Preview

Нефрология

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Некоторые причины развития протеинурии при нефротическом синдроме

https://doi.org/10.36485/1561-6274-2020-24-1-9-21

Полный текст:

Аннотация

В обзоре рассматриваются некоторые причины возникновения протеинурии при нефротическом синдроме, обусловленные внепочечными механизмами. Отмечены идентифицированные в последние годы аутоантитела, участвующие в нарушении селективной проницаемости фильтрационного барьера при мембранозной нефропатии. Анализируется прямая связь между уровнем гипергликемии и протеинурией при диабетической нефропатии. Подчеркивается роль в развитии этого заболевания активных форм кислорода, конечных продуктов гликирования, ангиотензина II, трансформирующего фактора роста β-1, эпителиально-мезенхимальной трансформации подоцитов, Rho ГТФаз, внутриклеточного сигнального пути mTOR, Wnt/β-катенин сигнального каскада. Особое внимание уделено проблеме поиска и идентификации циркулирующих факторов проницаемости в патогенезе идиопатического нефротического синдрома при болезни минимальных изменений и фокально-сегментарном гломерулосклерозе: фактор сосудистой проницаемости (VPF), вазодилататор-стимулированный фосфопротеин (VASP), гемопексин (Hpx), растворимый активатор рецептора плазминогена уриказного типа (suPAR), кардиотропиноподобный цитокин-1 (CLCF-1) и анти-CD40 антитела. Отмечено, что роль таких факторов сегодня не подвергается сомнению, однако с позиций доказательной медицины эта роль нуждается в серьезном подтверждении в соответствии со специально сформулированными критериями.

Об авторах

Я. Ф. Зверев
Алтайский государственный медицинский университет
Россия

Зверев Яков Федорович, профессор, доктор медицинских наук, кафедра фармакологии

656038, г. Барнаул, пр. Ленина, д. 40.



А. Я. Рыкунова
Барнаульский юридический институт
Россия

Рыкунова Анна Яковлевна, кандидат медицинских наук, кафедра криминалистики

656038, г. Барнаул, ул. Чкалова, д. 49



Список литературы

1. Бобкова ИН, Кахсуруева ПА, Ставровская ЕВ, Филатова ЕЕ. Эволюция в понимании патогенеза идиопатической мембранозной нефропатии: от экспериментальных моделей к клинике. Альманах клин мед 2017; 45 (7): 553–564

2. Камышова ЕС, Бобкова ИН, Горелова ИА и др. Генетические детерминанты развития и течения мембранозной нефропатии. Тер архив 2018; 90 (6): 105–111. doi: 10.26442/terarkh2018906105-111

3. Debiec H, Guigonis V, Mougenot B et al. Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies. N Engl J Med 2002; 346 (26): 2053–2060. doi: 10.1056/NEJMoa012895

4. Debiec H, Nauta J, Coulet F et al. Role of truncating mutations in MME gene in fetomaternal alloimmunisation and glomerulopathies. Lancet 2004; 364 (9441): 1252–1259. doi: 10.1016/S0140-6736(04)17142-0

5. Beck LH Jr, Bonegio RGB, Lambeau G et al. M-type phospholipase A receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med 2009; 361 (1): 11–21. doi: 10.1056/NEJMoa0810457

6. Pozdzik A, Brocherlou I, David C et al. Membranous nephropathy and anti-podocytes antibodies: implications for the diagnostic workup and disease management. Biomed Res Int 2018: 6281054. doi: 10.1155/2018/6281054

7. Tomas NM, Beck LH Jr, Meyer-Schwesinger C et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med 2014; 371 (24): 2277–2287. doi: 10.1056/NEJMoa1409354

8. Tomas NM, Hoxha E, Reinicke AT et al. Autoantibodies against thrombospondin type 1 domain-containing 7A induce membranous nephropathy. J Clin Invest 2016; 126 (7): 2519–2532. doi: 10.1172/JCI85265

9. Couser WG. Primary membranous nephropathy. Clin J Am Soc Nephrol 2017; 12 (6): 983–997. doi: 10.2215/CJN.11761116

10. Timmermans SA, Ayalon R, van Paassen P et al. Limburg Renal Registry: Anti-phospholipase A receptor antibodies and malignancy in membranous nephropathy. Am J Kidney Dis 2013; 62 (6): 1223–1225. doi: 10.1053/j.ajkd.2013.07.019

