Preview

Nephrology (Saint-Petersburg)

Advanced search

Dyslipidemia as a pathogenetic factor of the progression of the chronic kidney disease

https://doi.org/10.24884/1561-6274-2019-23-5-56-64

Abstract

The article presents current information on the pathogenetic role of lipid metabolism disorders and the value of lipotoxicity in renal pathology, contributing to the progression of nephropathy. The detected increase in cholesterol level, TAG, LDL, decrease in plasma HDL concentration in chronic kidney disease (CKD) is accompanied by significant changes in the composition of various lipoproteins caused by changes in the expression and activity of key proteins and enzymes involved in the biosynthesis, transport, remodeling and catabolism of lipids and lipoproteins. It has been proven that dyslipidemia in CKD affects the morphological and functional state of the kidneys, contributing to the development of renal lipotoxicity processes, affecting the structural and functional state of the kidneys, initiating oxidative stress, systemic inflammation, vascular damage, and dysregulation. To date, research on the significance of dyslipidemia as a pathogenetic factor in the formation of chronic kidney disease remains insufficiently studied. Dysregulation of lipid metabolism, leading to dyslipidemia, is often an undervalued complication of CKD.

About the Authors

E. N. Lebedeva
Orenburg State Medical University
Russian Federation

Elena N. Lebedeva - Аssociate Professor, PhD in Biology, Department of Biological Chemistry.

460000, Orenburg, Soviet st., 6.

Phone: (3532)774867; mob.: 8(950)1814090.



A. A. Vyalkova
Orenburg State Medical University
Russian Federation

Albina A. Vyalkova - MD, PhD, DMedSci, Head of Department of faculty Pediatrics.

460000, Orenburg, Soviet st., 6.

Рhone: 8(922)6258875.



S. N. Afonina
Orenburg State Medical University
Russian Federation

Svetlana N. Afonina - Аssociate Professor, MD, PhD, Department of Biological Chemistry.

460000, Orenburg, Soviet st., 6.

Phone: 8(3532)774867; mob.: 8(950)1814090.



S. A. Chesnokova
Orenburg State Medical University
Russian Federation

Svetlana A. Chesnokova - full-time graduate student of the Department of faculty Pediatrics.

460000, Orenburg, Soviet st., 6.

Phone: 8(922)8858487.



References

1. Smirnov AV, Shilov EM, Dobronravov VA et al. National guidelines. Chronic kidney disease: basic principles of screening, diagnosis, prevention and treatment approaches. Nephrology (Saint-Petersburg) 2012;16(1):89–11. (In Russ.) doi: 10.24884/1561-6274-2012-16-1-89-115

2. Lamb EJ, Levey AS, Stevens PE. The Kidney Disease Improving Global Outcomes (KDIGO) Guideline Update for Chronic Kidney Disease: Evolution not Revolution. Clinical Chemistry 2013;59(3):462–465. doi: 10.1373/clinchem.2012.184259

3. Agrawal S, Zaritsky JJ, Fornoni A. Dyslipidaemia in nephrotic syndrome: mechanisms and treatment. Nat Rev Nephrol 2018;14(1):57–70. doi: 10.1038/nrneph.2017.155

4. Vyalkova AA, Nikolaev SN, Ushakova YuV et al. On the issue of early diagnosis of diabetic nephropathy in children. Nephrology and dialysis 2010;2:124–130 (In Russ.)

5. Vyalkova AA, Lebedeva EN, Krasikov SI et al. Clinical and pathogenetic aspects of kidney damage in obesity (review of literature). Nephrology (Saint-Petersburg) 2014;18(3):24–33 (In Russ.)

6. Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. Nat Rev Nephrol 2017;13(10):629–646

7. Christensen EI, Nielsen R, Birn H. Renal Filtration, Transport, and Metabolism of Albumin and Albuminuria. Book Chapter published 2013 in Seldin and Giebisch's The Kidney:2457–2474. doi.org/10.1016/b978-0-12-381462-3.00073-2

8. Poronnik P, Nikolic-Paterson DJ . The proximal tubule and albuminuria – at last a starring role. Nature Reviews Nephrology 2015;11(10)):573–575. doi: 10.1038/nrneph.2015.127

9. Unger RH, Clark GO, Scherer PE et al. Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim Biophys Acta 2010;1801:209–214. doi: 10.1016/j.bbalip.2009.10.006

10. Bobulescu IA. Renal lipid metabolism and lipotoxicity. Curr Opin Nephrol Hypertens 2010;19:393–402. doi: 10.1097/mnh.0b013e32833aa4ac

11. Wayne D Comper. Is there equivalency of intact albuminuria and albumin peptideuria in nephrotic states? Kidney International 2013;84(5):1050. doi.org/10.1038/ki.2013.325

12. Christensen EI, Birn H. Tubular handling of albumin – degradation or salvation? Nature Reviews Nephrology 2013; 9(12): 700–702. doi: 10.1038/nrneph.2013.212

13. Shaw SM, Fildes JE, Yonan N et al. Pleiotropic effects and cholesterol-lowering therapy. Cardiology 2009;112:4–12

14. Kronenberg F. HDL in CKD – the devil is in the detail. J Am Soc Nephrol 2018;29:1356–1371. doi: 10.1681/asn.2017070798

15. Mange A, Goux A, Badiou S et al. HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatographytandem mass spectrometry approach. PLoS One 2012;7:e34107. doi: 10.1371/journal.pone.0034107

16. Weichhart T, Kopecky C, Kubicek M et al. Serum amyloid A in uremic HDL promotes inflammation. J Am Soc Nephrol 2012; 23: 934–947. doi: 10.1681/ASN.2011070668

