ROLE OF ETELCALCETIDE IN THE MANAGEMENT OF SECONDARY HYPERPARATHYROIDISM IN HEMODIALYSIS PATIENTS: A REVIEW ON CURRENT DATA AND PLACE IN THERAPY
https://doi.org/10.24884/1561-6274-2019-23-1-84-95
Abstract
Secondary hyperparathyroidism (sHPT) is a frequently occurring severe complication of advanced kidney disease. Its clinical consequences include extraskeletal vascular and valvular calcifications, changes in bone metabolism resulting in renal osteodystrophy, and an increased risk of cardiovascular morbidity and mortality. Calcimimetics are a cornerstone of parathyroid hormone (PTH)-lowering therapy, as confirmed by the recently updated 2017 Kidney Disease: Improving Global Outcomes chronic kidney disease – mineral and bone disorder clinical practice guidelines. Contrary to calcitriol or other vitamin D-receptor activators, calcimimetics reduce PTH without increasing serum-calcium, phosphorus, or FGF23 levels. Etelcalcetide is a new second-generation calcimimetic that has been approved for the treatment of sHPT in adult hemodialysis patients. Whereas the first-generation calcimimetic cinacalcet is taken orally once daily, etelcalcetide is given intravenously thrice weekly at the end of the hemodialysis session. Apart from improving drug adherence, etelcalcetide has proven to be more effective in lowering PTH when compared to cinacalcet, with an acceptable and comparable safety profile. The hope for better gastrointestinal tolerance with intravenous administration did not come true, as etelcalcetide did not significantly mitigate the adverse gastrointestinal effects associated with cinacalcet. Enhanced adherence and strong reductions in PTH, phosphorus, and FGF23 could set the stage for a future large randomized controlled trial to demonstrate that improved biochemical control of mineral metabolism with etelcalcetide in hemodialysis patients translates into cardiovascular and survival benefits and better healthrelated quality of life.
About the Authors
С. FriedlAustria
E. Zitt
Austria
References
1. Moe S, Drüeke T, Cunningham J et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 2006;69(11):1945–1953. DOI: 10.1038/sj.ki.5000414
2. Floege J, Kim J, Ireland E et al. Serum iPTH, calcium and phosphate, and the risk of mortality in a European haemodialysis population. Nephrol Dial Transplant 2011;26(6):1948–1955. DOI: 10.1093/ndt/gfq219
3. Tentori F, Wang M, Bieber BA et al. Recent changes in therapeutic approaches and association with outcomes among patients with secondary hyperparathyroidism on chronic hemodialysis: the DOPPS study. Clin J Am Soc Nephrol 2015;10(1):98–109. DOI: 10.2215/CJN.12941213
4. Faul C, Amaral AP, Oskouei B et al. FGF23 induces left ven tricular hypertrophy. J Clin Invest 2011;121(11):4393–4408. DOI: 10.1172/JCI46122
5. Scialla JJ, Xie H, Rahman M et al. Fibroblast growth factor-23 and cardiovascular events in CKD. J Am Soc Nephrol 2014;25(2):349–360. DOI: 10.1681/ASN.2013050465
6. Gutierrez OM, Mannstadt M, Isakova T et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 2008;359(6):584–592. DOI: 10.1056/NEJMoa0706130
7. Zitt E, Konig M, Vychytil A et al. Use of sodium thiosulphate in a multi-interventional setting for the treatment of calciphylaxis in dialysis patients. Nephrol Dial Transplant 2013;28(5):1232–1240. DOI: 10.1093/ndt/gfs548