11. Hoxha E, Wiech T, Stahl PR et al. A mechanism for cancerassociated membranous nephropathy. N Engl J Med 2016; 374 (20): 1995–1996. doi: 10.1056/NEJMc1511702

12. Hoxha E, Beck LH Jr, Wiech T et al. An indirect immunofluorescence method facilitates detection of thrombospondin type 1 domain-containing 7A-specific antibodies in membranous nephropathy. J Am Soc Nephrol 2017; 28 (2): 520–531. doi: 10.1681/ASN.2016010050

13. Kanwar YS, Wada J, Sun L et al. Diabetic nephropathy: mechanisms of renal disease progression. Exp Biol Med (Maywood) 2008; 232 (1): 4–11. doi: 10.3181/0705-MR-134

14. Sifuentes-Franco S, Padilla-Tejeda DE, Carillo-Ibarra S, Miranda-Diaz AG. Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy. Int Endocrinol 2018; 2018: 1875870. doi: 10.1155/2018/1875870

15. Tung CW, Hsu YC, Shih YH et al. Glomerular mesangial cell and podocyte injures in diabetic nephropathy. Nephrology 2018; 23 (Suppl 4): 32–37. doi: 10.1111/nep.13451

16. Бобкова ИН, Шестакова МВ, Щукина АА. Диабетическая нефропатия – фокус на повреждение подоцитов. Нефрология 2015; 19 (2): 33–44

17. Bose M, Almas S, Prabhakar S. Wnt signaling and podocyte dysfunction in diabetic nephropathy. J Investig Med 2017; 0: 1–9. doi: 10.1136/jim-2017-000456

18. Dai H, Liu Q, Liu B. Research progress on mechanism of podocyte depletion in diabetic nephropathy. J Diabetes Res 2017; 2017: 2615286. doi: 10.1155/2017/2615286

19. Lin CL, Lee PH, Hsu YC et al. MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction. J Am Soc Nephrol 2014; 25 (8): 1698–1709. doi: 10.1681/ASN.2013050527

20. Winbanks CE, Wang B, Beyer C et al. TGF-beta regulates miR-29a and miR-29 to control myogenic differentiation through regulation of HDAC4. J Biol Chem 2011; 286 (16): 13805–13814. doi: 10.1074/jbc.M110.192625

21. Petermann AT, Pippin J, Durvasula R et al. Mechanical stretch induces podocyte hypertrophy in vitro. Kidney Int 2005; 67 (1): 157–166. doi: 10.1111/j.1523-1755.2005.00066.x

22. Xu ZG, Yoo TH, Ryu DR et al. Angiotensin II receptor blocker inhibitors p27Kip1 expression in glucose-stimulated podocytes and in diabetic glomeruli. Kidney Int 2005; 67 (3): 944–952. doi: 10.1111/j.1523-1755.2005.00158.x

23. Yoo TH, Li JJ, Kim JJ et al. Activation of the renin-angiotensin system within podocytes in diabetes. Kidney Int 2007; 71 (10): 1019–1027. doi: 10.1038/sj.ki.5002195

24. Jo HA, Kim JG, Yang SH et al. The role of local IL6/JAK2/STAT3 signaling in high glucose-induced podocyte hypertrophy. Kidney Res Clin Pract 2016; 35 (4): 212–218. doi: 10.1016/j.krcp.2016.09.003

25. Nakamura T, Ushiyama C, Suzuki S et al. Urinary excretion of podocytes in patients with diabetic nephropathy. Nephrol Dial Transplant 2000; 15 (9): 1379–1383

26. Wogelmann SU, Nelson WJ, Meyers BD et al. Urinary excretion of podocytes in health and renal disease. Am J Physiol Renal Physiol 2003; 285 (1): F40–F48. doi: 10.1152/ajprenal.00404.2002

27. Regoli M, Bendayan M. Alterations in the expression of the alpha 3 beta 1 integrin in certain membrane domains of the glomerular epithelial cells (podocytes) in diabetes mellitus. Diabetologia 1997; 40 (1): 15–22

28. Chen HC, Chen CA, Guh JY et al. Altering expression of alpha3beta1 integrin on podocytes of human and rats with diabetes. Life Sci 2000; 67 (19): 2345–2353

