Preview

Нефрология

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Уромодулин и почки

https://doi.org/10.36485/1561-6274-2020-24-1-22-38

Полный текст:

Аннотация

Уромодулин (УМО) – многофункциональный гликопротеин, экспрессирующийся в эпителиальных клетках толстого восходящего отдела петли Генле. В настоящее время накоплено достаточно сведений о механизмах биосинтеза, апикального и базолатерального транспорта УМО, изменениях концентрации в моче и крови при повреждении различных компартментов почки, роли УМО в защите почек от инфекций, поддержании минерального гомеостаза, развитии артериальной гипертензии и участии этого гликопротеина в других физиологических и патологических процессах. В статье обсуждается клиническое значение УМО в развитии и прогрессировании хронической болезни почек (ХБП), прогностическое значение оценки концентрации УМО в моче и крови в плане риска сердечно-сосудистых заболеваний и вероятности развития острого повреждения почек у больных с сердечно-сосудистой патологией. Кратко освещаются вопросы мутации гена УМО и развития аутосомно-доминантной тубулоинтерстициальной болезни почек.

Об авторах

М. Хасун
Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова
Россия

Мохамад Хасун, кандидат медицинских наук, кафедра пропедевтики внутренних болезней с клиникой, ассистент кафедры.

197022, Санкт-Петербург,ул. Л.Толстого, д.17, корп.54


С. А. Орлова
Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова
Россия

Доцент Орлова Светлана Александровна, кандидат медицинских наук, кафедра пропедевтики внутренних болезней с клиникой, доцент кафедры 

197022, Санкт-Петербург, ул. Л. Толстого, д. 17, корп. 54



И. Г. Каюков
Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова
Россия

Профессор Каюков Иван Глебович, доктор медицинских наук, научно-исследовательский институт нефрологии, кафедра нефрологии и диализа 

197022, Санкт-Петербург, ул. Л. Толстого, д. 17, корп. 54



О. В. Галкина
Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова
Россия

Галкина Ольга Владимировна, кандиддат биологических наук, Научно-исследовательский институт нефрологии, заведующая лабораторией биохимического гомеостаза 

197022, Санкт-Петербург, ул. Л. Толстого, д. 17, корп. 54



О. Н. Береснева
Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова
Россия

Береснева Ольга Николаевна, кандиддат биологических наук, Научно-исследовательский институт нефрологии, лаборатория клинической физиологии почек, старший научный сотрудник 

197022, Санкт-Петербург, ул. Л. Толстого, д. 17, корп. 54



М. М. Парастаева
Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова
Россия

Парастаева Марина Магрезовна, кандиддат биологических наук, Научно-исследовательский институт нефрологии, лаборатория клинической физиологии почек, старший научный сотрудник 

197022, Санкт-Петербург, ул. Л. Толстого, д. 17, корп. 54



А. Г. Кучер
Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова
Россия

Профессор Кучер Анатолий Григорьевич, доктор медицинских наук, кафедра пропедевтики внутренних болезней с клиникой

197022, Санкт-Петербург, ул. Л. Толстого, д. 17, корп. 54



Н. В. Мосина
Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова
Россия

Мосина Нина Валерьевна, кандидат медицинских наук, научно-исследовательский институт нефрологии, руководитель отделения клинических исследований

197022, Санкт-Петербург, ул. Л. Толстого, д. 17, корп. 54



Список литературы

1. Tamm I, Horsfall FL. Characterization and separation of an inhibitor of viral hemagglutination present in urine. Proc Soc Exp Biol Med 1950;74(1):106–108

2. Tamm I, Horsfall FL. A mucoprotein derived from human urine which reacts with influenza, mumps, and Newcastle disease viruses. J Exp Med 1952;95(1):71–97. doi: 10.1084/jem.95.1.71

3. Muchmore AV, Decker JM. Uromodulin: a unique 85-kilodalton immunosuppressive glycoprotein isolated from urine of pregnant women. Science 1985;229(4712):479–481. doi: 10.1126/science.2409603

4. Pennica D, Kohr WJ, Kuang WJ et al. Identification of human uromodulin as the Tamm-Horsfall urinary glycoprotein. Science 1987;236(4797):83–88. doi: 10.1126/science.3453112

5. Micanovic R, LaFavers K, Garimella PS et al. Uromodulin (Tamm-Horsfall protein): guardian of urinary and systemic homeostasis. Nephrol Dial Transplant 2019;Jan 14. doi: 10.1093/ndt/gfy394

6. El-Achkar TM, Wu XR. Uromodulin in kidney injury: an instigator, bystander or protector? Am J Kidney Dis 2012;59(3):452– 461. doi: 10.1053/j.ajkd.2011.10.054

7. Serafini-Cessi F, Malagolini N, Cavallone D. Tamm-Horsfall glycoprotein: biology and clinical relevance. Am J Kidney Dis 2003;42(4):658–676. doi: 10.1016/S0272-6386(03)00829-1