8. de Boer IH, Gorodetskaya I, Young B et al. The severity of secondary hyperparathyroidism in chronic renal insufficiency is GFR-dependent, race-dependent, and associated with cardiovascular disease. J Am Soc Nephrol 2002;13(11):2762–2769
9. Levin A, Bakris GL, Molitch M et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int 2007;71(1):31–38. DOI: 10.1038/sj.ki.5002009
10. Isakova T, Wahl P, Vargas GS et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 2011;79(12):1370–1378. DOI: 10.1038/ki.2011.47
11. Cunningham J, Locatelli F, Rodriguez M. Secondary hyperparathyroidism: pathogenesis, disease progression, and therapeutic options. Clin J Am Soc Nephrol 2011;6(4):913–921. DOI: 10.2215/CJN.06040710
12. Slatopolsky E, Caglar S, Pennell JP et al. On the pathogenesis of hyperparathyroidism in chronic experimental renal insufficiency in the dog. J Clin Invest 1971;50(3):492–499. DOI: 10.1172/JCI106517
13. Kurosu H, Kuro OM. The Klotho gene family as a regulator of endocrine fibroblast growth factors. Mol Cell Endocrinol 2009;299(1):72–78. DOI: 10.1016/j.mce.2008.10.052
14. Hu MC, Kuro-o M, Moe OW. The emerging role of Klotho in clinical nephrology. Nephrol Dial Transplant 2012;27(7):2650– 2657. DOI: 10.1093/ndt/gfs160
15. Fan Y, Bi R, Densmore MJ et al. Parathyroid hormone 1 receptor is essential to induce FGF23 production and maintain systemic mineral ion homeostasis. FASEB J 2016;30(1):428–440. DOI: 10.1096/fj.15-278184
16. Lopez I, Rodriguez-Ortiz ME, Almaden Y et al. Direct and indirect effects of parathyroid hormone on circulating levels of fibroblast growth factor 23 in vivo. Kidney Int 2011;80(5):475–482. DOI: 10.1038/ki.2011.107
17. Meir T, Durlacher K, Pan Z et al. Parathyroid hormone activates the orphan nuclear receptor Nurr1 to induce FGF23 transcription. Kidney Int 2014;86(6):1106–1115. DOI: 10.1038/ki.2014.215
18. Canalejo R, Canalejo A, Martinez-Moreno JM et al. FGF23 fails to inhibit uremic parathyroid glands. J Am Soc Nephrol 2010;21(7):1125–1135. DOI: 10.1681/ASN.2009040427
19. Galitzer H, Ben-Dov IZ, Silver J, Naveh-Many T. Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease. Kidney Int 2010;77(3):211–218. DOI: 10.1038/ki.2009.464
20. Silver J. Molecular mechanisms of secondary hyperparathyroidism. Nephrol Dial Transplant 2000;15(Suppl 5):2–7
21. Friedl C, Zitt E. Vitamin D prohormone in the treatment of secondary hyperparathyroidism in patients with chronic kidney disease. Int J Nephrol Renovasc Dis 2017;10:109–122. DOI: 10.2147/IJNRD.S97637
22. Slatopolsky E, Brown A, Dusso A. Pathogenesis of secondary hyperparathyroidism. Kidney Int Suppl 1999;73:S14–S19
23. Almaden Y, Hernandez A, Torregrosa V et al. High phosphate level directly stimulates parathyroid hormone secretion and synthesis by human parathyroid tissue in vitro. J Am Soc Nephrol 1998;9(10):1845–1852
24. Naveh-Many T, Rahamimov R, Livni N, Silver J. Parathyroid cell proliferation in normal and chronic renal failure rats: the effects of calcium, phosphate, and vitamin D. J Clin Invest 1995;96(4):1786–1793. DOI: 10.1172/JCI118224
25. Nakajima K, Umino K, Azuma Y et al. Stimulating parathyroid cell proliferation and PTH release with phosphate in organ cultures obtained from patients with primary and secondary hyperparathyroidism for a prolonged period. J Bone Miner Metab 2009;27(2):224–233. DOI: 10.1007/s00774-008-0032-8
