Preview

Нефрология

Расширенный поиск

ПРОФИЛАКТИКА И ЛЕЧЕНИЕ СИНДРОМА ИШЕМИИ-РЕПЕРФУЗИИ

https://doi.org/10.24884/1561-6274-2019-23-2-41-48

Полный текст:

Аннотация

Основные негативные последствия ишемии-реперфузии почек – рано развивающаяся тяжелая хроническая дисфункция трансплантата, а в наиболее тяжелых случаях – функция трансплантированной почки не восстанавливается (первично нефункционирующий трансплантат). В результате утраты функции трансплантата пациент, как правило, возвращается на диализ. Эти осложнения чаще встречаются при трансплантации почек от «доноров с расширенным критериями», так как эти органы наиболее чувствительны повреждениям, развивающимся в результате синдрома ишемии-реперфузии (ИР-синдром). При этом, доля таких (субоптимальных) доноров постепенно растет в России. Золотым стандартом при трансплантации почки остается холодовая консервация органа в специальных растворах, однако, это не в состоянии полностью защитить орган. В статье представлены основные перспективные методы, которые позволяют снизить тяжесть ишемического и реперфузионного повреждения: кондиционирование донора, ишемическое прекондиционирование, различные варианты консервации почки, воздействие на медиаторы воспаления, применение биологических таргетных препаратов. Тем не менее, патогенез ИР-синдрома изучен значительно лучше, чем методы его коррекции. На данный момент имеются лишь косвенные или экспериментальные свидетельства того, что тяжесть ИР-синдрома может быть уменьшена за счет фармакопротекции органа до изъятия, при консервации, а также в раннем послеоперационном периоде. Необходимы дальнейшие исследования, направленные на поиск возможностей снижения тяжести ишемического и реперфузионного повреждения трансплантата.

 

Для цитирования:


Ватазин А.В., Артемов Д.В., Зулькарнаев А.Б. ПРОФИЛАКТИКА И ЛЕЧЕНИЕ СИНДРОМА ИШЕМИИ-РЕПЕРФУЗИИ. Нефрология. 2019;23(2):41-48. https://doi.org/10.24884/1561-6274-2019-23-2-41-48

For citation:


Vatazin A.V., Artemov D.V., Zulkarnaev A.B. PREVENTION AND TREATMENT OF ISCHEMIA-REPERFUSION SYNDROME. Nephrology (Saint-Petersburg). 2019;23(2):41-48. (In Russ.) https://doi.org/10.24884/1561-6274-2019-23-2-41-48

Основные негативные последствия ишемии- реперфузии почек - рано развивающаяся тяжелая хроническая дисфункция трансплантата, а в наи­более тяжелых случаях - функция транспланти­рованной почки не восстанавливается (первично нефункционирующий трансплантат). В результа­те утраты функции трансплантата пациент, как правило, возвращается на диализ. Эти осложне­ния чаще встречаются при трансплантации почек от «доноров с расширенным критериями», так как эти органы наиболее чувствительны повреж­дениям, развивающимся в результате синдрома ишемии-реперфузии (ИР-синдром). При этом, доля таких (субоптимальных) доноров посте­пенно растет в России. Золотым стандартом при трансплантации почки остается холодовая кон­сервация органа в специальных растворах, одна­ко, это не в состоянии полностью защитить орган. Тем самым подчеркивается актуальность разрабо­ток новых стратегий для улучшения сохранения и восстановления трансплантата [1]. Различные методы фармакопротекции и фармакокоррекции, организационные и другие методы могут значи­тельно снизить тяжесть ИР-синдрома.

Особенности реанимационных мероприятий у донора. Эффективный контроль состояния потен­циальных доноров в отделении интенсивной те­рапии повышает пригодность органов для транс­плантации. Несмотря на то, что существуют опре­деленные протоколы кондиционирования донора, неизбежно развивающиеся нарушения гомеостаза значительным образом влияют на качество донор­ских органов. Существуют различные подходы для того, чтобы уменьшить патологическое воз­действие смерти мозга на почки [2].

Смерть мозга вызывает каскад гормональных изменений, таких как изменение уровня катехо­ламинов, которые приводят к нарушению иннер­вации сосудов и гемодинамическим изменениям - гипотонии и органной гипоперфузии. Артериаль­ная гипотензия требует адекватного фармаколо­гического вмешательства. Хотя экзогенные кате­холамины эффективно используются в борьбе с гемодинамическими изменениями, некоторые из них оказывают влияние на функцию трансплан­тата [3]. Было установлено, что своевременная коррекция сосудистой дисфункции с помощью допамина снижает риск отсроченной функции трансплантата, в то время как использование но- радреналина этот риск увеличивает [4]. Таким об­разом, выбор вазоактивного препарата оказывает влияние на результат трансплантации [5].

Кроме того, смерть мозга ассоциирована с высвобождением провоспалительных цитоки- нов: ИЛ-1, ИЛ-6, ИЛ-8 [6]. Гипоперфузия и вос­палительная реакция оказывают повреждающее действие на трансплантат еще до развития ИР- синдрома, что потенциально может объяснять низкий уровень выживаемости трансплантатов, полученных от доноров, перенесших смерть мозга, по сравнению с прижизненными донора­ми [7].

