Preview

Нефрология

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Нарушения клубочкового фильтрационного барьера как причина протеинурии при нефротическом синдроме

https://doi.org/10.24884/1561-6274-2019-23-4-96-111

Полный текст:

Аннотация

Обзор посвящен причинам и механизмам возникновения протеинурии при различных заболеваниях, сопровождающихся развитием нефротического синдрома. Проанализирован вклад повреждений основных компонентов клубочкового фильтрационного барьера, включая эндотелий клубочковых капилляров, гломерулярную базальную мембрану и подоциты. Показано, что индукция протеинурии может быть следствием нарушений структуры и функции каждого из названных слоев фильтра, как и его комбинированного повреждения. Уделено особое внимание роли гликокалик-са и его составляющих, а также активных форм кислорода и эндотелиального фактора роста в патогенезе нарушений селективной проницаемости эндотелия капилляров почечных клубочков при болезни минимальных изменений, фокально-сегментарном гломерулосклерозе, преэклампсии, диабетогенной нефропатии. Обсуждается значимость таких генетических нарушений гломерулярной мембраны, как синдромы Пирсона, Альпорта. Отдельно рассматриваются также генные мутации, обусловливающие нарушения структуры и функционирования основных белков актино-вого цитоскелета подоцитов.

Для доступа к материалу требуется подписка или приобретенный доступ. Чтобы подтвердить подписку и доступ, либо приобрести материал, пожалуйста войдите в систему.

Об авторах

Я. Ф. Зверев
Алтайский государственный медицинский университет
Россия

Зверев Яков Федорович - докор медицинских наук, профессор, кафедра фармакологии.

656038, Барнаул, пр. Ленина, д. 40, Тел.: 8(3852)566-891



А. Я. Рыкунова
Барнаульский юридический институт
Россия

Рыкунова Анна Яковлевна - кандидат медицинских наук, кафедра криминалистики.

656038, Барнаул, ул. Чкалова, д. 49, Тел.: 8 (3852) 379-163



Список литературы

1. Тареева ИЕ, Полянцева ЛР Протеинурия и нефротический синдром. В: Тареева ИЕ, ред. Нефрология. Руководство для врачей. Медицина, М., 2000; 145-150

2. Сахаров ИВ, Сукало АВ, Черствый ЕД. Экспрессия подокаликсина в клубочках почки при нефротическом синдроме у детей. Здравоохранение (Минск) 2011; (3): 4-8

3. Haraldsson B, Nystrom J, Deen WM. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev 2008; 88 (2): 451-487. Doi:10.1152/physrev.00055.2006

4. Scott RP, Quaggin SE. The cell biology of renal filtration. J Cell Biol 2015; 209 (2): 199-210. Doi: 10.1083/jcb.201410017

5. Петросян ЭК. Подоцит: строение и роль в развитии нефротического синдрома. Нефрология и диализ 2006; 8 (2): 112121

6. Грене ГЙ, Кисс Е. Нефротический синдром: гистопатологическая дифференциальная диагностика. Часть 1: определение, классификация, патофизиология, генетические формы. Нефрология 2007; 11(2): 88-93

7. Серов ВВ. Функциональная морфология почек. В: Тареева ИЕ, ред. Нефрология. Руководство для врачей. Медицина, М., 2000; 145-150 [Serov VV. Funrtsional’naja morfologija pochek.V: Tareeva IE, red. Nefrologija. Rukovodstvo dlya vrachej. Meditsina, M., 2000; 145-150 (In Russ.)]

8. Rostgaard J, Qvortrup K. Sieve plugs in fenestrae of glomerular capillaries-site of filtration barrier? Cell Tissues Organs (Print) 2002; 170: 132-138. Doi: 10.1159/000046186

9. Deen WM. What determines glomerular capillary permeability? J Clin Invest 2004; 114 (10): 1412-1414. Doi: 10.1172/JCI23577

10. Jeansson M, Haraldsson B. Morphological and functional evidence for an important role of the endothelial cell glycocalyx in the glomerular barrier. Am J Physiol Renal Physiol 2006; 290: F111-F116. Doi: 10.1152/ajprenal.00173.2005

11. Curry FE, Adamson RH. Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng 2012; 40: 828-839. Doi: 10.1007/s10439-011-0429-8

12. Lennon R, Byron A, Humphries JD et al. Global analysis reveals the complexity of the human glomerular extracellular matrix. J Am Soc Nephrol 2014; 25: 939-951. Doi: 10.1681/ASN.2013030233

13. Мельник АА. Фокально-сегментарный гломерулоскле-роз: генетический анализ и целевая терапия. Pocki 2018; 7 (1): 35-49. Doi: 10.22141/2307-1257.7.1.2018.122218

14. Lowik MM, Groenen PJ, Levtchenko EN et al. Molecular genetic analysis of podocyte genes in focal segmental glomerulosclerosis - a review. Eur J Pediatr 2009; 168: 1291-1304. Doi: 10.1007/s00431-009-1017-x

15. Neal CR, Muston PR, Njegovan D et al. Glomerular filtration into the subpodocyte space is highly restricted under physiological perfusion conditions. Am J Physiol Renal Physiol 2007; 293 (6): F1787-F1798. Doi: 10.1152/ajprenal.00157.2007