8. Serafini-Cessi F, Malagolini N, Hoops TC, Rindler MJ. Biosynthesis and oligosaccharide processing of human TammHorsfall glycoprotein permanently expressed in HeLa cells. Biochem Biophys Res Commun 1993;194(2):784–790. doi: 10.1006/bbrc.1993.1890

9. Bachmann S, Koeppen-Hagemann I, Kriz W. Ultrastructural localization of Tamm-Horsfall glycoprotein (THP) in rat kidney as revealed by protein A-gold immunocytochemistry. Histochemistry 1985;83(6):531–538. doi: 10.1007/bf00492456

10. Hoyer JR, Sisson SP, Vernier RL. Tamm-Horsfall glycoprotein: ultrastructural immunoperoxidase localization in rat kidney. Lab Invest 1979;41(2):168–173

11. Rampoldi L, Scolari F, Amoroso A et al. The rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease. Kidney Int 2011;80(4):338– 347. doi: 10.1038/ki.2011.134

12. Bokhove M, Nishimura K, Brunati M et al. A structured interdomain linker directs self-polymerization of human uromodulin. Proc Natl Acad Sci USA 2016;113(6):1552–1557. doi: 10.1073/pnas.1519803113

13. Micanovic R, Khan S, Janosevic D et al. Tamm–Horsfall protein regulates mononuclear phagocytes in the kidney. J Am Soc Nephrol 2018;29(3):841–856. doi: 10.1681/asn.2017040409

14. Ferguson MA, Williams AF. Cell-surface anchor-ing of proteins via glycosyl-phosphatidylinositol structures. Annu Rev Biochem. 1988;57:285–320. doi: 10.1146/annurev.bi.57.070188.001441

15. Rindler MJ, Naik SS, Hoops TC, Peraldi MN. Uromodulin (Tamm-Horsfall glycoprotein/uromucoid) is a phosphatidylinositollinked membrane protein. J Biol Chem 1990;265(34):20784–20789

16. Santambrogio S, Cattaneo A, Bernascone I et al. Urinary uromodulin carries an intact ZP domain generated by a conserved C-terminal proteolytic cleavage. Biochem Biophys Res Commun 2008;370(3):410–413. doi: 10.1016/j.bbrc.2008.03.099

17. van Rooijen JJ, Voskamp AF, Kamerling JP et al. Glycosylation sites and site-specific glycosylation in human Tamm–Horsfall glycoprotein. Glycobiology 1999;9(1):21–30. doi: 10.1093/glycob/9.1.21

18. Benting JH, Rietveld AG, Simons K. N-Glycans mediate the apical sorting of a GPI-anchored, raft-associated protein in Madin-Darby canine kidney cells. J Cell Biol 1999;146:313–320. doi: 10.1083/jcb.146.2.313

19. Brown DA, Rose JK. Sorting of GPI-anchored proteins to glycolipidenriched membrane subdomains during transport to the apical cell surface. Cell 1992;68:533–544

20. Schaeffer C, Santambrogio S, Perucca S et al. Analysis of uromodulin polymerization provides new insights into the mechanisms regulating ZP domain-mediated protein assembly. Mol Biol Cell 2009;20(2):589–599. doi: 10.1091/mbc.e08-08-0876

21. Brunati M, Perucca S, Han L et al. The serine protease hepsin mediates urinary secretion and polymerisation of zona pellucida domain protein uromodulin. Elife 2015;4:e08887. doi: 10.7554/eLife.08887

22. Santambrogio S, Cattaneo A, Bernascone I et al. Urinary uromodulin carries an intact ZP domain generated by a conserved C-terminal proteolytic cleavage. Biochem Biophys Res Commun 2008;370(3):410–413. doi: 10.1016/j.bbrc.2008.03.099

23. Wiggins RC. Uromucoid (Tamm–Horsfall glycoprotein) forms different polymeric arrangements on a filter surface under different physicochemical conditions. Clin Chim Acta 1987;162(3):329–340. doi: 10.1016/0009-8981(87)90052-0

24. Cavallone D, Malagolini N, Monti A et al. Variation of high mannose chains of Tamm–Horsfall glycoprotein confers differential binding to type 1-fimbriated Escherichia coli. J Biol Chem 2004;279(1):216–222. doi: 10.1074/jbc.m308821200

25. Wilburn DB, Swanson WJ. The «ZP domain» is not one, but likely two independent domains. Mol Reprod Dev 2017;84(4):284– 285. doi: 10.1002/mrd.22781

26. Easton RL, Patankar MS, Lattanzio FA et al. Structural analysis of murine zona pellucida glycans. Evidence for the expression of core 2-type O-glycans and the Sd(a) antigen. J Biol Chem 2000;275(11):7731–7742. doi: 10.1074/jbc.275.11.7731

27. Jennings P, Aydin S, Kotanko P. Membrane targeting and secretion of mutant uromodulin in familial juvenile hyperuricemic nephropathy. J Am Soc Nephrol 2007;18(1):264–273. doi: 10.1681/ASN.2006020158