Было показано, что применение низкомоле­кулярного гидроксиэтилкрахмала при кондицио­нировании донора более благоприятно, чем при­менение высокомолекулярного [8]. Исследование почек, изъятие которых производилось в течение 24 ч после смерти мозга, показало негативное влияние применения адреналина, маннитола, десмопрессина [9]. Последующие исследования показали значительную связь особенностей кон­диционирования донора и результатов трансплан­тации почки [10].

Ишемическое прекондиционирование. Другая протективная техника - ишемическое преконди­ционирование донора, которая заключается в при­менении коротких циклов ишемии-реперфузии до изъятия органа с целью повышения его толе­рантности к ишемии. Однако непосредственное пережатие почечной ножки приводит к неодно­значным результатам. Известен метод, называе­мый «дистанционное ишемическое прекондицио- нирование», который заключается в проведении кратких циклов ишемии-реперфузии конечностей с использованием манжеты для измерения арте­риального давления [11, 12]. Хотя данный метод ранее не применяли при трансплантации, ряд клинических исследований продемонстрировали снижение частоты повреждения почек у пациен­тов, перенесших плановую операцию на сердце, с предварительным проведением прекондициони- рования по данной методике [13].

Исследования показали, что двустороннее на­ложение манжет оказывает более выраженный за­щитный эффект от ИР-синдрома по сравнению с односторонним. Авторы сделали вывод, что масса ткани, использованная для дистанционного ише­мического прекондиционирования, имеет важное значение для выживаемости трансплантата [14]. На сегодняшний день эффективность этого мето­да доказана в других областях медицины, в част­ности в кардиохирургии [15].

После получения многообещающих результа­тов дистационного ишемического прекондицио- нирования при трансплантации почки в экспе­риментальных моделях на животных [16] было проведено несколько клинических испытаний при аллотрансплантация трупной почки (АТТП). Результаты этих исследований противоречивы, что, вероятно, связано с разнородностью времен­ных интервалов предтрансплантационной ише­мии, ограниченным размером выборки и другими пациент-ассоциированными причинами, но все же демонстрируют клиническую эффективность методики [12]. Так, в работе J. Wu и соавт. (2014) 48 реципиента парных донорских почек были рандомизированы в группы получающих и не по­лучающих ишемическое прекондиционирование. Согласно результатам, у пациентов исследуемой группы были значимо ниже уровни креатинина и выше скорость клубочковой фильтрации через 12 ч после трансплантации (р < 0,05), хотя эти различия нивелировались в течение 1-14. Также в группе получающих ишемическое прекондиционирование были значительно ниже ранние марке­ры ИР-синдрома (желатиназа-ассоциированный липокаин нейтрофилов мочи). Авторы заключили, что ишемическое прекондиционирование ускоря­ет восстановление функции почек у реципиентов после трансплантации почек [17]. Рандомизиро­ванные клинические исследования оценки эффек­тивности ишемического прекондиционирования в настоящее время продолжаются [18].

Консервация почки. Между изъятием органа и трансплантацией проходит определенное время. В течение этого времени орган подвержен по­вреждению в результате метаболического ацидо­за, ионного дисбаланса и иных причин, деструк­тивное влияние которых может быть уменьшено путем применения холодовой консервации. Было предложено несколько методов консервации [19].

Одним из стандартных методов снижения тяжести повреждения органа является холодо- вая консервация - консервация органов и тканей охлаждением в жидких средах до температуры, близкой к 2-4 °С. Перспективы развития этого метода заключаются в добавлении новых компо­нентов к уже существующим растворам или при­готовление совершенно новых растворов [20]. Так, добавление к раствору холодовой консерва­ции полиэтиленгликоля и ингибиторов p38 MAP- киназы, замедляющих истощение АТФ и ингиби­рующих накопление кальция в клетке, успешно применили с целью уменьшения выраженности ИР-синдрома после трансплантации [21, 22].

Однако термические повреждения, которые ор­ган может получить в результате непосредственно холодовой консервации, сложности в оценке жиз­неспособности органа и поддержания стабильной температуры в заданном узком диапазоне, дикту­ют необходимость модернизации метода [23].

С расширением критериев отбора доноров проблема хранения органов приобретает все большую актуальность. Аппарат гипотермиче- ской перфузии (АГП) все чаще используют в каче­стве альтернативы метода холодовой консервации трансплантатов, полученных от субоптимальных доноров [24, 25]. Хотя вопрос о эффективности ис­пользования АГП остается спорным, тем не менее существуют ряд исследований, подтверждающих преимущество этого метода по сравнению с холо­довой консервацией с точки зрения одногодичной и десятилетней выживаемости трансплантатов [26-28]. Особенно эффективно его применение у доноров с расширенными критериями [29, 30], а также у доноров с небьющимся сердцем [30, 31]. АГП может быть полезен для снижения тяжести хронического отторжения, интерстициального фиброза, тубулярной атрофии [24].