16. Akchurin O, Reidy KJ. Genetic causes of proteinuria and nephritic syndrome: Impact on podocyte pathobiology. Pediatr Nephrol 2014, Published online: 02 March 2014. Doi: 10.1007/s00467-014-2753-3

17. Жангожин ЕЖ. Генетически-детерминированные формы фокально-сегментарного гломерулосклероза. Медицина и экология 2016; (1): 24-31

18. D’Agati V. Pathologic classification of focal segmental glomerulosclerosis. Sem Nephrol 2003; 23 (2): 117-134. Doi: 10.1053/snep.2003.50012

19. Бобкова ИН, Козловская ЛВ, Цыгин АН, Шилов ЕМ. Клинические рекомендации по диагностике и лечению фокально-сегментарного гломерулосклероза. Нефрология 2015; 19 (1): 78-85.

20. D’Agati VD, Fogo AB, Bruijn JA, Jennette JC. Pathologic classification of focal segmental glomerulosclerosis: a new working proposal. Am J Kidney Dis 2004; 43 (2): 368-382

21. Stroes ES, Joles JA, Chang PC et al. Impaired endothelial function in patients with nephrotic range proteinuria. Kidney Int 1995; 48 (2): 544-550

22. Sarin H. Physiologic upper limits of pore size of different blood capillary types and another prospective on the dual pore theory of microvascular permeability. J Angiogenes Res 2010; 2: 14. Doi: 10.1186/2040-2384-2-14

23. Satchell SC, Braet F. Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier. Am J Physiol Renal Physiol 2009; 296 (5): F947-F956. Doi: 10.1152/ajprenal.90601.2008

24. Reitsma S, Slaaf DW, Vink Het al. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 2007; 454 (3): 345-359. Doi: 10.1007/s00424-007-0212-8

25. Garsen M, Rops AZWMM, Rabelink TJ et al. The role of heparanase and the endothelial glycocalyx in the development of proteinuria. Nephrol Dial Transplant 2014; 29: 49-55. Doi: 10.1093/ndt/gfth10

26. Hjalmarsson C, Johansson BR, Haraldsson B. Electron microscopic evaluation of the endothelial surface layer of glomerular capillaries. Microvasc Res 2004; 67: 9-17. Doi: 10.1016/j.mvr.2003.10.001

27. Andersson M, Nilsson U, Hjalmarsson C et al. Mild renal ischemia-reperfusion reduces charge and size selectivity of the glomerular barrier. Am J Physiol Renal Physiol 2007; 292: F1802-F1809. Doi: 10.1152/ajprenal.00152.2006

28. Galvis-Ramirez MF, Quintana-Castillo JC, Bueno-Sanchez JC. Novel insights into the role of glycans in the pathophysiology of glomerular endotheliosis in preeclampsia. Front Physiol 2018; 9: Article 1470. 10.3389/fphys.2018.01470

29. Gelberg H, Healy L, Whiteley H et al. In vivo enzymatic removal of alpha 2-->6-linked sialic acid from the glomerular filtration barrier results in podocyte charge alteration and glomerular injury. Lab Invest 1996; 74 (5): 907-920

30. Jeansson M, Haraldsson B. Glomerular size and charge selectivity in the mouse after exposure to glucosaminoglycan-degrading enzymes. Am Soc Nephrol 2003; 14 (7): 1756-1765

31. Meuwese MC, Broekhuizen LN, Kuikhoven M et al. Endothelial surface layer degradation by chronic hyaluronidase infusion induces proteinuria in apolipoprotein E-deficient mice. PLoS One 2010; 5 (12): e14262. Doi: 10.1371/journal.pone.0014262

32. Dane MJ, van den Berg BM, Avramut MC et al.Glomerular endothelial surface layer acts as a barrier against albumin filtration. Am J Pathol 2013; 182 (5): 1532-1540. Doi: 10.1016/j.ajpath.2013.01.049

33. Jeansson B, Bjorck K, Tenstad O, Haraldsson B. Adriamy-cin alters glomerular endothelium to induce proteinuria. J Am Soc Nephrol 2009; 20: 114-122. Doi: 10.1681/ASN.2007111205

34. Friden V, Oveland E, Tenstad o et al. The glomerular endothelial cell coat is essential for glomerular filtration. Kidney Int 2011; 79 (12): 1322-1330. Doi: 10.1038/ki.2011.58

35. Salmon AH, Ferguson JK, Burford JL et al. Loss of the endothelial glycocalyx links albuminuria and vascular dysfunction. J Am Soc Nephrol 2012; 23: 1339-1350. Doi: 10.1681/ASN.2012010017

36. Salmon AH, Satchall SC. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J Pathol 2012; 226 (4): 562-574. Doi: 10.1002/path.3964

37. Kuwabara A, Satoh M, Tomita N et al. Deterioration of glomerular endothelial surface layer induced by oxidative stress is implicated in altered permeability of macromolecules in Zucker fatty rats. Diabetologia 2010; 53 (9): 2056-2065. Doi: 10.1007/s00125-010-1810-0