29. Chen J, Gui D, Chen Y et al. Astragaloside IV improves high glucose-induced podocyte adhesion dysfunction via alpha3beta1 integrin upregulation and integrin-linked kinase inhibition. Biochem Pharmacol 2008; 76 (6): 796–804. doi: 10.1016/j.bcp.2008.06.020

30. Zhang L, Ren Z, Yang Q, Ding G. Csk regulates angiotensin II-induced podocyte apoptosis. Apoptosis 2016; 21 (7): 846–855. doi: 10.1007/s10495-016-1256-z

31. Li JH, Huang XR, Zhu HJ et al. Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease. FASEB J 2004; 18 (1): 176–178. doi: 10.1096/fj.02-1117fje

32. Liu BC, Song X, Lu XY et al. High glucose induces podocyte apoptosis by stimulating TRPC6 via elevation of reactive oxygen species. Biochim Biophys Acta 2013; 1833 (6): 1434–1442. doi: 10.1016/j.bbamcr.2013.02.031

33. Susztak K, Raff AC, Schiffer M, Bottinger EP. Glucoseinduced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 2006; 55 (1): 225–233

34. Niranjan T, Bielesz B, Gruenwald A et al. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat Med 2008; 14 (3): 290–298. doi: 10.1038/nm1731

35. Li Y, Kang YS, Dai C et al. Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria. Am J Path 2008; 172 (2): 299–308. doi: 10.2353/ajpath.2008.070057

36. Yamaguchi Y, Iwano M, Suzuki D et al. Epithelial-mesenchymal transition as a potential explanation for podocyte depletion in diabetic nephropathy. Am J Kidney Dis 2009; 54 (4): 653–664. doi: 10.1053/j.ajkd.2009.05.009

37. Xing L, Liu Q, Fu S et al. PTEN inhibits high glucoseinduced phenotypic transition in podocytes. J Cell Biochem 2015; 116 (8): 1776–1784. doi: 10.1002/jcb.25136

38. Четина ЕВ. Сигнальные пути нутриентов и ревматические заболевания. Научно-практ ревматол 2013; 51 (3): 313–323

39. Inoki K, Mori H, Wang J et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest 2011; 121 (6): 2181–2196. doi: 10.1172/JCI44771

40. Ding Y, Choi ME. Autophagy in diabetic nephropathy. J Endocrinol 2015; 224 (1): R15–R30. doi: 10.1530/JOE-14-0437

41. Sharma K, RamachandraRao S, Qiu G. Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest 2008; 118 (5): 1645–1656. doi: 10.1172/JCI32691

42. Пушкарев ВМ, Соколова ЛК, Пушкарев ВВ, Тронько НД. Роль АMPK и MTOR в развитии инсулинорезистентности и диабета 2 типа. Механизм действия метформина. Пробл ендокрiн патол 2016; (3): 77–90

43. Тарасова ОС, Гайнуллина ДК. Rho-киназа как ключевой участник регуляции тонуса сосудов в норме и при сосудистых расстройствах. Артер гипертенз 2017; 23 (5): 383–394. doi: 10.18705/1607-419X-2017-23-5-383-394

44. Yu H, Suleiman H, Kim AH et al. Rac1 activation in podocytes induces rapid foot process effacement and proteinuria. Mol Cell Biol 2013; 33 (23): 4755–4764. doi: 10.1128/MCB.00730-13

45. Ishizaka M, Gohda T, Takagi M et al. Podocyte-specific deletion of Rac1 leads to aggravation of renal injury in STZ-induced diabetic mice. Biochem Biophys Res Commun 2015; 467 (3): 549–555. doi: 10.1016/j.bbrc.2015.09.158

46. Peng F, Wu D, Gao B et al. RhoA/Rho-kinase contribute to the pathogenesis of diabetic renal disease. Diabetes 2008; 57 (6): 1683–1692. doi: 10.2337/db07-1149

47. Xiao L, Wang M, Yang S et al. A glimpse of the pathogenic mechanisms of Wnt/β-catenin signaling in diabetic nephropathy. Biomed Res Int 2013; 2013: 987064. doi: 10.1155/2013/987064