28. Horton JK, Davies M, Woodhead JS, Weeks I. A new and rapid immunochemiluminometric assay for the measurement of Tamm-Horsfall glycoprotein. Clin Chim Acta 1988;174(2):225–237. doi: 10.1016/0009-8981(88)90389-0

29. Dawnay AB, Thornley C, Cattell WR. An improved radioimmunoassay for urinary Tamm-Horsfall glycoprotein. Investigation and resolution of factors affecting its quantification. Biochem J 1982;206(3):461–465. doi: 10.1042/bj2060461

30. Lynn KL, Marshall RD. Excretion of Tamm-Horsfall glycoprotein in renal disease. Clin Nephrol 1984;22(5):253–257

31. El-Achkar TM, McCracken R, Rauchman et al. TammHorsfall protein-deficient thick ascending limbs promote injury to neighboring S3 segments in an MIP-2-dependent mechanism. Am J Physiol Renal Physiol 2011;300(4):F999–F1007. doi: 10.1152/ajprenal.00621.2010

32. Prajczer S, Heidenreich U, Pfaller W et al. Evidence for a role of uromodulin in chronic kidney disease progression. Nephrol Dial Transplant 2010;25(6):1896–1903. doi: 10.1093/ndt/gfp748

33. Смирнов АВ, Хасун М, Каюков ИГ и др. Уромодулин сыворотки крови как ранний биомаркер атрофии канальцев и интерстициального фиброза у пациентов с гломерулопатиями. Тер арх 2018;90(6):41–44. doi: 10.26442/terarkh201890641-47

34. Bichler KH, Ideler V, Harzmann R. Uromucoid excretion in normal individuals and stone formers. Curr Probl Clin Biochem 1979; 9:309–324

35. Glauser A, Hochreiter W, Jaeger P, Hess B. Determinants of urinary excretion of Tamm-Horsfall protein in non-selected kidney stone formers and healthy subjects. Nephrol Dial Transplant 2000;15(10):1580–1587. doi: 10.1093/ndt/15.10.1580

36. Thornley C, Dawnay A, Cattell WR. Human Tamm-Horsfall glycoprotein: urinary and plasma levels in normal subjects and patients with renal disease determined by a fully validated radioimmunoassay. Clin Sci (Lond) 1985;68(5):529–535. doi: 10.1042/cs0680529

37. Romero MC, Zanaro N, Gonzalez L et al. Tamm-Horsfall protein excretion to predict the onset of renal insufficiency. Clin Biochem 2002;35(1):65–68. doi:10.1016/s0009-9120(02)00274-6

38. Ollier-Hartmann MP, Pouget-Abadie C, Bouillie J, Hartmann L. Variations of urinary Tamm-Horsfall protein in humans during the first thirty years of life. Nephron 1984;38(3):163–166. doi: 10.1159/000183300

39. Duława J, Kokot F, Kokot M, Pander HJ. Urinary excretion of Tamm-Horsfall protein in normotensive and hypertensive elderly patients. J Hum Hypertens 1998;12(9):635–637. doi: 10.1038/sj.jhh.1000680

40. Ying WZ, Sanders PW. Dietary salt regulates expression of TammHorsfall glycoprotein in rats. Kidney Int 1998;54(4):1150– 1156. doi: 10.1046/j.1523-1755.1998.00117.x

41. Grant AM, Neuberger A. The turnover rate of rabbit urinary Tamm-Horsfall glycoprotein. Biochem J 1973;136(3):659–668. doi: 10.1042/bj1360659

42. van Rooijen JJ, Kamerling JP, Vliegenthart JF. Sulfated di-, triand tetraantennary N-glycans in human Tamm-Horsfall glycoprotein. Eur J Biochem 1998;256(2):471–487. doi: 10.1046/j.1432-1327.1998.2560471.x

43. Vyletal P, Bleyer AJ, Kmoch S. Uromodulin biology and pathophysiology–an update. Kidney Blood Press Res 2010;33(6):456–475. doi: 10.1159/000321013

44. Pak J, Pu Y, Zhang ZT et al. Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J Biol Chem 2001;276:9924–9930. doi: 10.1074/jbc.m008610200

45. Raffi HS, Bates JM, Laszik Z, Kumar S. Tamm-Horsfall protein acts as a general host-defense factor against bacterial cystitis. Am J Nephrol 2005;25(6):570–578. doi: 10.1159/000088990

46. Bates JM, Raffi HM, Prasadan K et al. Tamm-Horsfall protein knockout mice are more prone to urinary tract infection: rapid communication. Kidney Int 2004;65(3):791–797. doi: 10.1111/j.1523-1755.2004.00452.x

47. Mo L, Huang HY, Zhu XH et al. Tamm-Horsfall protein is a critical renal defense factor protecting against calcium oxalate crystal formation. Kidney Int 2004;66(3):1159–1166. doi: 10.1111/j.1523-1755.2004.00867.x