Еще одно преимущество АГП - это возмож­ность непосредственной оксигенации перфузата, что в опытах на свиньях также способствовало повышению жизнеспособности почки [32].

Основной механизм, благодаря которому ис­пользование аппарата гипотермической перфузии улучшает качество трансплантата при АТТП, до сих пор остается неясным. Есть данные, что у животных при применении АГП существенно по­давляется экспрессия мРНК MMP-9 и NF-κΒ, а также провоспалительных цитокинов, что может быть защитным механизмом при ИР-синдроме [33, 34].

Нормотермическая консервация. Метод нор­мотермической консервации лишен многих недо­статков холодовой консервации. Нормотермиче­ская консервация может способствовать лучшему восстановлению функции трансплантата по срав­нению с холодовой консервацией. В основе тех­ники лежит создание физиологической среды для трансплантата во время его хранения, которая до­стигается благодаря использованию специальных перфузионных растворов и посредством специаль­ных аппаратов для перфузии. Так, исследования на свиньях показали, что нормо- или субнормотерми- ческая перфузия эффективно поддерживают жиз­неспособность органа [35]. Более того, трансплан­таты, подвергшиеся нормотермической консер­вации ex vivo, продемонстрировали более низкий креатинина сыворотки реципиента через 1-7 сут после трансплантации и более низкие пиковые значения креатинина. Эффективность этого метода подтверждает и исследование иммунных марке­ров ишемии. Таким образом, описанная методика консервации улучшает посттрансплантационную функцию и может способствовать расширению пула доноров [36]. Показано, что использование метода нормотермической консервации позволяет производить эффективную оценку качества и при­годности почки к трансплантации [37].

Наибольший опыт применения метода полу­чен в гепатологии. Данные пилотных испытаний дают основания для расширенных клинических исследований [38-40].

Воздействие на медиаторы воспаления. Ввиду того, что большинство провоспалительных ци- токинов требуют активации транскрипционного фактора NF-kB [41], блок передачи сигнала на этом уровне занимает особое место в лечении ИР- синдрома. Для активации NF-kB необходима р38 МАР-киназа и, следовательно, ингибирование этой киназы способствует снижению цитокинов и, соответственно, уменьшению повреждения в ходе ИР-синдрома, что и было показано в экспе­риментальной модели гипоксии [42].

В цитоплазме клетки NF-kB находится в не­активном состоянии в комплексе с цитозольным ингибиторным белком kB (IkB). Стимулирующий агент приводит к тому, что IkB фосфорилируется под действием киназы IKK (IkB-киназа), что при­водит к деградации IkB в результате действия про- теасомы 26S. При этом NF-kB высвобождается от ингибирующего комплекса, транслоцируется в ядро и активирует транскрипцию контролируе­мых генов. Определенные антагонисты комплек­са IKK способствуют уменьшению повреждений, вызванных ИР-синдромом [43]. Однако этот под­ход требует дальнейших исследований для приме­нения его в трансплантологии.

Другой способ препятствовать деградации IkB - ингибирование протеасом, отвечающих за его разрушение. Введение ингибитора протеасом лактацистина (lactacystin) или его производного PS519 до начала ишемии может предотвратить ишемические повреждения при почечной, цере­бральной, а также печеночной ишемии [44, 45].

Наконец, возможно ингибирование непосред­ственно генов эксрессии NF-kB, но на сегодняш­ний день недостаточно исследований для клини­ческого применения этого метода [46].

Известно, что продукция цитокинов увеличи­вается уже через несколько часов после транс­плантации, и ингибирование NF-kB, p38 MAPK эффективно уменьшают повреждения при ИР- синдроме. Тем не менее, для уменьшения дей­ствия цитокинов недостаточно только сократить их продукцию, должны быть заблокированы их эффекты.

Перспективными мишенями для этого направ­ления лечения являются Met-RANTES - произво­дное хемокина RANTES - которое блокирует дей­ствие RANTES на уровне рецепторов. При этом благоприятный эффект достигается за счет умень­шения воспалительного ответа, в результате чего долгосрочные результаты функционирования трансплантата оказываются лучше. Аналогичные эффекты были достигнуты при блокаде MCP-1 и MIP [47].

Помимо хемокинов, важную роль в патоге­незе ИР-синдрома играют цитокины, особенно ИЛ-1. Физиологическое действие ИЛ-1 ингиби­руется ИЛ-1-РА (рецепторный антагонист) (по­добные препараты используются при лечении ревматоидного артирита). Эксперименты на кры­сах показали, что животные, у которых лечение ИР-синдрома осуществлялось с использованием ИЛ-1-РА, имели значительно менее выраженные повреждения. Также уменьшались воспалитель­ная инфильтрация паренхимы почки и количество апоптотических клеток по сравнению с нелечен- ной контрольной группой [48].