48. Lin CL, Wang JY, Huang YT et al. Wnt/beta-catenin signaling modulates survival of high glucose-stressed mesangial cells. J Am Soc Nephrol 2006; 17 (10): 2812–2820. doi: 10.1681/ASN.2005121355

49. Lin CL, Wang JY, Ko JY et al. Superoxide destabilization of beta-catenin augments apoptosis of high-glucose-stressed mesangial cells. Endocrinology 2008; 149 (6): 2934–2942. doi: 10.1210/en.2007-1372

50. Wang Q, Wang Y, Minto AW et al. MicroRNA-377 is upregulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J 2008; 22 (12): 4126–4135. doi: 10.1096/fj.08-112326

51. Kato H, Gruenwald A, Suh H et al. Wnt/β-catenin pathway in podocytes integrates cell adhesion, differentiation, and survival. J Mol Biochem 2011; 286 (29): 26003–26015. doi: 10.1074/jbc.M111.223164

52. Shalhoub RJ. Pathogenesis of lipoid nephrosis: a disorder of T cell function. Lancet 1974; 2 (7889): 556–560

53. Смирнов АВ, Трофименко ИИ, Сиповский ВГ. Болезнь минимальных изменений у взрослых. Нефрология 2013; 17 (6): 9–36

54. Savin VJ, Sharma M, Zhou J et al. Multiple targets for novel therapy of FSGS associated with circulating permeability factor. Biomed Res Int 2017; 2017: 6232616. doi: 10.1155/2017/6232616

55. Koyama A, Fujisaki M, Kobayashi M et al. A glomerular permeability factor produced by human T cell hybridomas. Kidney Int 1991; 40 (3): 453–460

56. Vincenti F, Ghiggeri GM. New insights into the pathogenesis and the therapy of recurrent focal glomerulosclerosis. Am J Transplant 2005; 5 (6): 1179–1185. doi: 10.1111/j.16006143.2005.00968.x

57. McCarthy ET, Sharma M, Savin VJ. Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. Clin J Am Soc Nephrol 2010; 5 (11): 2115–2121. doi: 10.2215/CJN.03800609

58. Wada T, Nangaku M. A circulating permeability factor in focal segmental glomerulosclerosis: the hunt continues. Clin Kidney J 2015; 8 (6): 708–715. doi: 10.1093/ckj/sfv090

59. Dantal J, Testa A, Bigot E, Soulillou JP. Effects of plasmaprotein A immunoadsorption on idiopathic nephrotic syndrome recurring after renal transplantation. Ann Med Interne (Paris) 1992; 143 (Suppl1): 48–51

60. Matalon A, Markowitz GS, Joseph RE et al. Plasmapheresis treatment of recurrent FSGS in adult renal transplant recipients. Clin Nephrol 2001; 56 (4): 271–278

61. Lagrue G, Branellec A, Niaudet P et al. Transmission of nephrotic syndrome to two neonates. Spontaneous regression. Presse Med 1991; 20 (6): 255–257

62. Kemper MJ, Wolf G, Muller-Wiefel DE. Transmission of glomerular permeability factor from a mother to her child. N Engl J Med 2001; 344 (5): 386–387. doi: 10.1056/NEJM200102013440517

63. Sharma M, Sharma R, Reddy SR et al. Proteinuria after injection of human focal segmental glomerulosclerosis factor. Transplantation 2002; 73 (3): 366–372

64. Avila-Casado Mdel C, Perez-Torres J, Auron A et al. Proteinuria in rats induced by serum from patients with collapsing glomerulopathy. Kidney Int 2004; 66 (1): 133–143. doi: 10.1111/j.1523-1755.2004.00715.x

65. Gallon L, Leventhal J, Skaro A et al. Resolution of recurrent focal segmental glomerulosclerosis after retransplantation. N Engl J Med 2012; 366 (17): 1648–1649. doi: 10.1056/NEJMc1202500

66. Грене ГЙ, Кисс Е. Нефротический синдром: гистопатологическая дифференциальная диагностика. Часть 2: Болезнь минимальных изменений, фокально сегментарный гломерулосклероз, мембранозный гломерулонефрит. Нефрология 2007; 11 (4): 88–94. doi: 10.24884/1561-6274-2007-11-4-88-94

67. Цыгин А. Нефротический синдром при болезни минимальных изменений. Врач 2013; (6): 2–6