48. Gresh L, Fische E, Reimann A et al. A transcriptional network in polycystic kidney disease. EMBO J 2004;23(7):1657–1668. doi: 10.1038/sj.emboj.7600160

49. Bingham C, Ellard S, van’t Hoff WG et al. Atypical familial juvenile hyperuricemic nephropathy associated with a hepatocyte nuclear factor-1beta gene mutation. Kidney Int 2003;63(5):1645– 1651. doi: 10.1046/j.1523-1755.2003.00903.x

50. Torffvit O, Melander O, Hultén UL. Urinary excretion rate of TammHorsfall protein is related to salt intake in humans. Nephron Physiol 2004;97(1):31–36. doi: 10.1159/000077600

51. Bachmann S, Dawnay AB, Bouby N, Bankir L. TammHorsfall protein excretion during chronic alterations in urinary concentration and protein intake in the rat. Ren Physiol Biochem 1991;14(6):236–245. doi: 10.1159/000173411

52. Guidi E, Giglioni A, Cozzi MG, Minetti EE. Which urinary proteins are decreased after angiotensin converting–enzyme inhibition? Ren Fail 1998;20(2):243–248. doi: 10.3109/08860229809045108

53. Cairns HS, Dawnay A, Woolfson RG, Unwin RJ. Evaluation of therapy for cast nephropathy: failure of colchicine to alter urinary Tamm Horsfall glycoprotein excretion in normal subjects. Exp Nephrol 1994;2(4):257–258

54. Sanders PW, Booker BB. Pathobiology of cast nephropathy from human Bence Jones proteins. J Clin Invest 1992;89(2):630–639. doi:10.1172/jci115629

55. Dou W, Thompson-Jaeger S, Laulederkind SJ et al. Defective expression of Tamm-Horsfall protein/uromodulin in COX-2-deficient mice increases their susceptibility to urinary tract infections. Am J Physiol Renal Physiol 2005;289(1):49–60. doi: 10.1152/ajprenal.00134.2004

56. Köttgen A, Glazer NL, Dehghan A et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat Genet 2009;41(6):712–717. doi: 10.1038/ng.377

57. Köttgen A, Pattaro C, Böger CA et al. New loci associated with kidney function and chronic kidney disease. Nat Genet 2010;42(5):376–384. doi: 10.1038/ng.568

58. Köttgen A, Hwang SJ, Larson MG et al. Uromodulin levels associate with a common UMOD variant and risk for incident CKD. J Am Soc Nephrol 2010;21(2):337–344. doi: 10.1681/asn.2009070725

59. Padmanabhan S, Melander O, Johnson T et al. Genomewide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet 2010;6(10):e1001177. doi: 10.1371/journal.pgen.1001177

60. Graham LA, Padmanabhan S, Fraser NJ et al. Uromodulin as a candidate gene for human essential hypertension. Hypertension 2014;63(3):551–558. doi: 10.1161/hypertensionaha.113.01423

61. Trudu M, Janas S , Lanzani C et al . Swiss Kidney Project on Genes in Hypertension (SKIPOGH) team. Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat Med 2013;19(12):1655–1660. doi: 10.1038/nm.3384

62. Padmanabhan S. Graham L, Ferreri NR et al. Uromodulin, an emerging novel pathway for blood pressure regulation and hypertension. Hypertension 2014;64(5):918–923. doi: 10.1161/hypertensionaha.114.03132

63. Bachmann S, Mutig K, Bates J et al. Renal effects of Tamm-Horsfall protein (uromodulin) deficiency in mice. Am J Physiol Renal Physiol 2004;288(3):F559–F567. doi: 10.1152/ajprenal.00143.2004

64. Torffvit O, Agardh CD. Urinary excretion rate of NC1 and Tamm-Horsfall protein in the microalbuminuric type I diabetic patient. J Diabetes Complications 1994;8(2):77–83. doi: 10.1016/1056-8727(94)90055-8

65. Köttgen A, Yang Q, Shimmin LC et al. Association of estimated glomerular filtration rate and urinary uromodulin concentrations with rare variants identified by UMOD gene region sequencing. PLoS One 2012;7(5):e38311. doi: 10.1371/journal.pone.0038311

66. Garimella PS, Biggs ML, Katz R et al. Urinary uromodulin, kidney function, and cardiovascular disease in elderly adults. Kidney Int 2015;88(5):1126–1134. doi: 10.1038/ki.2015.192

67. Pruijm M, Ponte B, Ackermann D et al. Associations of urinary uromodulin with clinical characteristics and markers of tubular function in the general population. Clin J Am Soc Nephrol 2016;11(1):70–80. doi: 10.2215/cjn.04230415

68. Zhou J, Chen Y, Liu Y et al. Urinary uromodulin excretion predicts progression of chronic kidney disease resulting from IgA nephropathy. PLoS One 2013;8(8):e71023. doi: 10.1371/journal.pone.0071023