Молекулы адгезии, в частности LFA-1 и ICAM-1, необходимы для миграции иммунных клеток из сосудистого пространства в ткани. Экс­периментальные данные свидетельствуют о том, что снижение экспрессии молекул адгезии ока­зывает благоприятный эффект на последствия ИР-повреждений после трансплантации [49, 50]. Так, опубликованы результаты клинических ис­следований препарата эфализумаб, в состав кото­рого входит человеческие антитела IgG1 к LFA-1. Введение их реципиенту после трансплантации почки сопровождалось снижением тяжести по­вреждения в результате ИР-синдрома [51]. Одна­ко более детальная информация об отсроченном влиянии данного вида лечения на трансплантат отсутствует. Использование анти-ICAM-1 анти­тел в целях предотвращения острого отторжения трансплантата не показало преимуществ по срав­нению с обычной иммуносупрессивной терапией [52].

Положительные результаты были получены при использовании антагонистов Р-селектина, при этом за счет снижения фиксации иммунных клеток на стенках эндотелия сокращалась ин­фильтрация воспалительных клеток в почечном интерстиции. В целом же, на сегодняшний день терапия, основанная на устранении эффектов мо­лекул адгезии, нуждается в большем количестве экспериментальных и клинических исследований [53, 54].

Наконец, еще одним звеном в патогенезе вы­работки медиаторов воспаления является система комплемента. Ингибирование комплемента С5 и С1 в экспериментах с животными также про­демонстрировало благоприятное влияние на те­чение ишемии-реперфузии на восстановление функции и выживаемости трансплантата [55, 56].

Некоторые ингибиторы, такие как C1INH, уже используются в клинике при других патологи­ях, однако требуются дальнейшие исследования для выяснения их механизма действия при ИР- синдроме [57].

Таким образом, возможности терапевтиче­ского лечения ИР-синдрома путем воздействия на медиаторы воспаления достаточно широки, и дальнейшие исследования в этом направлении могут принести значительные результаты.

Применение биологических таргетных пре­паратов. Предупреждение иммунологических нарушений как последствия ИР-синдрома путем блокирования тех или иных патогенетических звеньев воспаления является перспективным на­правлением исследований последних нескольких лет. Учитывая, что важную роль в развитии дис­функции трансплантата при ИР-синдроме играет комплемент, были разработаны ряд биологиче­ских агентов, воздействующих на его компоненты [58].

Гуманизированные моноклональные антите­ла к С5-компоненту (экулизумаб) исходно про­демонстрировали эффективность при атипичном гемолитико-уремическом синдроме, в том числе после трансплантации почки [59]. Далее ряд до­клинических испытаний определили такие на­правления его использования, как несовместимая по АВ0 трансплантация, предотвращение остро­го и хронического отторжения трансплантата, а также отсроченной его функции [60]. В недавнем рандомизированном клиническом исследовании биологических агентов в профилактике и улуч­шении исходов ИР-синдрома у пациентов, полу­чавших экулизумаб, была отмечена значительно лучшая ранняя функция трансплантата, меньше артериолярного гиалиноза и хронической гломерулопатии при протокольной биопсии, сделанной на 30-й день, 1 и 3 года после трансплантации. Был сделан вывод, что препарат ассоциирован с предупреждением ранней дисфункции и сниже­нием выраженности морфологических изменений трансплантированной почки [61].

Другим направлением снижения активации комплемента стало использование человеческих С1-блокаторов. В мышиной модели у животных, получавших С1-ингибитор до реперфузии, значи­тельно улучшалась выживаемость наряду с улуч­шением функции почек. Предварительное введе­ние препарата также предотвращало выделение ИЛ-6, CXCL1 и MCP-1, высвобождение C5a и C3b, а также инфильтрацию нейтрофилами и ма­крофагами почечной ткани. Этот противовоспа­лительный эффект коррелировал со значительным снижением экспрессии маркеров фиброза альфагладкомышечного актина, десмина и пикросириуса красного в течение 30 и 90 дней после ИР и сниженных почечных уровней TGF-β1 по срав­нению с контрольной группой [62]. Аналогичные данные были получены на крысах, причем, кроме описанных эффектов, С1-ингибитор предотвра­щал активацию эндотелиальных клеток, блокируя эндотелиальный механизм повреждения при ИР- синдроме [63].

В настоящее время ведутся эксперименталь­ные исследования применения других блокаторов комплемента (блокаторы альтернативного пути активации, анти-fB), демонстрирующие много­обещающие данные при ИР [64].

Перспективы применения клеточной тера­пии. Большим терапевтическим репаративным и регенеративным потенциалом обладают мезенхи­мальные стволовые клетки (МСК), которые явля­ются перспективным кандидатом для предупре­ждении и лечении ИР-синдрома. МСК мигриру­ют в поврежденные ишемией участки почечной ткани, где проявляют противовоспалительные и иммуномодулирующие свойства. МСК могут мо­дифицировать микроокружение и способствовать восстановлению тубулярных клеток с помощью паракринных факторов [65].