68. Петросян ЭК, Длин ВВ. Клинические рекомендации по диагностике и лечению болезни минимальных изменений у детей. Нефрология 2015; 19 (3): 90–96

69. Cho MN, Hong EH, Lee TH, Ko CW. Pathophysiology of minimal change nephrotic syndrome and focal segmental glomerulosclerosis. Nephrology 2017; 12: S11–S14. doi: 10.1111/j.14401797.2007.00875.x

70. Обухова ВА. Патогенетические механизмы развития идиопатического нефротического синдрома с минимальными изменениями. Рос вестн перинатол и педиатр 2014; 59 (4): 10–15

71. Bierzynska A, Saleem M. Recent advances in understanding and treating nephrotic syndrome. F1000Res 2017; 6: 121. doi: 10.12688/f1000research.10165.1

72. Vivarelli M, Massella L, Ruggiero B, Emma F. Minimal change disease. Clin J Am Soc Nephrol 2017; 12: 332–345. doi: 10.2215/CJN.05000516

73. Bertelli R, Bonanni A, Caridi G et al. Molecular and cellular mechanisms for proteinuria in minimal change disease. Front Med (Lausanne) 2018; 5: 170. doi: 10.3389/fmed.2018.00170

74. D’Agati VD. The spectrum of local segmental glomerulosclerosis: new insights. Curr Opin Nephrol Hypertens 2008; 17 (3): 271–281. doi: 10.1097/MNH.0b013e3282f94a96

75. Chan CY, Ng KH, Chen J et al. Novel role of Vav1-Rac1 pathway in actin cytoskeleton regulation in interleukin-13-induced minimal change-like nephropathy. Clin Sci 2016; 130: 2317–2317. doi: 10.1042/CS20160312

76. Reiser J, von Gersdorff G, Loos M et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 2004; 113 (10): 1390–1397. doi: 10.1172/JCI20402

77. Lai KW, Wei CL, Tan LK et al. Overexpression of interleukin-13 induces minimal change-like nephropathy in rats. J Am Soc Nephrol 2007; 18 (5): 1476–1485. doi: 10.1681/ASN.2006070710

78. Garin EH, Mu W, Arthur JM et al. Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney Int 2010; 78 (3): 296–302. doi: 10.1038/ki.2010.143

79. Saleem MA, Kobayashi Y. Cell biology and genetics of minimal change disease. F1000Res 2016; 5: 412. doi: 10.12688/f1000research.7300.1

80. Lagrue G, Xheneumont S, Branellec A et al. A vascular permeability factor elaborated from lymphocytes. I. Demonstration in patients with nephrotic syndrome. Biomedicine 1975; 23 (1): 37–40

81. Matsumoto K, Kanmatsuse K. Interleukin-18 and interleukin-12 synergize to stimulate the production of vascular permeability factor by T lymphocytes in normal subjects and in patients with minimal-change nephrotic syndrome. Nephron 2000; 85 (2): 127–133. doi: 10.1159/000045645

82. Matsumoto K, Kanmatsuse K. Transforming growth factor-beta 1 inhibits vascular permeability factor release by T cells in normal subjects and in patients with minimal-change nephrotic syndrome. Nephron 2001; 87 (2): 111–117. doi: 10.1159/000045898

83. Maas RJ, Deegens JK, Wetzels JF. Permeability factors in idiopathic nephrotic syndrome: historical perspectives and lessons for the future. Nephrol Dial Transplant 2014; 29 (12): 2207–2216. doi: 10.1093/ndt/gfu355

84. Tomizawa S, Maruyama K, Nagasawa N et al. Studies of vascular permeability factor derived from T lymphocytes and inhibitory effect of plasma on its production in minimal change nephrotic syndrome. Nephron 1985; 41 (2): 157–160. doi: 10.1159/000183572

85. Maruyama K, Tomizawa S, Seki Y et al. Inhibition of vascular permeability factor production by ciclosporin in minimal change nephrotic syndrome. Nephron 1992; 62 (1): 27–30. doi: 10.1159/000186990

86. Bakker WW, Baller JF, van Luijk WH. A kallikrein-like molecule and plasma vasoactivity in minimal change disease. Increased turnover in relapse versus remission. Contrib Nephrol 1988; 67: 31–36

