Preview

Нефрология

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

МОЛЕКУЛЯРНЫЕ АСПЕКТЫ ПАТОГЕНЕЗА САРКОПЕНИИ ПРИ ХРОНИЧЕСКОЙ БОЛЕЗНИ ПОЧЕК: ИНТЕГРАТИВНАЯ РОЛЬ mTOR

https://doi.org/10.24884/1561-6274-2018-22-5-9-16

Полный текст:

Аннотация

В последние десятилетия были открыты основные патогенетические механизмы поддержания мышечной массы и силы. Большая часть научных трудов по изучению  молекулярных аспектов патогенеза саркопении были сфокусированы на Akt-сигнальном  пути. Объектом исследования были люди пожилого и старческого возраста, иммобилизированные пациенты, больные ХБП 1–4 стадий, животные. Однако в последнее  время все больше внимания уделяется роли белка-мишени рапамицина млекопитающих  mTOR. Он представляется ключевым звеном в контроле мышечной массы и является  перспективным маркером в понимании механизмов патогенеза саркопении. Его значение в  белковом обмене у пациентов с ХБП 5д стадии до конца не изучено и требует дальнейших  исследований. Представленный научный обзор содержит сведения о роли mTOR и его  компонентов – mTORC1 и mTORC2 в поддержании мышечной массы и силы у здорового  человека и формировании саркопении у пациентов с ХБП. Основная задача комплекса mTORC1 заключается в регуляции синтеза белка, который необходим для роста и дифференцировки клеток. Функции комплекса mTORC2 изучены недостаточно. Установлено, что он играет важную роль в таких биологических процессах, как организация цитоскелета,  поддержание внутриклеточного гомеостаза, т.е. он обеспечивает устойчивость клетки и ее  выживаемость при неблагоприятных внешних и внутренних стимулах. Белок mTOR можно  рассматривать в качестве перспективного молекулярного маркера диагностики ранних  нарушений белкового обмена у пациентов с ХБП, а также в качестве дополнительного показателя оценки тяжести саркопении.

Для доступа к материалу требуется подписка или приобретенный доступ. Чтобы подтвердить подписку и доступ, либо приобрести материал, пожалуйста войдите в систему.

Об авторе

М. З. Гасанов
Ростовского государственного медицинского университета
Россия

Кафедра внутренних болезней № 1

Доц. Гасанов Митхат Зульфугар-оглы, канд. мед. наук

344022, Россия, г. Ростов-на-Дону, пер. Нахичеванский, д. 29, Тел.: +7 988-947-37-50



Список литературы

1. Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney inter Suppl 2013; 3: 1–150

2. Смирнов АВ, Добронравов ВА, Каюков ИГ. Кардиоренальный континуум: патогенетические основы превентивной нефрологии. Нефрология 2005; 9(3): 7-15 [Smirnov AV, Dobronravov VA, Kayukov IG. Cardio-Renal Continuum: Pathogenetic Basics of Preventive Nephrology. Nephrology 2005; 9(3): 7-15 (In Russ.)]

3. Смирнов АВ, Каюков ИГ, Добронравов ВА. Концепция факторов риска в нефрологии: Вопросы профилактики и лечения хронической болезни почек. Нефрология 2008; 12(1): 7-13 [Smirnov AV, Kayukov IG, Dobronravov VA. The concept of risk factors in nephrology: Prevention and treatment of chronic kidney disease. Nephrology (Saint- Petersburg). 2008; 12 (1): 7-13 (In Russ.)]

4. Смирнов АВ, Румянцев АШ, Добронравов В А, Каюков ИГ. XXI век – время интегративной нефрологии. Нефрология 2015; 19(2): 22-26 [Smirnov AV, Rumyantsev ASh, Dobronravov VA, Kayukov IG. XXI century – is the time of integrative nephrology Nephrology (Saint-Petersburg). 2015; 19 (2): 22-26 (In Russ.)]