Опубликованы данные, полученные на крысах, о положительном влиянии на дисфункцию почек после ИР микрочастиц, полученных из эндоте­лиальных клеток-предшественниц (защитные микроРНК, в частности, miR-126) [66]. Привле­кательным для исследователей типом МСК явля­ются регенерирующие клетки эндометрия, также показавшие в эксперименте на мышах эффектив­ное предотвращение последствий ИР, связанное с с увеличением уровней ИЛ-4 в сыворотке, но сни­жением ФНО-α, IFN-γ и ИЛ-6, а также снижение селезеночных и почечных CD4+ и CD8+ популя­ций Т-клеток [67].

Таким образом, использование субоптималь- ных доноров для трансплантации почки стано­вится все более актуальным, ввиду того, что ском­прометированный орган более остро реагирует на изменения в ходе ИР-синдрома. Непосредственно патогенез данного синдрома представляет собой систему сложных молекулярных и клеточных вза­имодействий, в которых значительная роль отво­дится медиаторам воспаления. Так, ишемические изменения в клетке, накоплений АФК, активация системы комплемента в ответ на ИР-синдром при­водят к увеличению секреции ИЛ-1, ИЛ-6, ИЛ-8, МСР-1, RANTES и других активных молекул, по- тенциирующих воспалительную реакцию. В свя­зи с этим перспективным методом лечения ИР- синдрома может быть удаление цитокинов и хемокинов из кровотока реципиента. Тем не менее, патогенез синдрома ишемии-реперфузии изучен значительно лучше, чем методы его коррекции. На данный момент имеются лишь косвенные или экспериментальные свидетельства того, что тя­жесть синдрома ИР может быть уменьшена за счет фармакопротекции трансплантата до изъятия, при консервации, а также в раннем послеоперацион­ном периоде. При этом ишемия-реперфузия оста­ется одним из основных факторов, определяющих функциональную состоятельность трансплантата, а также его выживаемость. Почки, подвергшиеся тяжелой травме в результате ишемии/реперфузии, имеют плохой прогноз долгосрочной выживаемо­сти, а также повышенную иммуногенность, что, в свою очередь, требует агрессивной иммуносупрессивной терапии и повышает риск инфекци­онных осложнений [68, 69]. Это диктует необхо­димость продолжения исследований, направлен­ных на поиск возможностей снижения тяжести ишемического и реперфузионного повреждения трансплантата.

Список литературы

1. Bon D, Chatauret N, Giraud S et al. New strategies to optimize kidney recovery and preservation in transplantation. Nat Rev Nephrol 2012 May 1;8(6):339–347. Doi: 10.1038/nrneph.2012.83

2. Westendorp WH, Leuvenink HG, Ploeg RJ. Brain death induced renal injury. Curr Opin Organ Transplant 2011;16(2):151– 156. Doi: 10.1097/MOT.0b013e328344a5dc

3. Pratschke J, Wilhelm MJ, Laskowski I et al. Influence of donor brain death on chronic rejection of renal transplants in rats. J Am Soc Nephrol 2001;12(11):2474–2481

4. Giral M, Bertola JP, Foucher Y et al. Effect of brain-dead donor resuscitation on delayed graft function: results of a monocentric analysis. Transplantation 2007;83(9):1174–1181

5. Ranasinghe AM, Bonser RS. Endocrine changes in brain death and transplantation. Best Pract Res Clin Endocrinol Metab 2011;25(5):799–812. Doi: 10.1016/j.beem.2011.03.003

6. Gasser M, Waaga AM et al. Organ transplantation from brain-dead donors: its impact on short- and long-term outcome revisited. Transplant Rev 2001;15:1–10

7. Bouma HR, Ploeg RJ, Schuurs TA. Signal transduction pathways involved in brain death-induced renal injury. Am J Transplant 2009;9(5):989–997. Doi: 10.1111/j.1600-6143.2009.02587.x

8. Blasco V, Leone M, Antonini F et al. Comparison of the novel hydroxyethylstarch 130/0.4 and hydroxyethylstarch 200/0.6 in brain-dead donor resuscitation on renal function after transplantation. Br J Anaesth 2008;100(4):504–508. Doi: 10.1093/bja/aen001

9. Blasco V, Leone M, Bouvenot J et al. Impact of intensive care on renal function before graft harvest: results of a monocentric study. Crit Care 2007;11(5):R103

10. Damman J, Hoeger S, Boneschansker L et al. Targeting complement activation in brain-dead donors improves renal function after transplantation. Transpl Immunol 2011;24(4):233–237. Doi: 10.1016/j.trim.2011.03.001

11. Huang Y, Shan J, Wang C et al. Can ischemic preconditioning alone really protect organs from ischemia reperfusion injury in transplantation. Transpl Immunol 2009;20(3):127–131. Doi: 10.1016/j.trim.2008.08.002

12. Cheungpasitporn W, Khoury NJ, Thongprayoon C, Craici IM. Is Remote Ischemic Conditioning of Benefit to Patients Undergoing Kidney Transplantation? J Invest Surg 2017; 12:1–3. Doi: 10.1080/08941939.2017.1380090