38. Haraldsson B, Nystrom J. The glomerular endothelium: new insights on function and structure. Curr Opin Nephrol Hypertens 2012; 21 (3): 258-263. Doi: 10.1097/MNH.0b013e3283522e7a

39. Nieuwdorp M, Mooij HL, Kroon J et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes 2006; 55 (4): 1127-1132

40. Broekhuizen LN, Lemkes BA, Mooij HL et al. Effect of superoxide on endothelial glycocalix and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia 2010; 53 (12): 2646-2655. Doi: 10.1007/s00125-010-1910-x

41. Singh A, Friden V, Dasgupta I et al. High glucose causes dysfunction of the human glomerular endothelial glycocalyx. Am J Physiol Renal Physiol 2011; 300 (1): F40-F48. Doi: 10.1152/ajpre-nal.00103.2010

42. Toyoda M, Najafian B, Kim Y et al. Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy. Diabetes 2007; 56 (8): 2155-2160. Doi: 10.2337/db07-0019

43. Persson F, Rossing P, Hoving P et al. Endothelial dysfunction and inflammation predict development of diabetic nephropathy in the irbesartan in patients with type 2 diabetes and microalbuminuria (IRMA2) study. Scand J Clin Lab Invest 2008; 68 (8): 731-738. Doi: 10.1080/00365510802187226

44. Daehn LS. Glomerular endothelial cell stress and cross-talk with podocyte in early diabetic kidney disease. Front Med 2018; 5: Article 76, published 23 March 2018. Doi: 10.3389/fmed.2018.00076

45. Ogino S. An electron microscopic study of the glomerular alterations of pure-preeclampsia. Nihon Jinzo Gakkai Shi 1999; 41(4): 413-429

46. Levine RJ, Maynard SE, Qian C et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 2004; 350 (7): 672-683. Doi: 10.1056/NEJMoa031884

47. Karumanchi SA, Maynard SE, Stillman IE et al. Preeclampsia: a renal perspective. Kidney Int 2005; 67 (6): 2101-2113. Doi: 10.1111/j.1523-1755.2005.00316.x

48. Maynard SE, Venkatesha S, Thadhani R, Karumanchi SA. Soluble Fms-like tyrosine kinase 1 and endothelial dysfunction in the pathogenesis of preeclampsia. Pediatr Res 2005; 57 (5 Pt2): 1R-7R. Doi: 10.1203/01.PDR.0000159567.85157.B7

49. Levine RJ, Lam C, Qian C et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med 2006; 355 (10): 992-1005. Doi: 10.1056/NEJMoa055352

50. Moran P, Baylis PH, Lindhelma MD, Davison JM. Glomerular ultrafiltration in normal and preeclamptic pregnancy. J Am Soc Nephrol 2003; 14: 648-652. Doi: 10.1097/01ASN0000051724.66235.E0

51. Lafayette RA, Druzin M, Sibley R et al. Nature of glomerular dysfunction in pre-eclampsia. Kidney Int 1998; 54 (4): 1240-1249. Doi: 10.1046/j.1523-1755.1998.00097.x

52. Strevens H, Wide-Swensson D, Hansen A et al. Glomerular endotheliosis in normal pregnancy and pre-eclampsia. BJOG 2003; 110: 831-836. Doi: 10.1111/j.1471-0528.2003.02162.x

53. Naicker T, Randeree IG, Moodley J et al. Correlation between histological changes and loss of anionic charge of the glomerular basement membrane in early-onset pre-eclampsia. Nephron 1997; 75: 201-207. Doi: 10.1159/000189532

54. Taneda S, Honda K, Ohno M et al. Podocyte and endothelial injury in focal segmental glomerulosclerosis: an ultrastructural analysis. Virchows Arch 2015; 467: 449-458. Doi: 10.1007/s00428-015-1821-9

55. Leontsini M. Mesangiolysis. HIPPOKRATIA 2003; 7: 147-151

56. Futrakul N, Butthep P, Futrakul P. Biomarkers of endothelial injury in local segmental glomerulosclerotic nephrosis. Ren Fail2005; 27 (4): 393-395

57. Zhang Q, Zeng C, Fu Y et al. Biomarkers of endothelial dysfunction in patients with primary focal segmental glomerulosclerosis. Nephrology (Carlton) 2012; 17 (4): 338-345. Doi: 10.1111/j.1440-1797.2012.o1575.x

58. Tkaczyk M, Czupryniak A, Owczaker D et al. Markers of endothelial dysfunction in children with idiopathic nephrotic syndrome. Am J Nephrol 2008; 28 (2): 197-202. Doi: 10.1159/000110088

59. Shouman M, Abdallah N, Tablawy El N, Rashed L. chemical markers of endothelial dysfunction in pediatric nephrotic syndrome. Arch MedSci 2009; 5: 415-421

60. Kitamura H, Shimizu A, MasudaYet al. Apoptosis in glomerular endothelial cells during the development of glomerulosclerosis in the remnant-kidney model. Exp Nephrol 1998; 6 (4): 328-336

61. Song YR, You SJ, LeeYM et al. Activation of hypoxia-inducible factor attenuates renal injury in rat remnant kidney. Nephrol Dial Transplant 2010; 25 (1): 77-85. Doi: 10.1093/ndt/gfp454