87. Cheung PK, Klok PA, Bakker WW. Minimal change-like glomerular alterations induced by a human plasma factor. Nephron 1996; 74 (3): 586–593. doi: 10.1159/000189457

88. Cheung PK, Klok PA, Baller JF et al. Induction of experimental proteinuria in vivo following infusion of human plasma hemopexin. Kidney Int 2000; 57 (4): 1512–1520. doi: 10.1046/j.1523-1755.2000.00996.x

89. Bakker WW, Borghuis T, Harmsen MC et al. Protease activity of plasma hemopexin. Kidney Int 2005; 68 (2): 603–610. doi: 10.1111/j.1523-1755.2005.00438.x

90. Lennon R, Singh A, Welsh GI et al. Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes. J Am Soc Nephrol 2008; 19 (11): 2140–2149. doi: 10.1681/ASN.2007080940

91. Kapojos JJ, Poelstra K, Borghuis T et al. Regulation of plasma hemopexin activity by stimulated endothelial or mesangial cells. Nephron Physiol 2004; 96 (1): P1–P10. doi: 10.1159/000075574

92. Harris JJ, McCarthy HJ, Ni L et al. Active proteases in nephrotic plasma lead to a podocin-dependent phosphorylation of VASP in podocytes via protease activated receptor – 1. J Pathol 2013; 229 (5): 660–671. doi: 10.1002/path.4149

93. Wen Y, Shah S, Campbell KN. Molecular mechanisms of proteinuria in focal segmental glomerulosclerosis. Front Med 2018; 5: 98. doi: 10.3389/fmed.2018.00098

94. Hahm E, Wei C, Fernandez I et al. Bone marrow-derived immature myeloid cells are a main source of circulating suPAR contributing to proteinuric kidney disease. Nat Med 2017; 23 (1): 100–106. doi: 10.1038/nm.4242

95. Wei C, Moller CC, Alintas MM et al. Modification of kidney barrier function by the urokinase receptor. Nat Med 2008; 14 (1): 55–63. doi: 10.1038/nm.1696

96. Reiser J, Nast CC, Alachkar N. Permeability factor in focal and segmental glomerulosclerosis. Adv Chronic Kidney Dis 2014; 21 (5): 417–421. doi: 10.1053/j.ackd.2014.05.010

97. Wei C, El Hindi S, Li J et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat Med 2011; 17 (8): 952–960. doi: 10.1038/nm.2411

98. Wei C, Trachtman H, Li J. Circulating suPAR in two cohorts of primary FSGS. J Am Soc Neprol 2012; 23 (12): 2051–2059. doi: 10.1681/ASN.2012030302

99. Cara-Fuentes G, Wei C, Segarra A et al. CD80 and suPAR in patients with minimal change disease and focal segmental glomerulosclerosis: diagnostic and pathogenic significance. Pediatr Nephrol 2014; 29 (8): 1363–1371. doi: 10.1007/s00467-013-2679-1

100. Li F, Zheng C, Zhong Y et al. Relationship between serum soluble urokinase plasminogen activator receptor level and steroid responsiveness in FSGS. Clin J Am Soc Nephrol 2014; 9 (11): 1903–1911. doi: 10.2215/CJN.02370314

101. Naesens M, Meijers B, Sprangers B. suPAR and FSGS: the gap between bench and bedside. Transplantation 2013; 96 (4): 368–369. doi: 10.1097/TP.0b013e31829e6d40

102. Sever S, Trachtman H, Wei C, Reiser J. Is there clinical value in measuring suPAR levels in FSGS? Clin J Am Soc Nephrol 2013; 8 (8): 1273–1275. doi: 10.2215/CJN.06170613

103. Maas RJH, Wetzels JFM, Deegens JKJ. Serum-soluble urokinase receptor concentration in primary FSGS. Kidney Int 2012; 81 (10): 1043–1044. doi: 10.1038/ki.2012.32

104. Bock ME, Price HE, Gallon L, Langman CB. Serum soluble urokinase-type plasminogen activator receptor levels and idiopathic FSGS in children: a single center report. Clin J Am Soc Nephrol 2013; 8 (8): 1304–1311. doi: 10.2215/CJN.07680712