13. Zimmerman RF, Ezeanuna PU, Kane JC et al. Ischemic preconditioning at a remote site prevents acute kidney injury in patients following cardiac surgery. Kidney Int 2011;80(8):861–867. Doi: 10.1038/ki.2011.156

14. Wever KE, Warlé MC, Wagener FA et al. Remote ischaemic preconditioning by brief hind limb ischaemia protects against renal ischaemia-reperfusion injury: the role of adenosine. Nephrol Dial Transplant 2011;26(10):3108–3117. Doi: 10.1093/ ndt/gfr103

15. Hausenloy DJ, Yellon DM. The therapeutic potential of ischemic conditioning: an update. Nat Rev Cardiol 2011;8(11):619– 629. Doi: 10.1038/nrcardio.2011.85

16. Kierulf-Lassen C, Kristensen ML, Birn H et al. No Effect of Remote Ischemic Conditioning Strategies on Recovery from Renal Ischemia-Reperfusion Injury and Protective Molecular Mediators. PLoS One 2015;10(12):e0146109. Doi: 10.1371/journal. pone.0146109. eCollection 2015

17. Wu J, Feng X, Huang H et al. Remote ischemic conditioning enhanced the early recovery of renal function in recipients after kidney transplantation: a randomized controlled trial. J Surg Res 2014;188(1):303–308. Doi: 10.1016/j.jss.2013.06.058

18. Krogstrup NV, Oltean M, Bibby BM et al. Remote ischaemic conditioning on recipients of deceased renal transplants, effect on immediate and extended kidney graft function: a multicentre, randomised controlled trial protocol (CONTEXT). BMJ Open 2015;5(8):e007941. Doi: 10.1136/bmjopen-2015-007941

19. Kosieradzki M, Rowiński W. Ischemia/reperfusion injury in kidney transplantation: mechanisms and prevention. Transplant Proc 2008;40(10):3279–3288. Doi: 10.1016/j.transproceed.2008.10.004

20. Jamieson RW, Friend PJ. Organ reperfusion and preservation. Front Biosci 2008;13:221–235

21. Koike N, Takeyoshi I, Ohki S et al. Effects of adding P38 mitogen-activated protein-kinase inhibitor to celsior solution in canine heart transplantation from non-heart-beating donors. Transplantation 2004;77(2):286–292

22. Yoshinari D, Takeyoshi I, Kobayashi M et al. Effects of a p38 mitogen-activated protein kinase inhibitor as an additive to university of wisconsin solution on reperfusion injury in liver transplantation. Transplantation 2001;72(1):22–27

23. Hauet T, Goujon JM, Baumert H et al. Polyethylene glycol reduces the inflammatory injury due to cold ischemia/reperfusion in autotransplanted pig kidneys. Kidney Int 2002;62(2):654–667

24. Kwiatkowski A, Wszoła M, Kosieradzki M et al. The early and long term function and survival of kidney allografts stored before transplantation by hypothermic pulsatile perfusion. A prospective randomized study. Ann Transplant 2009;14(1):14–17

25. Diuwe P, Domagala P, Durlik M et al. The effect of the use of a TNF-alpha inhibitor in hypothermic machine perfusion on kidney function after transplantation. Contemp Clin Trials 2017;59:44–50. Doi: 10.1016/j.cct.2017.05.013

26. Moers C, Smits JM, Maathuis MH et al. Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med 2009;360(1):7–19. Doi: 10.1056/NEJMoa0802289

27. Irish WD, Katz E. Cold machine perfusion or static cold storage of kidneys: why the debate continues. Am J Transplant 2010;10(9):1955–1956. Doi: 10.1111/j.1600-6143.2010.03217.x

28. Barrou B, Chatauret N, Hauet T et al. Ischemia-reperfusion. Preservation solution and hypothermic machine perfusion. Prog Urol 2016;26(15):964–976. Doi: 10.1016/j.purol.2016.08.007

29. Hevesi ZG, Lopukhin SY, Angelini G, Coursin DB. Supportive care after brain death for the donor candidate. Int Anesthesiol Clin 2006;44(3):21–34

30. Ravaioli M, De Pace V, Comai G et al. Successful Dual Kidney Transplantation After Hypothermic Oxygenated Perfusion of Discarded Human Kidneys. Am J Case Rep 2017;18:1009–1013

31. Treckmann J, Moers C, Smits JM et al. Machine perfusion versus cold storage for preservation of kidneys from expanded criteria donors after brain death. Transpl Int 2011;24(6):548–554. Doi: 10.1111/j.1432-2277.2011.01232.x

32. Maathuis MH, Manekeller S, van der Plaats A et al. Improved kidney graft function after preservation using a novel hypothermic machine perfusion device. Ann Surg 2007;246(6):982–988; discussion 989-91

33. Fu Z, Ye Q, Zhang Y et al. Hypothermic Machine Perfusion Reduced Inflammatory Reaction by Downregulating the Expression of Matrix Metalloproteinase 9 in a Reperfusion Model of Donation After Cardiac Death. Artif Organs 2016;40(6):E102–111. Doi: 10.1111/aor.12658