69. Graterol F, Navarro-Muñoz M, Ibernon M et al. Poor histological lesions in IgA nephropathy may be reflected in blood and urine peptide profiling. BMC Nephrol 2013;14:82. doi: 10.1186/1471-2369-14-82

70. Devuyst O, Olinger E, Rampoldi L. Uromodulin: from physiology to rare and complex kidney disorders. Nat Rev Nephrol 2017;13(9):525–544. doi: 10.1038/nrneph.2017.101

71. Kreft B, Jabs WJ, Laskay T et al. Polarized expression of Tamm-Horsfall protein by renal tubular epithelial cells activates human granulocytes. Infect Immun 2002;70(5):2650–2656. doi: 10.1128/iai.70.5.2650-2656.2002

72. Wimmer T, Cohen G, Saemann MD, Hörl WH. Effects of Tamm-Horsfall protein on polymorphonuclear leukocyte function. Nephrol Dial Transplant 2004;19(9):2192–2197. doi: 10.1093/ndt/gfh206

73. Horton JK, Davies M, Topley N et al. Activation of the inflammatory response of neutrophils by Tamm-Horsfall glycoprotein. Kidney Int 1990;37(2):7717–7260. doi: 10.1038/ki.1990.38

74. Su SJ, Chang KL, Lin TM et al. Uromodulin and TammHorsfall protein induce human monocytes to secrete TNF and express tissue factor. J Immunol 1997;158(7):3449–3456

75. Yu CL, Lin WM, Liao TS et al. Tamm-Horsfall glycoprotein (THG) purified from normal human pregnancy urine increases phagocytosis, complement receptor expressions and arachidonic acid metabolism of polymorphonuclear neutrophils. Immunopharmacology 1992;24(3):181–190. doi: 10.1016/01623109(92)90074-m

76. Saemann MD, Weichhart T, Zeyda M et al. Tamm-Horsfall glycoprotein links innate immune cell activation with adaptive immunity via a Toll-like receptor-4-dependent mechanism. J Clin Invest 2005;115(2):468–475. doi: 10.1172/jci22720

77. Sabharanjak S, Sharma P, Parton RG, Mayor S. GPIanchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrinindependent pinocytic pathway. Dev Cell 2002;2:411–423. doi: 10.1016/s1534-5807(02)00145-4

78. Kirkham M, Fujita A, Chadda R et al. Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J Cell Biol 2005;168(3):465–476. doi: 10.1083/jcb.200407078

79. Hoyer JR. Tubulointerstitial immune complex nephritis in rats immunized with Tamm-Horsfall protein. Kidney Int 1980;17(3):284–292. doi: 10.1038/ki.1980.34

80. Chambers R, Groufsky A, Hunt JS et al. Relationship of abnormal Tamm-Horsfall glycoprotein localization to renal morphology and function. Clin Nephrol 1986;26(1):21–26

81. Howie AJ, Brewer DB. Extra-tubular deposits of TammHorsfall protein in renal allografts. J Pathol 1983;139(2):193–206

82. Cavallone D, Malagolini N, Serafini-Cessi F. Binding of human neutrophils to cell-surface anchored Tamm-Horsfall glycoprotein in tubulointerstitial nephritis. Kidney Int 1999;55(5):1787– 1799. doi: 10.1046/j.1523-1755.1999.00439.x

83. Fasth AL, Hoyer JR, Seiler MW. Extratubular Tamm-Horsfall protein deposits induced by ureteral obstruction in mice. Clin Immunol Immunopathol 1988;47(1):47–61. doi: 10.1016/0090-1229(88)90144-4

84. Wu TH, Li KJ, Yu CL, Tsai CY. Tamm-Horsfall Protein is a Potent Immunomodulatory Molecule and a Disease Biomarker in the Urinary System. Molecules 2018;23(1).pii:E200. doi: 10.3390/molecules23010200

85. Hession C, Decker JM, Sherblom AP et al. Uromodulin (Tamm-Horsfall glycoprotein): a renal ligand for lymphokines. Science 1987;237(4821):1479–1484. doi: 10.1126/science.3498215

86. Rhodes DC. Binding of Tamm-Horsfall protein to complement 1q measured by ELISA and resonant mirror biosensor techniques under various ionic-strength conditions. Immunol Cell Biol 2000;78:474–482. doi: 10.1111/j.1440-1711.2000.t01-3-.x

87. Sherblom AP, Sathyamoorthy N, Decker JM et al. IL-2, a lectin with specificity for high mannose glycopeptides. J Immunol 1989;143(3):939–944

88. Hsu SI, Couser WG. Chronic progression of tubulointerstitial damage in proteinuric renal disease is mediated by complement activation: a therapeutic role for complement inhibitors? J Am Soc Nephrol 2003;14(suppl 2):S186–S191. doi: 10.1097/01.asn.0000070032.58017.20