62. Daehn I, Casalena G, Zhang T et al. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis. J Clin Invest 2014; 124 (4): 1608-1621. Doi: 10.1172/JCI71195

63. van den Hoven MJ, Rops AL, Vlodavsky I et al. Heparanase in glomerular diseases. KidneyInt 2007; 72 (5): 543-548. Doi: 10.1038/sj.ki.5002337

64. Borza DB. Glomerular basement membrane heparan sulfate in health and disease: a regulator of local complement activation. Matrix Biol 2017; 57-58: 299-310. Doi: 10.1016/j.matbio.2016.09.002

65. Goldsmidt O, Zcharia E, Cohen M et al. Heparanase mediates cell adhesion independent of its enzymatic activity. FASEB J 2003; 17 (9): 1015-1025. Doi: 10.1096/fj.02-0773com

66. Levidiotis V, Kanellis J, Ierino FL et al. Increased expression of heparanase in puromycin aminonucleoside nephrosis. Kidney Int 2001; 60 (4): 1287-1296. Doi: 10.1046/j.1523-1755.2001.00934.x

67. van Bruggen MC, Kramers K, Hylkema MN et al. Decrease of heparan sulfate staining in the glomerular basement membrane in murine lupus nephritis. Am J Pathol 1995; 146 (3): 753-763

68. Levidiotis V, Freeman C, Tikellis C et al. Heparanase is involved in the pathogenesis of proteinuria as a result of glomerulonephritis. J Am Soc Nephrol 2004; 15 (1): 68-78. Doi: 10.1097/01.ASN.0000103229.25389.40

69. Kramer A, van den Hoven M, Rops A et al. Induction of glomerular heparanase expression in rats with adriamycin nephropathy is regulated by reactive oxygen species and the renin-angiotensin system. J Am Soc Nephrol 2006; 17 (9): 2513-2520. Doi: 10.1681/ASN.2006020184

70. van den Hoven MJ, Rops AL, Bakker MA et al. Increased expression of heparanase in overt diabetic nephropathy. Kidney Int 2006; 79 (12): 2100-2108. Doi: 10.1038/sj.ki.5001985

71. Rops AL, van den Hoven MJ, Bakker MA et al. Expression of glomerular heparan sulphate domains in murine and human lupus nephritis. Nephrol Dial Transplant 2007; 22 (7): 1891-1902. Doi: 10.1093/ndt/gfm194

72. Garsen M, Rops AL, Dijkman H et al. Cathepsin L is crucial for the development of early experimental diabetic nephropathy. Kidney Int 2016; 90 (5): 1012-1022. Doi: 10.1016/j.kint.2016.06.035

73. Gil N, Goldberg R, Neuman T et al. Heparanase is essential for the development of diabetic nephropathy in mice. Diabetes 2012; 61 (1): 208-216. Doi: 10.2337/db11-1024

74. Wijnhoven TJ, Lensen JF, Rops AL et al. Aberrant heparan sulfate profile in the human diabetic kidney offers new clues for therapeutic glycomimetics. Am J Kidney Dis 2006; 48 (2): 250-261. Doi: 10.1053/j.ajkd.2006.05.003

75. Wijnhoven TJ, van den Hoven MJ, Ding H et al. Heparanase induces a different loss of heparan sulphate domains in overt diabetic nephropathy. Diabetologia 2008; 51 (2): 372-382. Doi: 10.1007/s00125-007-0879-6

76. Holt RC, Webb NJ, Ralph S et al. Heparanase activity is dys-regulated in children with steroid-sensitive nephritic syndrome. Kidney Int 2005; 67 (1): 122-129. Doi: 10.1111/j.1523-1755.2005.00062.x

77. Rops AL, van den Hoven MJ, Veldman BA et al. Urinary heparanase activity in patients with type 1 and 2 diabetes. Nephrol Dial Transplant 2012; 27 (7): 2853-2861. Doi: 10.1093/ndt/gfr732

78. Singh A, Satchell SC, Neal CR et al. Glomerular endothelial glycocalyx constitutes a barrier to protein permeability. J Am Soc Nephrol 2007; 18 (11): 2885-2893. Doi: 10.1681/ASN.2007010119

79. Jn H, Zhou S. The functions of heparanase in human diseases. Mini Rev Med Chem 2007; 17:541-548. Doi: 10.2174/1389 557516666161101143643

80. Levidiotis V, Freeman C, Punler M et al. A synthetic hepara-nase inhibitor reduces proteinuria in passive Heymann nephritis. J Am Soc Nephrol 2004; 15 (11): 2882-2892. Doi: 10.1097/01.ASN.0000142426.55612.6D

81. Raats CJI, van den Born J, Berden JHM. Glomerular heparin sulfate alterations: Mechanisms and relevance for proteinuria. Kidney Int 2000; 57 (2): 385-400. Doi: 10.1046/j.1523-1755.2000.00858.x

82. Singh A, Ramnath RD, Foster RR et al. Reactive oxygen species modulate the barrier function of the human glomerular endothelial glycocalyx. PLoS One 2013; 8 (2): e55852. Doi: 10.1371/journal.pone.0055852

83. Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 2008; 57 (6): 1446-1454. Doi: 10.2337/db08-0057

84. Raats CJI, Bakker MAH, van den Born J, Berden JHM. Hydroxyl radicals depolymerize glomerular heparin sulfate in vitro and in experimental nephritic syndrome. J Biol Chem 1997; 272 (42): 26734-26741

85. Rops AL, van der Vlag, Jensen JF et al. Heparan sulfate proteoglycans in glomerular inflammation. Kidney Int 2004; 65 (3): 768-785. Doi: 10.1111/j.1523-1755.2004.00451.x

86. Klebanoff SJ, Kinsella MG, Wight TN. Degradation of endothelial cell matrix heparan sulfate proteoglycan by elastase and the myeloperoxidase-H2O2-chloride system. Am J Pathol 1993; 143 (3): 907-917

87. Panasyuk K, Frati E, Ribault D, Mitrovic D. Effect of reactive oxygen species on the biosynthesis and structure of newly synthesized proteoglycans.Free Radic Biol Med 1994; 16 (2): 157-167

88. Moseley R, Waddington R, EvansP et al. The chemical modification of glycosaminoglycan structure by oxygen-derived species in vitro. Biochim Biophys Acta 1995; 1244 (2-3): 245-252

89. Edge AS, Spiro RG. A specific structural alteration in the heparin sulphate of human glomerular basement membrane in diabetes. Diabetologia 2000; 43 (8): 1056-1059. Doi: 10.1007/s001250051489

90. Lowik MM, Hol FA, Steenbergen EJ et al. Mitochondrial tRNALeu (UUR) mutation in a patient with steroid-resistant nephrotic syndrome and focal segmental glomerulosclerosis. Nephrol Dial Transplant 2005; 20 (2): 336-341. Doi: 10.1093/ndt/gfh546

91. Wang W, Wang X Long J et al. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab 2012; 15 (2): 186-200. Doi: 10.1016/j.cmet.2012.01.009

92. Li M, Rosenfeld L, Vilar RE, Cowman MK. Degradation of hyaluronan by peroxynitrite. Arch Biochem Biophys 1997; 341 (2): 245-250. Doi: 10.1006/abbi.1997.9970

93. Vassilou P, Tay M, Comper WD. Partial ischemia and proteinuria during isolated kidney perfusion is accompanied by the release of vascular [35S] heparin sulfate. Biochem Int 1989; 19 (6): 1241-1251

94. Tan S, YokoyamaX Dickens E et al. Xanthine oxidase activity in the circulation of rats following hemorrhagic shock. Free Radic Biol Med 1993; 15 (4): 407-414

95. Гавриленко ТИ, Рыжкова НА, Пархоменко АН. Сосудистый эндотелиальный фактор роста в клинике внутренних заболеваний и его патогенетическое значение. УкраНський кард1олопчний журнал 2011; (4): 87-95

96. Жариков АЮ, Щекочихина РО. Диабетическая нефропатия. Современный взгляд на проблему. Бюлл мед науки 2018; (2): 24-31

97. Eremina V, Baelde HJ, Quaggin SE. Role of the VEGF-A signaling pathway in the glomerulus: evidence for crosstalk between components of the glomerular filtration barrier. Nephron Physiol2007; 106: 32-37. Doi: 10.1159/000101798

98. Eremina V, Sood M, Haigh J et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest 2003; 111 (5): 707-716. Doi: 10.1172/JCI17423

99. Sugimoto H, Hamano X Charytan D et al. Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J Biol Chem 2003; 278 (15): 12605-12608. Doi: 10.1074/jbc.C300012200

100. Veron D, Reidy K, MarlierA et al. Induction of podocyte VEGF164 overexpression at different stages of development causes congenital nephrosis or steroid-resistant nephrotic syndrome. Am J Pathol 2010; 177 (5): 2225-2233. Doi: 10.2353/ajpath.2010.091146

101. Veron D, Reidy KJ, Bertuccio C et al. Overexpression of VEGF-A in podocytes of adult mice causes glomerular disease. Kidney Int 2010; 77 (11): 989-999. Doi: 10.1038/ki.2010.64

102. Chiarelli F, Spagnoli A, Basciani F et al. Vascular endothelial growth factor (VEGF) in children, adolescents and young adults with Type 1 diabetes mellitus: relation to glycaemic control and microvascular complications. Diabet Med 2000; 17 (9): 650-656

103. Hoving P, Tarnow L, Oestergaard PB, Parving HH. Elevated vascular endothelial growth factor in type 1 diabetic patients with diabetic nephropathy. Kidney Int 2000; 75: S56-S61

104. Fu J, Lee K, Chuang PY et al. Glomerular endothelial cell injury and cross talk in diabetic kidney disease. Am J Physiol Renal Physiol 2014; 308 (4): F287-F297. Doi: 10.1152/ajprenal. 00533.2014

105. Ostalska-Nowicka D, Malinska A, Zabel M et al. Nephrotic syndrome unfavorable course correlates with downregulation of podocyte vascular endothelial growth factor receptor (VEGF)-2. Folia Histochem Cytobiol 2011; 49 (5): 472-478. Doi: 10.5603/FHC.2011.0067