34. Ge YZ, Wu R, Xin H et al. Effects of ischemic preconditioning on the systemic and renal hemodynamic changes in renal ischemia reperfusion injury. Int J Clin Exp Pathol 2015;8(2):1128–1140. eCollection 2015

35. van de Kerkhove MP, Hoekstra R, van Nooijen FC et al. Subnormothermic preservation maintains viability and function in a porcine hepatocyte culture model simulating bioreactor transport. Cell Transplant 2006;15(2):161–168

36. Kaths JM, Echeverri J, Chun YM et al. Continuous Normothermic Ex Vivo Kidney Perfusion Improves Graft Function in Donation After Circulatory Death Pig Kidney Transplantation. Transplantation 2017;101(4):754–763. Doi: 10.1097/ TP.0000000000001343

37. Kaths JM, Hamar M, Echeverri J et al. Normothermic ex vivo kidney perfusion for graft quality assessment prior to transplantation. Am J Transplant 2018;18(3):580–589. Doi: 10.1111/ ajt.14491

38. Gage F, Leeser DB, Porterfield NK et al. Room temperature pulsatile perfusion of renal allografts with Lifor compared with hypothermic machine pump solution. Transplant Proc 2009;41(9):3571–3574. Doi: 10.1016/j.transproceed.2009.06.228

39. Regner KR, Nilakantan V, Ryan RP et al. Protective effect of Lifor solution in experimental renal ischemia-reperfusion injury. J Surg Res 2010;164(2):e291–297. Doi: 10.1016/j.jss.2010.08.033

40. Kaths JM, Paul A, Robinson LA, Selzner M. Ex vivo machine perfusion for renal graft preservation. Transplant Rev (Orlando) 2018;32(1):1–9. Doi: 10.1016/j.trre.2017.04.002

41. Furuichi K, Wada T, Kaneko S, Murphy PM. Roles of chemokines in renal ischemia/reperfusion injury. Front Biosci 2008;13:4021–4028

42. Jaswal JS, Gandhi M, Finegan BA et al. Inhibition of p38 MAPK and AMPK restores adenosine-induced cardioprotection in hearts stressed by antecedent ischemia by altering glucose utilization. Am J Physiol Heart Circ Physiol 2007;293(2):H1107–1114

43. Onai Y, Suzuki J, Kakuta T et al. Inhibition of IkappaB phosphorylation in cardiomyocytes attenuates myocardial ischemia/ reperfusion injury. Cardiovasc Res 2004;63(1):51–59

44. Itoh M, Takaoka M, Shibata A et al. Preventive effect of lactacystin, a selective proteasome inhibitor, on ischemic acute renal failure in rats. J Pharmacol Exp Ther 2001;298(2):501–507

45. Yao JH, Li YH, Wang ZZ et al. Proteasome inhibitor lactacystin ablates liver injury induced by intestinal ischaemia-reperfusion. Clin Exp Pharmacol Physiol 2007;34(11):1102–1108

46. Latanich CA, Toledo-Pereyra LH. Searching for NF-kappaB-based treatments of ischemia reperfusion injury. J Invest Surg 2009;22(4):301–315

47. Furuichi K, Wada T, Iwata Y et al. Gene therapy expressing amino-terminal truncated monocyte chemoattractant protein-1 prevents renal ischemia-reperfusion injury. J Am Soc Nephrol 2003;14(4):1066–1071

48. Bresnihan B, Cunnane G. Interleukin-1 receptor antagonist. Rheum Dis Clin North Am 1998;24(3):615–628

49. Martinez-Mier G, Toledo-Pereyra LH, Ward PA. Adhesion molecules in liver ischemia and reperfusion. J Surg Res 2000;94(2):185–194

50. Zhou T, Sun GZ, Zhang MJ et al. Role of adhesion molecules and dendritic cells in rat hepatic/renal ischemia-reperfusion injury and anti-adhesive intervention with anti-P-selectin lectin-EGF domain monoclonal antibody. World J Gastroenterol 2005;11(7):1005–1010

51. Vincenti F, Mendez R, Pescovitz M et al. A phase I/II randomized open-label multicenter trial of efalizumab, a humanized anti-CD11a, anti-LFA-1 in renal transplantation. Am J Transplant 2007;7(7):1770–1777

52. Kahan BD, Stepkowski S, Kilic M et al. Phase I and phase II safety and efficacy trial of intercellular adhesion molecule-1 antisense oligodeoxynucleotide (ISIS 2302) for the prevention of acute allograft rejection. Transplantation 2004;78(6):858–863

53. Jayle C, Milinkevitch S, Favreau F et al. Protective role of selectin ligand inhibition in a large animal model of kidney ischemiareperfusion injury. Kidney Int 2006;69(10):1749–1755

54. Cheadle C, Watkins T, Ehrlich E et al. Effects of antiadhesive therapy on kidney biomarkers of ischemia reperfusion injury in human deceased donor kidney allografts. Clin Transplant 2011;25(5):766–775. Doi: 10.1111/j.1399-0012.2010.01365.x