89. Rodriguez de Cordoba S, Esparza-Gordillo J, Goicoechea de Jorge E et al. The human complement factor H: functional roles, genetic variations and disease associations. Mol Immunol 2004;41(4):355–567. doi: 10.1016/j.molimm.2004.02.005

90. Renner B, Ferreira VP, Cortes C et al. Binding of factor H to tubular epithelial cells limits interstitial complement activation in ischemic injury. Kidney Int 2011;80(2):165–173. doi: 10.1038/ki.2011.115

91. Liu M, Wang Y, Wang F et al. Interaction of uromodulin and complement factor H enhances C3b inactivation. J Cell Mol Med 2016;20(10):1821–1828. doi: 10.1111/jcmm.12872

92. Scolari F, Izzi C, Ghiggeri GM et al. Uromodulin: from monogenic to multifactorial diseases. Nephrol Dial Transplant 2015;30(8):1250–1256. doi: 10.1093/ndt/gfu300

93. Liu Y, Goldfarb D, El-Achkar TM et al. Tamm-Horsfall Protein/Uromodulin Deficiency Elicits Tubular Compensatory Responses Leading to Hypertension and Hyperuricemia. Am J Physiol Renal Physiol 2018;314:F1062–F1076. doi: 10.1152/ajprenal.00233.2017

94. Battula S, Hao S, Pedraza PL et al. Tumor necrosis factoralpha is an endogenous inhibitor of Na+-K+-2Clcotransporter (NKCC2) isoform A in the thick ascending limb. Am J Physiol Renal Physiol 2011;301:F94–F100. doi: 10.1152/ajprenal.00650.2010

95. Evans DA, Jacobs DO, Revhaug A, Wilmore DW. The effects of tumor necrosis factor and their selective inhibition by ibuprofen. Ann Surg 1989;209(3):312–321. doi: 10.1097/00000658198903000-00011

96. Nakatsuji K, Kii Y, Fujitani B, Ito T. General pharmacology of recombinant human tumor necrosis factor. 1st communication: effects on cardiovascular, gastrointestinal, renal and blood functions. Arzneimittelforschung1990;40(2 pt 1):218–225

97. Bao HF, Zhang ZR, Liang YY et al. Ceramide mediates inhibition of the renal epithelial sodium channel by tumor necrosis factor-alpha through protein kinase C. Am J Physiol Renal Physiol 2007;293:F1178–F1186. doi: 10.1152/ajprenal.00153.2007

98. Shahid M, Francis J, Majid DS. Tumor necrosis factoralpha induces renal vasoconstriction as well as natriuresis in mice. Am J Physiol Renal Physiol 2008;295(6):F1836–F1844. doi: 10.1152/ajprenal.90297.2008

99. Briggs JP, Schnermann J. The tubuloglomerular feedback mechanism: functional and biochemical aspects. Annu Rev Physiol 1987;49:251–273. doi: 10.1146/annurev.ph.49.030187.001343

100. Mutig K, Kahl T, Saritas T, Godes M. Activation of the bumetanide-sensitive Na+,K+,2Clcotransporter (NKCC2) is facilitated by Tamm-Horsfall protein in a chloride-sensitive manner. Biol Chem 2011;286(34):30200–30210. doi: 10.1074/jbc.m111.222968

101. Ramseyer VD, Garvin JL. Tumor necrosis factor-α: regulation of renal function and blood pressure. Am J Physiol Renal Physiol 2013;304(10):F1231–1242. doi: 10.1152/ajprenal.00557.2012

102. Han J, Chen Y, Liu Y et al. Common variants of the UMOD promoter associated with blood pressure in a communitybased Chinese cohort. Hypertens Res 2012;35(7):769–774. doi: 10.1038/hr.2012.51

103. Glaudemans B, Knoers NV, Hoenderop JG, Bindels RJ. New molecular players facilitating Mg(2+) reabsorption in the distal convoluted tubule. Kidney Int 2010;77(1):17–22. doi: 10.1038/ki.2009.358

104. Wolf MT, Wu XR, Huang CL. Uromodulin upregulates TRPV5 by impairing caveolin-mediated endocytosis. Kidney Int 2013;84(1):130–137. doi: 10.1038/ki.2013.63

105. Nie M, Bal MS, Liu J et al. Uromodulin regulates renal magnesium homeostasis through the ion channel transient receptor potential melastatin 6 (TRPM6). J Biol Chem 2018;293(42):16488–16502. doi: 10.1074/jbc.ra118.003950

106. Garimella PS, Jaber BL, Tighiouart H et al. Association of preoperative urinary uromodulin with AKI after cardiac surgery. Clin J Am Soc Nephrol 2017;12(1):10–18. doi: 10.2215/cjn.02520316

107. Delgado GE, Kleber ME, Scharnagl H et al. Serum uromodulin and mortality risk in patients undergoing coronary angiography. J Am Soc Nephrol 2017;28(7):2201–2210. doi: 10.1681/asn.2016111162