106. de VrieseAS, Tilton RG, ElgerM et al. Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J Am Soc Nephrol 2001; 12 (5): 993-1000

107. Cha DR, Kang YS, Han SYet al. Vascular endothelual growth factor is increased during early stage of diabetic nephropathy in type II diabetic rats. J Endocrinol 2004; 183 (1): 183-194. Doi: 10.1677/joe.1.05647

108. Sung SH, Ziyadeh FN, Wang A et al. Blockade of vascular endothelial growth factor signaling ameliorates diabetic albuminuria in mice. J Am Soc Nephrol 2006; 17 (11): 3093-3104. Doi: 10.1681/ASN.2006010064

109. Lindenmeyer MT, Kretzler M, Boicherot A et al. Interstitial vascular rarefaction and reduced VEGF-A expression in human diabetic nephropathy. JAm Soc Nephrol2007; 18 (6): 1765-1776. Doi: 10.1681/ASN.2006121304

110. Daniels BS, Hauser EB, Deen WM, Hostetter TH. Glomerular basement membrane: in vitro studies of water and protein perme-ability.Am J Physiol Renal Fluid Electrolyte Physiol 1992; 262 (6 Pt2): F919-F926. Doi: 10.1152/ajprenal.1992.262.6.F919

111. Bolton GR, Deen WM, Daniels BS. Assesment of the charge selectivity of glomerular basement membrane using Ficoll sulfate. Am J Physiol Renal Physiol 1998; 274 (5): F889-F896. Doi: 10.1152/ajprenal.1998.274.5.F889

112. Saritas T, Kuppe C, Moeller M. Progress and controversies in unraveling the glomerular filtration mechanism. Curr Opin Nephrol Hypertens 2015; 24 (3): 208-216. Doi: 10.1097/MNH.0000000000000116

113. Pierson M, Cordier J, Hervouuet F, Rauber G. An unusual congenital and familial congenital malformative combination involving the eye and kidney. J Genet Hum 1963; 12: 184-213

114. Zenker M, Aigner T, Wender O et al. Human laminin beta 2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet 2004; 13 (21): 2625-2632. Doi: 10.1093/hmg/ddh284

115. Hasselbacher K, Wiggins RC, Matejas V et al. Recessive missense mutations in LAMB2 expand the clinical spectrum of LAMB2-associated disorder. Kidney Int 2006; 70 (6): 1008-1012. Doi: 10.1038/sj.ki.5001679

116. Suh JH, Miner JH. The glomerular basement membranes as a barrier to albumin. Nat Rev Nephrol 2014; 9 (8): 470-477

117. Jarad G, Cunningham J, Shaw AS, Miner JH. Proteinuria precedes podocyte abnormalities in Lamb2-/- mice, implicating the glomerular basement membrane as an albumin barrier. J Clin Invest 2006; 116 (8): 2272-2279. Doi: 10.1172/JCI28414

118. Chen YM, Liapis H. Focal segmental glomerulosclerosis: molecular genetics and targeted therapies. BMC Nephrology 2015; 16 (101): 1-10. Doi:10.1186/s12882-015-0090-9

119. Abrahamson DR, Isom K, Roach E et al. Laminin compensation in collagen alpha 3(IV) knockout (Alport) glomeruli contributes to permeability defects. J Am Soc Nephrol 2007; 18 (9): 2465-2472. Doi: 10.1681/ASN.2007030328

120. Kanwar YS, Linker A, Farquhar MG. Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J Cell Biol 1980; 86 (2): 688-693

121. Van den Born J, van den Heuvel LP, Bakker MA et al. A monoclonal antibody against GBM heparan sulfate induces an acute selective proteinuria in rats. Kidney Int 1992; 41 (1): 115-123

122. Raats CJ, Luca ME, Bakker MA et al. Reduction in glomerular heparan sulfate correlates with complement deposition and albuminuria in active Heymann nephritis. J Am Soc Nephrol 1999; 10 (8): 1689-1699

123. Lauer ME, Hascall VC, Wang A. Heparan sulfate analysis from diabetic rat glomeruli. J Bio lChem 2007; 282 (2): 843-852. Doi: 10.1074/jbc.M6088232200

124. An X, Zhang L, YuanY et al. Hyperoside pre-treatment prevents glomerular basement membrane damage in diabetic nephropathy by inhibiting podocyte heparanase expression. Sci Rep 2017;7 (1):6413. Doi: 10.1038/s41598-017-06844-2

125. Luo W, Olaru F, Miner JH et al. Alternative pathway is essential for glomerular complement activation and proteinuria in a mouse model of membranous nephropathy. Front Immun 2018; 9: 1433. Doi: 10.3389/fimmu.2018.01433

126. Kim HJ, Hong YH, Kim YJ et al. Anti-heparan sulfate proteoglycans in lupus nephritis. Lupus 2016; 0: 1-10

127. van den BornJ, Pisa B, Bakker MA etal. No change in glomerular heparan sulfatestructure in early human and experimental diabetic nephropathy. J Biol Chem 2006; 281 (40): 29606-29613. Doi: 10.1074/jbc.M601552200