5. Souza VA, Oliveira D, Barbosa SR et al. Sarcopenia in patients with chronic kidney disease not yet on dialysis: Analysis of the prevalence and associated factors. PLoS One 2017; 12(4):e0176230. doi: 10.1371/journal.pone.0176230

6. Ebner N, von Haehling S. Silver linings on the horizon: highlights from the 10th Cachexia Conference. J Cachexia Sarcopenia Muscle 2018; 9(1):176-182. doi: 10.1002/jcsm.12290

7. Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010; 39(4):412-423. doi: 10.1093/ageing/afq034

8. Robinder JS Dhillon, Sarfaraz Hasni. Pathogenesis and Management of Sarcopenia. Clin Geriatr Med 2017; 33(1): 17–26 doi: 10.1016/j.cger.2016.08.002

9. Leenders M, Verdijk LB, van der Hoeven L et al. Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. J Am Med Dir Assoc 2013; 14(8):585-592. doi: 10.1016/j.jamda.2013.02.006

10. Kim KS, Park KS, Kim MJ et al. Type 2 diabetes is associated with low muscle mass in older adults. Geriatr Gerontol Int 2014; 14(Suppl 1):115-121. doi: 10.1111/ggi.12189

11. Смирнов АВ, Румянцев АШ. Реабилитация больных на гемодиализе: руководство для врачей. CИМК, М., 2018: 208 [Smirnov AV, Rumyantsev ASh. Rehabilitation of patients on hemodialysis: a guide for physicians. Special Publishing House of Medical Books, Moscow, 2018: 208 (In Russ.)]

12. Morley JE, Anker SD, von Haehling S. Prevalence, incidence, and clinical impact of sarcopenia: Facts, numbers, and epidemiology-update 2014. J Cachexia Sarcopenia Muscle 2014; 5(4):253-259. doi: 10.1007/s13539-014-0161-y

13. Avan Aihie Sayer, Sian M. Robinson, Harnish P. Patel et al. New horizons in the pathogenesis, diagnosis and management of sarcopenia. Age Ageing 2013; 42(2):145–150. doi: 10.1093/ageing/afs191

14. Enoki Y, Watanabe H, Arake R et al. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stressmediated expression of myostatin and atrogin-1. Sci Rep 2016; 6:32084. doi: 10.1038/srep32084

15. Moorthi RN, Avin KG. Clinical relevance of sarcopenia in chronic kidney disease. Curr Opin Nephrol Hypertens 2017; 26(3):219-228. doi: 10.1097/MNH.0000000000000318

16. Lenoir O, Tharaux PL, Huber TB. Autophagy in kidney disease and aging: lessons from rodent models. Kidney Int 2016; 90(5):950-964. doi: 10.1016/j.kint.2016.04.014

17. Яковенко АА, Румянцев АШ, Есаян АМ. Новые подходы к коррекции недостаточности питания больных, получающих лечение хроническим гемодиализом. Клиническая нефрология 2016; (3-4):42-45 [Yakovenko AA, Rumyantsev ASh, Yesayan AM. New approaches to correcting malnutrition in patients receiving chronic hemodialysis. Clinical nephrology 2016; (3-4): 42-45 (In Russ.)]

18. Смирнов АВ, Голубев РВ, Коростелева НЮ, Румянцев АШ. Снижение физической работоспособности у больных, получающих заместительную почечную терапию: фокус на саркопению. Нефрология 2017;21(4):9-29. doi:10.24884/1561- 6274-2017-21-4- 9-29 [Smirnov AV, Golubev RV, Korosteleva NY, Rumyantsev AS. Decline of physical performance in patients receiving renal replacement therapy: focus on sarcopenia. Nephrology (Saint-Petersburg). 2017;21(4):9-29 (In Russ.) doi: 10.24884/1561-6274-2017-21-4-9-29]

19. Вишневский КА, Румянцев АШ, Смирнов АВ, Коростелева НЮ. Возможности применения накожной билатеральной электромиостимуляции: от космической медицины к реабилитации инвалидов. Нефрология 2015; 19 (1): 41-53 [Vishnevskii KA, Rumyantsev AS, Smirnov AV, Korosteleva NY. Applicabilities of bilateral epicutaneous electromyostimulation: from space medicine to rehabilitation of disabled persons. Nephrology (Saint- Petersburg). 2015;19(1):41-53 (In Russ.)]