108. Bonventre JV, Zuk A. Ischemic acute renal failure: An inflammatory disease? Kidney Int 2004;66(2):480–485. doi: 10.1111/j.1523-1755.2004.761_2.x

109. Bennett MR, Pyles O, Ma Q, Devarajan P. Pre-operative levels of urinary uromodulin predict acute kidney injury after pediatric cardiopulmonary bypass surgery. Pediatr Nephrol 2018; 33(3):521–526. doi:10.1007/s00467-017-3823-0

110. El-Achkar TM, Wu XR, Rauchman M et al. TammHorsfall protein protects the kidney from ischemic injury by decreasing inflammation and altering TLR4 expression. Am J Physiol Renal Physiol 2008;295(2):F534–F544. doi: 10.1152/ajprenal.00083.2008

111. El-Achkar TM, McCracken R, Liu Y et al. Tamm-Horsfall protein translocates to the basolateral domain of thick ascending limbs, interstitium, and circulation during recovery from acute kidney injury. Am J Physiol Renal Physiol 2013;304(8):F106–F1075. doi: 10.1152/ajprenal.00543.2012

112. Torffvit O, Jørgensen PE, Kamper AL et al. Urinary excretion of Tamm-Horsfall protein and epidermal growth factor in chronic nephropathy. Nephron 1998;79(2):167–172. doi: 10.1159/000045020

113. Bernard AM, Ouled AA, Lauwerys RR et al. Pronounced decrease of Tamm-Horsfall proteinuria in diabetics. Clin Chem 1987;33:1264

114. McLaughlin PJ, Aikawa A, Davies HM et al. Uromodulin levels are decreased in urine during acute tubular necrosis but not during immune rejection after renal transplantation. Clin Sci (Lond) 1993;84(2):243–246. doi: 10.1042/cs0840243

115. Schröter J, Timmermans G, Seyberth HW et al. Marked reduction of Tamm-Horsfall protein synthesis in hyperprostaglandin E-syndrome. Kidney Int 1993;44(2):401–410. doi: 10.1038/ki.1993.258

116. Tsai CY, Wu TH, Yu CL et al. Increased excretions of beta2microglobulin, IL-6, and IL-8 and decreased excretion of Tamm-Horsfall glycoprotein in urine of patients with active lupus nephritis. Nephron 2000;85(3):207–214. doi: 10.1159/000045663

117. Pivin E, Ponte B, de Seigneux S et al. Uromodulin and Nephron Mass. Clin J Am Soc Nephrol 2018;13(10):1556–1557. doi: 10.2215/cjn.03600318

118. Navarro-Muñoz M, Ibernon M, Bonet J et al. Uromodulin and α(1)-antitrypsin urinary peptide analysis to differentiate glomerular kidney diseases. Kidney Blood Press Res 2012;35(5):314– 325. doi: 10.1159/000335383

119. Pérez V, Ibernón M, López D et al. Urinary peptide profiling to differentiate between minimal change disease and focal segmental glomerulosclerosis. PLoS One 2014;9(1):e87731. doi: 10.1371/journal.pone.0087731

120. Wu J, Wang N, Wang J et al. Identification of a uromodulin fragment for diagnosis of IgA nephropathy. Rapid Commun Mass Spectrom 2010;24(1):1971–1978. doi: 10.1002/rcm.4601

121. Risch L, Lhotta K, Meier D et al. The serum uromodulin level is associated with kidney function. Clin Chem Lab Med 2014;52(12):1755–1761. doi: 10.1515/cclm-2014-0505et al

122. Steubl D, Block M, Herbst V. Plasma uromodulin correlates with kidney function and identifies early stages in chronic kidney disease patients. Medicine (Baltimore) 2016;95(10):e3011. doi: 10.1097/md.0000000000003011

123. Fedak D, Kuźniewski M, Fugie A et al. Serum uromodulin concentrations correlate with glomerular filtration rate in patients with chronic kidney disease. Pol Arch Med Wewn 2016;126(12):995–1004. doi: 10.20452/pamw.3712

124. Scherberich JE, Gruber R, Nockher WA et al. Serum uromodulin-a marker of kidney function and renal parenchymal integrity. Nephrol Dial Transplant 2017;33(2):284–295. doi: 10.1093/ndt/gfw422

125. Leiherer A, Muendlein A, Saely CH et al. The value of uromodulin as a new serum marker to predict decline in renal function. J Hypertens 2018;36(1):110–118. doi: 10.1097/hjh.0000000000001527

126. Devuyst O, Knoers NV, Remuzzi G et al. Rare inherited kidney diseases: challenges, opportunities, and perspectives. Lancet 2014;383:1844–1859. doi: 10.1016/S0140-6736(14)60659-0

127. Eckardt KU, Coresh J, Devuyst O et al. Evolving importance of kidney disease: from subspecialty to global health burden. Lancet 2013;382(9887):158–169. doi: 10.1016/S0140-6736(13)60439-0