26. Bikle D. Vitamin D: production, metabolism, and mechanisms of action. In: de Groot LJ, Chrousos G, Dungan K et al., editors. Endotext. South Dartmouth (MA): MDText; 2000
27. Gogusev J, Duchambon P, Hory B et al. Depressed expression of calcium receptor in parathyroid gland tissue of patients with hyperparathyroidism. Kidney Int 1997;51(1):328–336
28. Fukuda N, Tanaka H, Tominaga Y et al. Decreased 1,25-dihydroxyvitamin D3 receptor density is associated with a more severe form of parathyroid hyperplasia in chronic uremic patients. J Clin Invest 1993;92(3):1436–1443. DOI: 10.1172/JCI116720
29. Ketteler M, Block GA, Evenepoel P et al. Executive summary of the 2017 KDIGO chronic kidney disease-mineral and bone disorder (CKD-MBD) guideline update: what’s changed and why it matters. Kidney Int 2017;92(1):26–36. DOI: 10.1016/j.kint.2017.04.006
30. Hamdy NA, Kanis JA, Beneton MN et al. Effect of alfacalcidol on natural course of renal bone disease in mild to moderate renal failure. BMJ 1995;310(6976):358–363
31. Block GA, Martin KJ, de Francisco AL et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J MedM2004;350(15):1516–1525. DOI: 10.1056/NEJMoa031633
32. Zitt E, Fouque D, Jacobson SH et al. Serum phosphorus reduction in dialysis patients treated with cinacalcet for secondary hyperparathyroidism results mainly from parathyroid hormone reduction. Clin Kidney J 2013;6(3):287–294. DOI: 10.1093/ckj/sft026
33. Li D, Shao L, Zhou H et al. The efficacy of cinacalcet combined with conventional therapy on bone and mineral metabolism in dialysis patients with secondary hyperparathyroidism: a meta-analysis. Endocrine 2013;43(1):68–77. DOI: 10.1007/s12020-012-9711-2
34. Zhang Q, Li M, You L et al. Effects and safety of calcimimetics in end stage renal disease patients with secondary hyperparathyroidism: a meta-analysis. PLoS One 2012;7(10):e48070. DOI: 10.1371/journal.pone.0048070
35. Zitt E, Rix M, Torres PU et al. Effectiveness of cinacalcet in patients with recurrent/persistent secondary hyperparathyroidism following parathyroidectomy: results of the ECHO study. Nephrol Dial Transplant 2011;26(6):1956–1961. DOI: 10.1093/ndt/gfq641
36. Lopez I, Mendoza FJ, Aguilera-Tejero E et al. The effect of calcitriol, paricalcitol, and a calcimimetic on extraosseous calcifications in uremic rats. Kidney Int 2008;73(3):300–307. DOI: 10.1038/sj.ki.5002675
37. Nemeth EF, Heaton WH, Miller M et al. Pharmacodynamics of the type II calcimimetic compound cinacalcet HCl. J Pharmacol Exp Ther 2004;308(2):627–635. DOI: 10.1124/jpet.103.057273
38. Raggi P, Chertow GM, Torres PU et al. The ADVANCE study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis. Nephrol Dial Transplant 2011;26(4):1327–1339. DOI: 10.1093/ndt/gfq725
39. Ureña-Torres PA, Floege J, Hawley CM et al. Protocol adherence and the progression of cardiovascular calcification in the ADVANCE study. Nephrol Dial Transplant 2013;28(1):146–152. DOI: 10.1093/ndt/gfs356
40. Parfrey PS, Chertow GM, Block GA et al. The clinical course of treated hyperparathyroidism among patients receiving hemodialysis and the effect of cinacalcet: the EVOLVE trial. J Clin Endocrinol Metab 2013;98(12):4834–4844. DOI: 10.1210/jc.2013-2975
41. EVOLVE Trial Investigators Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med 2012;367(26):2482–2494