20. Wang XH, Mitch WE. Mechanisms of muscle wasting in chronic kidney disease. Nat Rev Nephrol 2014; 10(9):504-516. doi: 10.1038/nrneph.2014.112

21. Izumiya Y, Hopkins T, Morris C et al. Fast/Glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. Cell Metab 2008; 7:159–172. doi: 10.1016/j.cmet.2007.11.003

22. McCarthy JJ and Esser KA. Anabolic and catabolic pathways regulating skeletal muscle mass. Curr Opin Clin Nutr Metab Care 2010; 13:230–235. doi: 10.1097/MCO.0b013e32833781b5

23. Glass DJ. Molecular mechanisms modulating muscle mass. Trends Mol Med 2003; 9:344– 350. doi: 10.1016/S1471-4914(03)00138-2

24. Hornberger TA. Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle. Int J Biochem Cell Biol 2011; 43:1267–1276. doi: 10.1016/j.biocel.2011.05.007

25. Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 2005; 37:1974–1984. doi: 10.1016/j.biocel.2005.04.018

26. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149:274–293. doi: 10.1016/j.cell.2012.03.017

27. Castets P, Lin S, Rion N et al. Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvationinduced autophagy and causes a severe, late-onset myopathy. Cell Metab 2013; 17(5):731-744. doi: 10.1016/j.cmet.2013.03.015

28. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011; 13(2):132-141. doi: 10.1038/ncb2152

29. Kawamata T, Kamada Y, Kabeya Y et al. Organization of the preautophagosomal structure responsible for autophagosome formation. Mol Biol Cell 2008; 19(5):2039-2050. doi: 10.1091/mbc.E07-10-1048

30. Alvers AL, Wood MS, Hu D et al. Autophagy is required for extension of yeast chronological life span by rapamycin. Autophagy 2009; 5(6):847-849

31. Settembre C, Zoncu R, Medina DL et al. A lysosome-tonucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 2012; 31(5):1095-1108. doi: 10.1038/emboj.2012.32

32. Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009; 10:307–318. doi: 10.1038/nrm2672

33. Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci 2009; 122(Pt 20):3589-3594. doi: 10.1242/jcs.051011

34. Yoon MS. The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling. Nutrients 2017; 9(11). pii: E1176. doi: 10.3390/nu9111176

35. Yoon MS. mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass. Front Physiol 2017; 8:788. doi: 10.3389/fphys.2017.00788

36. Walston JD. Sarcopenia in older adults. Curr Opin Rheumatol 2012; 24:623–627. doi: 10.1097/BOR.0b013e328358d59b

37. Leger B, Derave W, De Bock K et al. Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation. Rejuvenat Res 2008; 11:163B– 175B. doi: 10.1089/rej.2007.0588

38. Mayer C, Zhao J, Yuan X. et al. mTOR-dependent activation of the transcription factor TIFIA links rRNA synthesis to nutrient availability. Genes Dev 2004; 18(4):423-434. doi: 10.1101/gad.285504

39. Hanaoka BY, Peterson CA, Horbinski C et al. Implications of glucocorticoid therapy in idiopathic inflammatory myopathies. Nat Rev Rheumatol 2012; 8(8):448-457. doi: 10.1038/nrrheum.2012.85.

40. Tonshoff B, Blum WF, Wingen AM, Mehls O. Serum insulinlike growth factors (IGFs) and IGF binding proteins 1, 2, and 3 in children with chronic renal failure: relationship to height and glomerular filtration rate. The European Study Group for Nutritional Treatment of Chronic Renal Failure in Childhood. J Clin Endocrinol Metab 1995; 80(9):2684-2691. doi: 10.1210/jcem.80.9.7545697

41. Ulinski T, Mohan S, Kiepe D, et al. Serum insulin-like growth factor binding protein (IGFBP)-4 and IGFBP-5 in children with chronic renal failure: relationship to growth and glomerular filtration rate. The European Study Group for Nutritional Treatment of Chronic Renal Failure in Childhood. German Study Group for Growth Hormone Treatment in Chronic Renal Failure. Pediatr Nephrol 2000; 14(7):589-597

42. Powell DR, Liu F, Baker BK et al. Insulin-like growth factorbinding protein-6 levels are elevated in serum of children with chronic renal failure: a report of the Southwest Pediatric Nephrology Study Group. J Clin Endocrinol Metab 1997; 82(9): 2978-2984. doi: 10.1210/jcem.82.9.4215

43. Bach LA, Hale LJ. Insulin-like growth factors and kidney disease. Am J Kidney Dis 2015; 65(2):327-336. doi: 10.1053/j.ajkd.2014.05.024.