105. Thuno M, Macho B, Eugen-Olsen J. suPAR: the molecular crystal ball. Dis Markers 2009; 27 (3): 157–172. doi: 10.3233/DMA-2009-0657

106. Taniguchi Y, Shimamura Y, Horino T et al. Serum levels of soluble urokinase plasminogen activator receptor in Japanese patients with chronic kidney disease. Kidney Int 2014; 86 (1): 209–210. doi: 10.1038/ki.2014.136

107. Spinale JM, Mariani LH, Kapoor S et al. A reassessment of soluble urokinase-type plasminogen activator receptor in glomerular disease. Kidney Int 2015; 87 (3):564–574. doi: 10.1038/ki.2014.346

108. Konigshausen E, Sellin L. Circulating permeability factors in primary focal segmental glomerulosclerosis: a review of proposed candidates. Biomed Res Int 2016; 2016: 3765608. doi: 10.1155/2016/3765608

109. Peev V, Hahm M, Reiser J. Unwinding focal segmental glomerulosclerosis. F1000Res 2017; 6: 466. doi: 10.12688/f1000research.10510.1

110. Savin VJ, Sharma R, Sharma M et al. Circulating fsctor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N Engl J Med 1996; 334 (14): 878–883. doi: 10.1056/NEJM199604043341402

111. Sharma M, Sharma R, McCarthy ET, Savin VJ. The FSGS factor: enrichment and in vivo effect of activity from focal segmental glomerulosclerosis plasma. J Am Soc Nephrol 1999; 10 (3): 552–561

112. Savin VJ, Sharma R, Lovell HB, Welling DJ. Measurement of albumin reflection coefficient with isolated rat glomeruli. J Am Soc Nephrol 1992; 3 (6): 1260–1269

113. Savin VJ, Sharma M, Zhou J et al. Renal and hematological effects of CLCF-1, a B-cell-stimulating cytokine of the IL-6 family. J Immunol Res 2015; 2015: 714964. doi: 10.1155/2015/714964

114. Sharma M, Zhou J, Gauchat J et al. Janus kinase 2/signal transducer and activator of transcription 3 inhibitors attenuate the effect of cardiotrophin-like cytokine factor 1 and human focal segmental glomerulosclerosis serum on glomerular filtration barrier. Transl Res 2015; 166 (4): 384–398. doi: 10.1016/j.trsl.2015.03.002

115. Savin VJ, McCarthy ET, Sharma R et al. Galactose binds to focal segmental glomerulosclerosis permeability factor and inhibits its activity. Transl Res 2008; 151 (6): 288–292. doi: 10.1016/j. trsl.2008.04.001

116. De Smet E, Rioux JP, Ammann H et al. FSGS permeability factor-associated nephrotic syndrome: remission after oral galactose therapy. Nephrol Dial Transplant 2009; 24 (9): 2938–2940. doi: 10.1093/ndt/gfp278

117. Kopac M, Meglic A, Rus RR. Partial remission of resistant nephrotic syndrome after oral galactose therapy. Ther Apher Dial 2011; 15 (3): 269–272. doi: 10.1111/j.1744-9987.2011.00949.x

118. Sgambat K, Banks M, Moudgil A. Effect of galactose on glomerular permeability and proteinuria in steroid-resistant nephrotic syndrome. Pediatr Nephrol 2013; 28 (11): 2131–2135. doi: 10.1007/s00467-013-2539-z

119. Delville M, Sigdel TK, Wei C et al. A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci Transl Med 2014; 6 (256): 256ra136. doi: 10.1126/scitranslmed.300853

120. Chatzigeorgiou A, Lyberi M, Chatzilymperis G et al. CD40/CD40L signaling and its implication in health and disease. Biofactors 2009; 35 (6): 474–483. doi: 10.1002/biof.62


Для цитирования:


Зверев Я.Ф., Рыкунова А.Я. Некоторые причины развития протеинурии при нефротическом синдроме. Нефрология. 2020;24(1):9-21. https://doi.org/10.36485/1561-6274-2020-24-1-9-21

For citation:


Zverev Y.F., Rykunova A.Y. Several reasons for the development of proteinuria in nephrotic syndrome. Nephrology (Saint-Petersburg). 2020;24(1):9-21. (In Russ.) https://doi.org/10.36485/1561-6274-2020-24-1-9-21

Просмотров: 267


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)