42. Floege J, Kubo Y, Floege A et al. The effect of cinacalcet on calcific uremic arteriolopathy events in patients receiving hemo dialysis: the EVOLVE trial. Clin J Am Soc Nephrol 2015;10(5):800– 807. DOI: 10.2215/CJN.10221014
43. Behets GJ, Spasovski G, Sterling LR et al. Bone histomorphometry before and after long-term treatment with cinacalcet in dialysis patients with secondary hyperparathyroidism. Kidney Int 2015;87(4):846–856. DOI: 10.1038/ki.2014.349
44. Cunningham J, Danese M, Olson K et al. Effects of the calcimimetic cinacalcet HCl on cardiovascular disease, fracture, and health-related quality of life in secondary hyperparathyroidism. Kidney Int 2005;68(4):1793–1800
45. van der Plas WY, Dulfer RR, Engelsman AF et al. Effect of parathyroidectomy and cinacalcet on quality of life in patients with end-stage renal disease-related hyperparathyroidism: a systematic review. Nephrol Dial Transplant 2017;32(11):1902–1908. DOI: 10.1093/ndt/gfx044
46. Gincherman Y, Moloney K, McKee C, Coyne DW. Assessment of adherence to cinacalcet by prescription refill rates in hemodialysis patients. Hemodial Int 2010;14(1):68–72. DOI: 10.1111/j.1542-4758.2009.00397.x
47. Lee A, Song X, Khan I et al. Association of cinacalcet adherence and costs in patients on dialysis. J Med Econ 2011;14(6):798–804. DOI: 10.3111/13696998.2011.627404
48. Park H, Rascati KL, Lawson KA et al. Adherence and persistence to prescribed medication therapy among Medicare part D beneficiaries on dialysis: comparisons of benefit type and benefit phase. J Manag Care Spec Pharm 2014;20(8):862–876
49. Lindberg JS, Culleton B, Wong G et al. Cinacalcet HCl, an oral calcimimetic agent for the treatment of secondary hyperparathyroidism in hemodialysis and peritoneal dialysis: a randomized, double-blind, multicenter study. J Am Soc Nephrol 2005;16(3):800–807. DOI: 10.1681/ASN.2004060512
50. Ureña P, Jacobson SH, Zitt E et al. Cinacalcet and achievement of the NKF/K-DOQI recommended target values for bone and mineral metabolism in real-world clinical practice: the ECHO observational study. Nephrol Dial Transplant 2009;24(9):2852–2859. DOI: 10.1093/ndt/gfp144
51. Chiu YW, Teitelbaum I, Misra M et al. Pill burden, adherence, hyperphosphatemia, and quality of life in maintenance dialysis patients. Clin J Am Soc Nephrol 2009;4(6):1089–1096. DOI: 10.2215/CJN.00290109
52. Burnier M, Pruijm M, Wuerzner G, Santschi V. Drug adherence in chronic kidney diseases and dialysis. Nephrol Dial Transplant 2015;30(1):39–44. DOI: 10.1093/ndt/gfu015
53. Ghimire S, Castelino RL, Lioufas NM et al. Nonadherence to medication therapy in haemodialysis patients: a systematic review. PLoS One 2015;10(12):e0144119. DOI: 10.1371/journal.pone.0144119
54. Loghman-Adham M. Medication noncompliance in patients with chronic disease: issues in dialysis and renal transplantation. Am J Manag Care 2003;9(2):155–171
55. Alexander ST, Hunter T, Walter S et al. Critical cysteine residues in both the calcium-sensing receptor and the allosteric activator AMG 416 underlie the mechanism of action. Mol Pharmacol 2015;88(5):853–865. DOI: 10.1124/mol.115.098392
56. Wu B, Melhem M, Subramanian R et al. Clinical pharmacokinetics and pharmacodynamics of etelcalcetide, a novel calcimimetic for treatment of secondary hyperparathyroidism in patients with chronic kidney disease on hemodialysis. J Clin Pharmacol 2018 Mar 13; Epub. DOI: 10.1002/jcph.1090