44. Feldt-Rasmussen B, El Nahas M. Potential role of growth factors with particular focus on growth hormone and insulin-like growth factor-1 in the management of chronic kidney disease. Semin Nephrol 2009; 29(1):50-58. doi: 10.1016/j.semnephrol.2008.10.007

45. Gu LJ, Zhang YY, Wang L et al. Changes of insulin-like growth factor 1 axis in chronic kidney disease and its role in skeletal muscle atrophy. Zhonghua Yi Xue Za Zhi 2018; 98(10):749-754. doi: 10.3760/cma.j.issn.0376-2491.2018.10.007

46. Oh WJ, Jacinto E. mTOR complex 2 signaling and functions. Cell Cycle. 2011; 10(14):2305-2316. doi: 10.4161/cc.10.14.16586

47. Yano S, Nagai A, Isomura M. et al. Relationship between Blood Myostatin Levels and Kidney Function:Shimane CoHRE Study. PLoS One 2015; 10(10):e0141035. doi: 10.1371/journal.pone.0141035

48. Sandri M. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol 2013; 45(10):2121-2129. doi: 10.1016/j.biocel.2013.04.023

49. Fan J, Kou X, Jia S et al. Autophagy as a Potential Target for Sarcopenia. J Cell Physiol 2016; 231(7):1450-1459. doi: 10.1002/jcp.25260

50. Han HQ, Zhou X, Mitch WE, Goldberg AL. Myostatin/activin pathway antagonism: molecular basis and therapeutic potential. Int J Biochem Cell Bio. 2013; 45(10):2333-2347. doi: 10.1016/j.biocel.2013.05.019

51. Zhang L, Pan, J, Dong Y et al. Stat3 activation links a C/EBPδ to myostatin pathway to stimulate loss of muscle mass. Cell Metab 2013; 18(3):368-379. doi: 10.1016/j.cmet.2013.07.012

52. Itoh Y, Saitoh M, Miyazawa K. Smad3-STAT3 crosstalk in pathophysiological contexts. Acta Biochim Biophys Sin (Shanghai) 2018; 50(1):82-90. doi: 10.1093/abbs/gmx118

53. Mao S, Zhang J. Role of autophagy in chronic kidney diseases. Int J Clin Exp Med 2015; 8(12):22022-22029

54. Wang DT, Yang YJ, Huang RH et al. Myostatin activates the ubiquitin-proteasome and autophagy-lysosome systems contributing to muscle wasting in chronic kidney disease. Oxid Med Cell Longev 2015; 2015:684965. doi: 10.1155/2015/684965

55. Sharma M, McFarlane C, Kambadur R. et al. Myostatin: expanding horizons. IUBMB Life 2015; 67(8):589-600. doi: 10.1002/iub.1392

56. Trendelenburg, AU, Meyer A, Rohner D et al. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol 2009; 296(6):C1258–1270. doi: 10.1152/ajpcell.00105.2009

57. Zhang L, Rajan V, Lin E et al. Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease. FASEB J 2011; 25(5):1653-1663. doi: 10.1096/fj.10-176917

58. Sartori R, Milan G, Patron M et al. Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol 2009; 296(6):C1248-1257. doi: 10.1152/ajpcell.00104.2009

59. Lee SW, Dai G, Hu Z et al. Regulation of muscle protein degradation: coordinated control of apoptotic and ubiquitinproteasome systems by phosphatidylinositol 3 kinase. J Am Soc Nephrol 2004; 15:1537–1545

60. Deger SM, Hung AM, Gamboa JL. Systemic inflammation is associated with exaggerated skeletal muscle protein catabolism in maintenance hemodialysis patients. JCI Insight 2017; 2(22). pii: 95185. doi: 10.1172/jci.insight.95185


Для цитирования:


Гасанов М.З. МОЛЕКУЛЯРНЫЕ АСПЕКТЫ ПАТОГЕНЕЗА САРКОПЕНИИ ПРИ ХРОНИЧЕСКОЙ БОЛЕЗНИ ПОЧЕК: ИНТЕГРАТИВНАЯ РОЛЬ mTOR. Нефрология. 2018;22(5):9-16. https://doi.org/10.24884/1561-6274-2018-22-5-9-16

For citation:


Gasanov M.Z. MOLECULAR ASPECTS OF SARCOPENIA PATHOGENESIS IN CHRONOC KIDNEY DISEASE: INTEGRATED ROLE OF mTOR. Nephrology (Saint-Petersburg). 2018;22(5):9-16. (In Russ.) https://doi.org/10.24884/1561-6274-2018-22-5-9-16

Просмотров: 181


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)