sci 2000; 57 (5): 738-746

39. Sakan H, Nakatani K, Asai O et al. Reduced Renal α-Klotho Expression in CKD Patients and Its Effect on Renal Phosphate Handling and Vitamin D Metabolism. PLoS One 2014;9(1):e86301

40. Gutierrez O, Isakova T, Rhee E et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol 2005;16:2205-2215

41. Prié D, Friedlander G. Reciprocal control of 1,25-dihydroxyvitamin D and FGF23 formation involving the FGF23/ Klotho system. Clin J Am Soc Nephrol 2010;5(9):1717-1722

42. Wolf M. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int 2012;82(7):737-747

43. Isakova T, Gutierrez O, Shah A. Postprandial mineral metabolism and secondary hyperparathyroidism in early CKD. J Am Soc Nephrol 2008;19(3):615-623

44. Haussler MR, Whitfield GK, Kaneko I et al. The role of vitamin D in the FGF23, klotho, and phosphate bone-kidney endocrine axis. Rev Endocr Metab Disord 2012;13(1):57-69.

45. Kido S, Kaneko I, Tatsumi S et al.Vitamin D and type II sodium-dependent phosphate cotransporters. Contrib Nephrol 2013;180:86-97

46. Biber J, Hernando N, Forster I. Phosphate transporters and their function. Annu Rev Physiol 2013;75:535-550

47. Sitara D. Correlation among hyperphosphatemia, type II sodium phosphate transporter activity, and vitamin D metabolism in Fgf-23 null mice. Ann N YAcad Sci 2007;1116:485-493

48. Rowe PS. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit Rev Eukaryot Gene Expr 2012;22(1):61-86

49. Quarles LD. «FGF23, PHEX, and MEPE regulation of phosphate homeostasis and skeletal mineralization.» Am J Physiol Endocrinol Metab 2003;285(1):1-9

50. Villa-Bellosta R, Ravera S, Sorribas V et al. The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am J Physiol Renal Physiol 2009;296:691-699

51. Добронравов ВА, Богданова ЕО, Семенова НЮ, и др. Почечная экспрессия белка αKlotho, фактор роста фибробластов

52. и паратиреоидный гормон при экспериментальном моделировании ранних стадий хронического повреждения почек. Нефрология 2014; 18(2): 42-45


Для цитирования:


Добронравов В.А., Богданова Е.О. Патогенез нарушений обмена фосфатов при хронической болезни почек: все ли так ясно, как кажется? Нефрология. 2014;18(2):42-46.

For citation:


Dobronravov V.A., Bogdanova E.O. Pathogenesis of phosphate exchange disorders in CKD: is all as clear as seems to be? Nephrology (Saint-Petersburg). 2014;18(2):42-46. (In Russ.)

Просмотров: 154


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)