17. Silbernagel G, Genser B, Drechsler C et al. HDL cholesterol, apolipoproteins, and cardiovascular risk in hemodialysis patients. J Am Soc Nephrol 2014;26:484–492. doi: 10.1681/ASN.2013080816

18. Speer T, Rohrer L, Blyszczuk P et al. Abnormal highdensity lipoprotein induces endothelial dysfunction via activation of Toll-like receptor-2. Immunity 2013;38:754–768. doi: 10.1016/j.immuni.2013.02.009

19. Tugusheva FA, Zubina IM. Oxidative stress and its participation in the nonimmune mechanisms of the progression of chronic kidney disease. Nephrology (Saint-Petersburg) 2009;13(3):43–46. (In Russ.) doi: 10.24884/1561-6274-2009-13-3-42-48

20. Calabresi L, Simonelli S, Conca P et al. Acquired lecithin: cholesterol acyltransferase deficiency as a major factor in lowering plasma HDL levels in chronic kidney disease. J Intern Med 2015;277:552–561. doi: 10.1111/joim.12290

21. Mack S, Coassin S, Vaucher J et al. ApoA-IVGWAS Consortium Evaluating the causal relation of ApoAIV with disease-related traits – a bidirectional two-sample Mendelian randomization study. Sci Rep 2017;7:8734. doi: 10.1038/s41598-017-07213-9

22. Bowe B, Xie Y, Xian H et al. Low levels of high-density lipoprotein cholesterol increase the risk of incident kidney disease and its progression. Kidney Int 2016;89:886–896. doi: 10.1016/j.kint.2015.12.034

23. Aseem O, Smith BT, Cooley MA et al. Cubilin maintains blood levels of HDL and albumin. J Am Soc Nephrol 2014;25:1028–1036. doi: 10.1681/asn.2013060671

24. Bulbul MC. Disorders of Lipid Metabolism in Chronic Kidney Disease. Blood Purif 2018;46(2):144–152. doi: 10.1159/000488816

25. Savelyeva EV, Vyalkova AA. Characteristics of serum leptin and hemodynamic parameters of the kidneys in children with type 1 diabetes. Bulletin of the Orenburg State University 2013;9:119–122 (In Russ.)

26. Holzer M, Birner-Gruenberger R, Stojakovic T et al. Uremia alters HDL composition and function. J Am Soc Nephrol 2011;22:1631–1641. doi: 10.1681/ASN.2010111144

27. Kaseda R, Jabs K, Hunley TE et al. Dysfunctional highdensity lipoproteins in children with chronic kidney disease. Metabolism 2015;64:263–273. doi: 10.1016/j.metabol.2014.10.020

28. Florens N, Calzada C, Lyasko E et al. Modified lipids and lipoproteins in chronic kidney disease: a new class of uremic toxins. Toxins (Basel) 2016;8(12):376–403. doi: 10.3390/toxins8120376

29. Shroff R, Speer T, Colin S. HDL in children with CKD promotes endothelial dysfunction and an abnormal vascular phenotype. J Am Soc Nephrol 2014;25:2658–2668. doi: 10.1681/asn.2013111212

30. Shao B, Heinecke JW. Impact of HDL oxidation by the myeloperoxidase system on sterol efflux by the ABCA1 pathway. J Proteome 2011;74:2289–2299

31. Kones R. Molecular sources of residual cardiovascular risk, clinical signals, and innovative solutions: relationship with subclinical disease, undertreatment, and poor adherence: implications of new evidence upon optimizing cardiovascular patient outcomes. Vasc Health Risk Manag 2013;9:617–670. doi: 10.2147/VHRM.S37119

32. Di Bartolo B, Scherer DJ, Brown A. PCSK9 inhibitors in hyperlipidemia: current status and clinical outlook. Bio Drugs 2017; 31:167–174. doi: 10.1007/s40259-017-0220-y

33. Voulgari C, Katsilambros N, Tentolouris N. Smoking cessation predicts amelioration of microalbuminuria in newly diagnosed type 2 diabetes mellitus: a 1-year prospective study. Metabolism 2011; 60(10):1456–1464. doi: 10.1016/j.metabol.2011.02.014

34. Vaziri ND. Disorders of lipid metabolism in nephrotic syndrome: mechanisms and consequences. Kidney Int 2016; 90(1): 41–52. doi: 10.1016/j.kint.2016.02.026

35. Fornoni A, Sageshima J, WeiС et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Scitransl Med 2011;3(85):85ra46. doi: 10.1126/scitranslmed.3002231

36. Miller AA. Disruption of lipid metabolism and its correction in chronic kidney disease. Kidneys 2016;2(16):85–95 (In Russ.)

37. Vyalkova AA, Lebedeva EN, Afonina CH et al. Kidney disease and obesity: molecular relationships and new approaches to diagnosis (literature review). Nephrology (Saint-Petersburg) 2017;21(3):25–38. (In Russ.) doi: 10.24884/1561-6274-2017-3-25-38

38. Smirnov AV, Kayukov IG, Rumyantsev ASh. The problem of assessing the glomerular filtration rate in obesity. Nephrology (Saint-Petersburg) 2017;21(2):20–23. (In Russ.) doi: 10.24884/1561-6274-2017-21-2-20-23


Review

For citations:


Lebedeva E.N., Vyalkova A.A., Afonina S.N., Chesnokova S.A. Dyslipidemia as a pathogenetic factor of the progression of the chronic kidney disease. Nephrology (Saint-Petersburg). 2019;23(5):56-64. (In Russ.) https://doi.org/10.24884/1561-6274-2019-23-5-56-64

Views: 1334


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)