128. Freedman BI, Volkova NV, Satko SG et al. Populationbased screening for family history of end-stage renal disease among incident dialysis patients. Am J Nephrol 2005;25(6):529– 535. doi: 10.1159/000088491

129. Stavrou C, Koptides M, Tombazos C et al. Autosomal-dominant medullary cystic kidney disease type 1: clinical and molecular findings in six large Cypriot families. Kidney Int 2002;62:1385–1394. doi: 10.1111/j.1523-1755.2002.kid581.x

130. Thompson GR, Weiss JJ, Goldman RT et al. Familial occurrence of hyperuricemia, gout, and medullary cystic disease. Arch Intern Med 1978;138(11):1614–1617. doi: 10.1001/archinte.1978.03630360012009

131. Dahan K, Devuyst O, Smaers M et al. A cluster of mutations in the UMOD gene causes familial juvenile hyperuricemic nephropathy with abnormal expression of uromodulin. J Am Soc Nephrol 2003;14:2883–2893. doi: 10.1097/01.asn.0000092147.83480.b5

132. Hart TC, Gorry MC, Hart PS et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J Med Genet 2002;39(12):882–892. doi: 10.1136/jmg.39.12.882

133. Rampoldi L, Caridi G, Santon D et al. Allelism of MCKD, FJHN and GCKD caused by impairment of uromodulin export dynamics. Hum Mol Genet 2003;12(24):3369–3384. doi: 10.1093/hmg/ddg353

134. Turner JJ, Stacey M, Harding B et al. Uromodulin mutations cause familial juvenile hyperuricemic nephropathy. J Clin Endocrinol Metab 2003;88(3):1398–1401. doi: 10.1210/jc.2002-021973

135. Wolf MT, Mucha BE, Attanasio M et al. Mutations of the Uromodulin gene in MCKD type 2 patients cluster in exon 4, which encodes three EGF-like domains. Kidney Int 2003;64(5):1580– 1587. doi: 10.1046/j.1523-1755.2003.00269.x

136. Kuma A, Tamura M, Ishimatsu N et al. A novel UMOD gene mutation associated with uromodulin-associated kidney disease in a young woman with moderate kidney dysfunction. Intern Med 2015;54(6):631–635. doi: 10.2169/internalmedicine.54.3151

137. Bhargava R, Saigal R, Sharma R et al. Familial juvenile hyperuricemic nephropathy 1 (FJHN1). J Assoc Physicians India 2014;62(8):749–753

138. Prejbisz A, Sellin L, Szwench-Pietrasz E et al. Smaller caliber renal arteries are a novel feature of uromodulin-associated kidney disease. Kidney Int 2015;88(1):160–166. doi: 10.1038/ki.2015.2

139. Lee MN, Jun JE, Kwon GY et al. A novel UMOD mutation (c.187T>C) in a Korean family with juvenile hyperuricemic nephropathy. Ann Lab Med 2013;33(4):293–296. doi: 10.3343/alm.2013.33.4.293

140. Bollée G, Dahan K, Flamant M et al. Phenotype and outcome in hereditary tubulointerstitial nephritis secondary to UMOD mutations. Clin J Am Soc Nephrol 2011;6(10):2429–2438. doi: 10.2215/cjn.01220211

141. Moskowitz JL, Piret SE, Lhotta K et al. Association between genotype and phenotype in uromodulin-associated kidney disease. Clin J Am Soc Nephrol 2013;8(8):1349–1357. doi: 10.2215/cjn.11151012

142. Plumb LA, Marlais M, Bierzynska A et al. Unilateral hypoplastic kidney – a novel highly penetrant feature of familial juvenile hyperuricaemic nephropathy. BMC Nephrol 2014;15:76. doi: 10.1186/1471-2369-15-76

143. Eckardt KU, Alper SL, Antignac C et al. Autosomal dominant tubulointerstitial kidney disease: diagnosis, classification, and management-A KDIGO consensus report. Kidney Int 2015;88(4):676–683. doi: 10.1038/ki.2015.28

144. Каюков ИГ, Добронравов ВА, Береснева ОН, Смирнов АВ. Аутосомно-доминантная тубулоинтерстициальная болезнь почек. Нефрология 2018;22(6):9–22. doi: 10.24884/1561-6274-2018-22-6-9-22.


Для цитирования:


Хасун М., Орлова С.А., Каюков И.Г., Галкина О.В., Береснева О.Н., Парастаева М.М., Кучер А.Г., Мосина Н.В. Уромодулин и почки. Нефрология. 2020;24(1):22-38. https://doi.org/10.36485/1561-6274-2020-24-1-22-38

For citation:


Khasun M., Orlova S.A., Kayukov I.G., Galkina O.V., Beresneva O.N., Parastaeva M.M., Kucher A.G., Mosina N.V. Uromodulin and kidneys. Nephrology (Saint-Petersburg). 2020;24(1):22-38. (In Russ.) https://doi.org/10.36485/1561-6274-2020-24-1-22-38

Просмотров: 243


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)