128. Wijnhoven TJ, Lensen JF, Wismans RG et al. In vivo degradation of heparin sulfates in the glomerular basement membrane does not result in proteinuria. J Am Soc Nephrol 2007; 18 (3): 823-832. Doi: 10.1681/ASN.2006070692

129. Harvey SJ, Jarad G, Cunningham J et al. Disruption on glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity. Am J Pathol 2007; 171 (1): 139-152. Doi: 10.2353/ajpath.2007.061116

130. Бобкова ИН, Кахсуруева ПА, Ставровская ЕВ, Филатова ЕЕ. Эволюция в понимании патогенеза идиопатической мембранозной нефропатии: от экспериментальных моделей к клинике. Альманах клин мед 2017; 45 (7): 553-564. Doi: 10.18786/2072-0505-2017-45-7-553-564

131. Kestila M, Morita T, Mannikko M et al. Positionally cloned gene for a novel glomerular protein-nephrin-is mutated in congenital nephrotic syndrome. Mol Cell 1998; 1 (4): 575-582

132. Binczak-Kuleta A, Rubik J, Litwin M etal. Retrospective mutational analysis of NPHS1, NPHS2, WT1 and LAMB2 in children with steroid-resistant focal segmental glomerulosclerosis - a singlecentre experience. Bosn J Basic Med Sci 2014; 14 (2): 89-93. Doi: 10.17305/bjbms.2014.2270

133. Морозов СЛ, Длин ВВ, Садыков АР и др. Механизмы резистентности к иммуносупрессивной терапии у пациентов с нефротическим синдромом. Рос вестн перинатол и педиатр 2017; 62 (4): 19-24. doc. 10.21508/1027-4065-2017-62-4-19-24

134. Ranganathan S. Pathology of podocytopathies causing nephrotic syndrome in children. Front Pediatr 2016; 4: 32. Doi: 10.3389/fped.2016.00032

135. Kawachi H, Koike H, Kurihara H et al. Cloning of rat nephron: expression in developing glomeruli and in proteinuric states. Kidney Int 2000; 57 (5): 1949-1961. Doi: 10.1046/j.1523-1755.2000.00044.x

136. Luimula P, Ahola H, Wang SX et al.Nephrin in experimental glomerular disease. Kidney Int 2000; 58 (4): 1461-1468. Doi: 10.1046/j.1523-1755.2000.00308.x

137. Yjan H, Takeuchi E, Taylor GA et al. Nephrin dissociates from actin, and its expression is reduced in early experimental membranous nephropathy. J Am Soc Nephrol 2002; 13 (4): 946-956.

138. Наушбаева АЕ, Абеуова БА, Чингаева ГН и др. Генетически обусловленные варианты стероидрезистентного нефротического синдрома. Вестн КАЗНМУ 2012; (2): 214-215

139. Игнатова МС, Длин ВВ. Нефротический синдром: прошлое, настоящее и будущее. Рос вестн перинатол и педиатр 2017; 62 (6): 29-44. Doi: 10.21508/1027-4065-2017-62-6-29-44

140. Kim JM, Wu H, Green G et al. CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science 2003; 300 (5623): 1298-1300. Doi: 10.1126/science.1081068

141. Lowik MM, Groenen PJ, Pronk I et al. Focal segmental glomerulosclerosis in a patient homozygous for a CD2AP mutation. Kidney Int 2007; 72 (10): 1198-1203. Doi: 10.1038/sj.ki.5002469

142. Gigante M, Pontrelli P, MontemurnoE et al. CD2AP mutations are associated with sporadic nephrotic syndrome and focal segmental glomerulosclerosis (FSGS). Nephrol Dial Transplant 2009; 24 (6): 1858-1864. Doi: 10.1093/ndt/gfn712

143. Shih NY, Li J, Karpitskii V et al. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science 1999; 286: (5438): 312-315

144. Weins A, Kenlan P, Herbert S et al. Mutational and biological analysis of alpha-actinin-4 in focal segmental glomerulosclerosis. J Am Soc Nephrol 2005; 16 (12): 3694-3701. Doi: 10.1681/ASN.2005070706

145. Kaplan JM, Kim SH, North KN et al. Mutation in ACTN4, encoding alpha-actinin-4, cause familial segmental glomerulosclerosis. Nat Genet 2000; 24 (3): 251-256. Doi: 10.1038/73456

146. Frishberg X Rinat Ch, Feinstein S et al. Mutated podocyn manifesting as CMV-associated congenital nephrotic syndrome. Pediatr Nephrol 2003; 18 (3): 273-275. Doi: 10.1007/s00467-003-1079-3

147. Smoyer WE, Mundel P, Gupta A, Welsh MJ. Podocyte alpha-actinin induction precedes foot process effacement in experimental nephrotic syndrome. Am J Physiol 1997; 273 (1 Pt2): F150-F157. Doi: 10.1152/ajprenal.1997.273.1.F150

148. Michaud JL, Lemieux LI, Dube M et al. Focal and segmental glomerulosclerosis in mice with podocyte-specific expression of mutant alpha-actinin-4. JAm Soc Nephrol 2003; 14 (5): 1200-1211.