57. Walter S, Baruch A, Dong J et al. Pharmacology of AMG 416 (velcalcetide), a novel peptide agonist of the calcium-sensing receptor, for the treatment of secondary hyperparathyroidism in hemodialysis patients. J Pharmacol Exp Ther 2013;346(2):229– 240. DOI: 10.1124/jpet.113.204834
58. Yu L, Tomlinson JE, Alexander ST et al. Etelcalcetide, a novel calcimimetic, prevents vascular calcification in a rat model of renal insufficiency with secondary hyperparathyroidism. Calcif Tissue Int 2017;101(6):641–653. DOI: 10.1007/s00223-017-0319-7
59. Ziegelstein RC, Xiong Y, He C, Hu Q. Expression of a functional extracellular calcium-sensing receptor in human aortic endothelial cells. Biochem Biophys Res Commun 2006;342(1):153–163. DOI: 10.1016/j.bbrc.2006.01.135
60. Smajilovic S, Hansen JL, Christoffersen TE et al. Extracellular calcium sensing in rat aortic vascular smooth muscle cells. Biochem Biophys Res Commun 2006;348(4):1215–1223. DOI: 10.1016/j.bbrc.2006.07.192
61. Li X, Yu L, Asuncion F et al. Etelcalcetide (AMG 416), a peptide agonist of the calcium-sensing receptor, preserved cortical bone structure and bone strength in subtotal nephrectomized rats with established secondary hyperparathyroidism. Bone 2017;105:163–172. DOI: 10.1016/j.bone.2017.08.026
62. Bell G, Huang S, Martin KJ, Block GA. A randomized, double-blind, phase 2 study evaluating the safety and efficacy of AMG 416 for the treatment of secondary hyperparathyroidism in hemodialysis patients. Curr Med Res Opin 2015;31(5):943–952. DOI: 10.1185/03007995.2015.1031731
63. Block GA, Bushinsky DA, Cheng S et al. Effect of etelcalcetide vs cinacalcet on serum parathyroid hormone in patients receiving hemodialysis with secondary hyperparathyroidism: a randomized clinical trial. JAMA 2017;317(2):156–164. DOI: 10.1001/jama.2016.19468
64. Block GA, Bushinsky DA, Cunningham J et al. Effect of etelcalcetide vs placebo on serum parathyroid hormone in patients receiving hemodialysis with secondary hyperparathyroidism: two randomized clinical trials. JAMA 2017;317(2):146–155. DOI: 10.1001/jama.2016.19456
65. Fukagawa M, Yokoyama K, Shigematsu T et al. A phase 3, multicentre, randomized, double-blind, placebo-controlled, parallel-group study to evaluate the efficacy and safety of etelcalcetide (ONO-5163/AMG 416), a novel intravenous calcimimetic, for secondary hyperparathyroidism in Japanese haemodialysis patients. Nephrol Dial Transplant 2017;32(10):1723–1730. DOI: 10.1093/ndt/gfw408
66. Martin KJ, Pickthorn K, Huang S et al. AMG 416 (velcalcetide) is a novel peptide for the treatment of secondary hyperparathyroidism in a single-dose study in hemodialysis patients. Kidney Int 2014;85(1):191–197. DOI: 10.1038/ki.2013.289
67. Floege J, Tsirtsonis K, Iles J et al. Incidence, predictors and therapeutic consequences of hypocalcemia in patients treated with cinacalcet in the EVOLVE trial. Kidney Int 2018 Mar 7; Epub. DOI: 10.1016/j.kint.2017.12.014
68. Stollenwerk B, Iannazzo S, Akehurst R et al. A decisionanalytic model to assess the cost-effectiveness of etelcalcetide vs. cinacalcet. Pharmacoeconomics 2018;36(5):603–612. DOI: 10.1007/s40273-017-0605-2
Review
For citations:
Friedl С., Zitt E. ROLE OF ETELCALCETIDE IN THE MANAGEMENT OF SECONDARY HYPERPARATHYROIDISM IN HEMODIALYSIS PATIENTS: A REVIEW ON CURRENT DATA AND PLACE IN THERAPY. Nephrology (Saint-Petersburg). 2019;23(1):84-95. (In Russ.) https://doi.org/10.24884/1561-6274-2019-23-1-84-95