55. Lewis AG, Köhl G, Ma Q et al. Pharmacological targeting of C5a receptors during organ preservation improves kidney graft survival. Clin Exp Immunol 2008;153(1):117–126. Doi: 10.1111/j.1365-2249.2008.03678.x

56. Castellano G, Intini A, Stasi A et al. Complement Modulation of Anti-Aging Factor Klotho in Ischemia/Reperfusion Injury and Delayed Graft Function. Am J Transplant 2016;16(1):325–333. Doi: 10.1111/ajt.13415

57. Davis AE 3rd, Lu F, Mejia P. C1 inhibitor, a multi-functional serine protease inhibitor. Thromb Haemost 2010;104(5):886–893. Doi: 10.1160/TH10-01-0073

58. Legendre C, Sberro-Soussan R, Zuber J, Frémeaux-Bacchi V. The role of complement inhibition in kidney transplantation. Br Med Bull 2017;124(1):5–17. Doi: 10.1093/bmb/ldx037

59. Прокопенко Е, Никольская И. Беременность у женщин с хронической почечной недостаточностью. Ч. 1. Врач 2013; (8): 9–12

60. Legendre C, Sberro-Soussan R, Zuber J et al. Eculizumab in renal transplantation. Transplant Rev (Orlando) 2013;27(3):90–92. Doi: 10.1016/j.trre.2013.04.002

61. Kaabak M, Babenko N, Shapiro R et al. A prospective randomized, controlled trial of eculizumab to prevent ischemiareperfusion injury in pediatric kidney transplantation. Pediatr Transplant 2018;22(2). Doi: 10.1111/petr.13129

62. Danobeitia JS, Ziemelis M, Ma X et al. Complement inhibition attenuates acute kidney injury after ischemia-reperfusion and limits progression to renal fibrosis in mice. PLoS One 2017;12(8):e0183701. Doi: 10.1371/journal.pone.0183701. eCollection 2017

63. Zhang S, Shaw-Boden J, Banz Y et al. Effects of C1 inhibitor on endothelial cell activation in a rat hind limb ischemia-reperfusion injury model. J Vasc Surg 2018. pii: S0741-5214(17)32653-8. Doi: 10.1016/j.jvs.2017.10.072

64. Casiraghi F, Azzollini N, Todeschini M et al. Complement Alternative Pathway Deficiency in Recipients Protects Kidney Allograft From Ischemia/Reperfusion Injury and Alloreactive T Cell Response. Am J Transplant 2017;17(9):2312–2325. Doi: 10.1111/ ajt.14262

65. Xu H, Chen C, Hu L, Hou J. Gene-modified Mesenchymal Stem Cell-based Therapy in Renal Ischemia-Reperfusion Injury. Curr Gene Ther 2017;17(6):453–460. Doi: 10.2174/156652321 8666180214094253

66. Bitzer M, Ben-Dov IZ, Thum T. Microparticles and microRNAs of endothelial progenitor cells ameliorate acute kidney injury. Kidney Int 2012;82(4):375–377. Doi: 10.1038/ki.2012.152

67. Sun P, Liu J, Li W et al. Human endometrial regenerative cells attenuate renal ischemia reperfusion injury in mice. J Transl Med 2016;14:28. Doi: 10.1186/s12967-016-0782-3

68. Ponticelli C. Ischaemia-reperfusion injury: a major protagonist in kidney transplantation. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc – Eur Ren Assoc 2014; 29(6):1134–1140

69. Прокопенко ЕИ. Инфекции у пациентов с почечным трансплантатом (лекция). Нефрология и диализ 2008; 10(1):6–15


Об авторах

А. В. Ватазин
Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского
Россия
Проф., д-р мед. наук, Государственное бюджетное учреждение здравоохранения Московской области «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского», хирургическое отделение трансплантологии и диализа


Д. В. Артемов
Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского
Россия
Государственное бюджетное учреждение здравоохранения Московской области «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского», хирургическое отделение трансплантологии и диализа


А. Б. Зулькарнаев
Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского
Россия
д-р мед. наук, Государственное бюджетное учреждение здравоохранения Московской области «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского», хирургическое отделение трансплантологии и диализа


Для цитирования:


Ватазин А.В., Артемов Д.В., Зулькарнаев А.Б. ПРОФИЛАКТИКА И ЛЕЧЕНИЕ СИНДРОМА ИШЕМИИ-РЕПЕРФУЗИИ. Нефрология. 2019;23(2):41-48. https://doi.org/10.24884/1561-6274-2019-23-2-41-48

For citation:


Vatazin A.V., Artemov D.V., Zulkarnaev A.B. PREVENTION AND TREATMENT OF ISCHEMIA-REPERFUSION SYNDROME. Nephrology (Saint-Petersburg). 2019;23(2):41-48. (In Russ.) https://doi.org/10.24884/1561-6274-2019-23-2-41-48

Просмотров: 614


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)