149. Cybulsky AV, Takano T, Papillon J et al. Glomerular epithelial cell injury associated with mutant alpha-actinin-4. Am J Physiol Renal Physiol2009; 297 (4): F987-F995. Doi: 10.1152/ajprenal.00055.2009

150. Bi J, Chase SE, Pellenz CD et al. Myosin 1e is a component of the glomerular slit diaphragm complex that regulates actin reorganization during cell-cell contact formation in podocytes. Am J Physiol Renal Physiol 2013; 305 (4): F532-F544. Doi: 10.1152/ajprenal.00223.2013

151. Mele C, Iatropoulos P, Donadelli R et al. MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N Engl J Med 2011; 365 (4): 295-306. Doi: 10.1056/NEJMoa1101273

152. Mao J, Wang D, Mataleena P et al. Myo1e impairment results in actin reorganization, podocyte dysfunction, and proteinuria in zebrafish and cultured podocytes. PLoS One 2013; 8 (8): e72750. Doi: 10.1371/journal.pone.0072750

153. Graham S, Ding M, Sours-Brothers S et al. Down-regulation of TRPC6 protein expression by high glucose, a possible mechanism for the impaired Ca2+ signaling in glomerular mesangial cells in diabetes. Am J Physiol Renal Physiol 2007; 293 (4): F1381-F1390. Doi:10.1152/ajprenal.00185.2007

154. Reiser J, Polu KR, Moller CC et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Net Genet 2005; 37 (7): 739-744. Doi: 10.1038/ng1592

155. Winn MP, Conlon PJ, Lynn KL et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 2005; 308 (5729): 1801-1804. Doi: 10.1126/science.1106215

156. Jiang L, Ding J, Tsai H et al. Over-expressing transient receptor potential cation channel 6 in podocytes induces cytoskel-eton rearrangement through increases of intracellular Ca2+ and RhoA activation. Exp Biol Med (Maywood) 2011; 236 (2): 184-193. Doi: 10.1258/ebm.2010.010237

157. Hinkes B, Wiggins RC, Gbadegesin R et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet 2006; 38 (12): 1397-1405. Doi: 10.1038/ng1918

158. Gbadegesin R, Hinkes BG, Hoskins BE et al. Mutations in PLCE1 are a major cause of isolated diffuse mesangial sclerosis (IDMS). Nephrol Dial Transplant 2008; 23 (4): 1291-1297. Doi: 10.1093/ndt/gfm759

159. Zhu L, Jiang R, Aoudjit L et al. Activation of RhoA in podocytes induces focal segmental glomerulosclerosis. JAm Soc Nephrol 2011; 22 (9): 1621-1630. DoM0.1681/ASN.2010111146

160. Blattner SM, Hodgin JB, Nishio M et al. Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury. Kidney Int 2013; 84 (5): 920-930. Doi: 10.1038/ki.2013.175

161. Sun H, Schlondorff J, Higgs HN, Pollak MR. Inverted formin 2 regulates actin dynamics by antagonizing Rho/diaphanous-related formin signaling. J Am Soc Nephrol 2013; 24 (6): 917-929. Doi: 10.1681/ASN.2012080834

162. Brown EJ, Schlondorff JS, Becker DJ et al. Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat Genet 2010; 42 (1): 72-76. Doi: 10.1038/ng.505

163. Boyer O, Benoit G, Gribouval O et al. Mutations in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. J Am Soc Nephrol 2011; 22 (2): 239-245. Doi: 10.1681/ASN.2010050518

164. Barua M, Brown EJ, Charoonratana VT et al. Mutations in the INF2 gene account for a significant proportion of familial but not sporadic focal and segmental glomerulosclerosis. Kidney Int 2013; 83 (2): 316-322. Doi: 10.1038/ki.2012.349

165. Gbadegesin RA, Lavin PJ, Hall G et al. Inverted formin 2 mutations with variable expression in patients with sporadic and hereditary focal and segmental glomerulosclerosis. Kidney Int 2012; 81 (1): 94-99. Doi: 10.1038/ki.2011.297

166. Gee HX Saisawat P, Ashraf S et al. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest 2013; 123 (8): 3243-3253. Doi: 10.1172/JCI69134

167. Patek CE, Little MH, Fleming S et al. A zinc finger truncation of murine WT1 results in the characteristic urogenital abnormalities of Denys-Drash syndrome. Proc Natl Acad Sci USA 1999; 96 (6): 2931-2936

168. Pollak MR. Familial FSGS. Adv Chronic Kidney Dis 2014; 21 (5): 422-425. Doi: 10.1053/j.ackd.2014.06.001


Для цитирования:


Зверев Я.Ф., Рыкунова А.Я. Нарушения клубочкового фильтрационного барьера как причина протеинурии при нефротическом синдроме. Нефрология. 2019;23(4):96-111. https://doi.org/10.24884/1561-6274-2019-23-4-96-111

For citation:


Zverev Y.F., Rykunova A.Y. Disorders of club filtration barrier as the cause of proteinuria in the nephrotic syndrome. Nephrology (Saint-Petersburg). 2019;23(4):96-111. (In Russ.) https://doi.org/10.24884/1561-6274-2019-23-4-96-111

Просмотров: 53


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)